Compare commits
47 commits
camera-sna
...
dev
Author | SHA1 | Date | |
---|---|---|---|
|
007a3d48b9 | ||
|
4342eb219b | ||
|
c281ca6c6d | ||
0bcf572242 | |||
|
c4ab4d6cde | ||
838028fcb0 | |||
|
0f8b575c90 | ||
|
9a1496f224 | ||
5f9050e04e | |||
|
aaa90faef9 | ||
|
e0a786a46c | ||
|
975e6d03dc | ||
|
416db7a33a | ||
|
cfc7503a14 | ||
1c21f417ce | |||
10b2048e94 | |||
7b9eee1ad9 | |||
244ec65c09 | |||
7afd7f0832 | |||
252ef468c9 | |||
57a51f3ba3 | |||
d35a9ae532 | |||
29b97ded2a | |||
|
c4179b3b08 | ||
|
81547311d8 | ||
|
8c429cc8f6 | ||
|
18c62a2370 | ||
|
a1d358aead | ||
|
37c2e2a4d4 | ||
|
7f9cc3de8d | ||
e6716bbe73 | |||
f50585f26d | |||
769371a1a3 | |||
a1f797f564 | |||
|
428f7a9671 | ||
c7bb46e1e3 | |||
112ca9325d | |||
700d3b3efe | |||
3edcd286fd | |||
8f32de1510 | |||
3c67fa933c | |||
39d49ba617 | |||
8e14897a69 | |||
1ff6108d08 | |||
162f29ec21 | |||
5cf1bf08cc | |||
22370e2040 |
16 changed files with 5777 additions and 602 deletions
|
@ -1,13 +1,68 @@
|
||||||
name: Build Backend Application and Docker Image
|
name: Build Worker Base and Application Images
|
||||||
|
|
||||||
on:
|
on:
|
||||||
push:
|
push:
|
||||||
branches:
|
branches:
|
||||||
- main
|
- main
|
||||||
|
- dev
|
||||||
workflow_dispatch:
|
workflow_dispatch:
|
||||||
|
inputs:
|
||||||
|
force_base_build:
|
||||||
|
description: 'Force base image build regardless of changes'
|
||||||
|
required: false
|
||||||
|
default: 'false'
|
||||||
|
type: boolean
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
|
check-base-changes:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
outputs:
|
||||||
|
base-changed: ${{ steps.changes.outputs.base-changed }}
|
||||||
|
steps:
|
||||||
|
- name: Checkout code
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
with:
|
||||||
|
fetch-depth: 2
|
||||||
|
- name: Check for base changes
|
||||||
|
id: changes
|
||||||
|
run: |
|
||||||
|
if git diff HEAD^ HEAD --name-only | grep -E "(Dockerfile\.base|requirements\.base\.txt)" > /dev/null; then
|
||||||
|
echo "base-changed=true" >> $GITHUB_OUTPUT
|
||||||
|
else
|
||||||
|
echo "base-changed=false" >> $GITHUB_OUTPUT
|
||||||
|
fi
|
||||||
|
|
||||||
|
build-base:
|
||||||
|
needs: check-base-changes
|
||||||
|
if: needs.check-base-changes.outputs.base-changed == 'true' || (github.event_name == 'workflow_dispatch' && github.event.inputs.force_base_build == 'true')
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
permissions:
|
||||||
|
packages: write
|
||||||
|
steps:
|
||||||
|
- name: Checkout code
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
|
||||||
|
- name: Set up Docker Buildx
|
||||||
|
uses: docker/setup-buildx-action@v2
|
||||||
|
|
||||||
|
- name: Login to GitHub Container Registry
|
||||||
|
uses: docker/login-action@v3
|
||||||
|
with:
|
||||||
|
registry: git.siwatsystem.com
|
||||||
|
username: ${{ github.actor }}
|
||||||
|
password: ${{ secrets.RUNNER_TOKEN }}
|
||||||
|
|
||||||
|
- name: Build and push base Docker image
|
||||||
|
uses: docker/build-push-action@v4
|
||||||
|
with:
|
||||||
|
context: .
|
||||||
|
file: ./Dockerfile.base
|
||||||
|
push: true
|
||||||
|
tags: git.siwatsystem.com/adsist-cms/worker-base:latest
|
||||||
|
|
||||||
build-docker:
|
build-docker:
|
||||||
|
needs: [check-base-changes, build-base]
|
||||||
|
if: always() && (needs.build-base.result == 'success' || needs.build-base.result == 'skipped')
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
permissions:
|
permissions:
|
||||||
packages: write
|
packages: write
|
||||||
|
@ -31,4 +86,27 @@ jobs:
|
||||||
context: .
|
context: .
|
||||||
file: ./Dockerfile
|
file: ./Dockerfile
|
||||||
push: true
|
push: true
|
||||||
tags: git.siwatsystem.com/adsist-cms/worker:latest
|
tags: git.siwatsystem.com/adsist-cms/worker:${{ github.ref_name == 'main' && 'latest' || 'dev' }}
|
||||||
|
|
||||||
|
deploy-stack:
|
||||||
|
needs: build-docker
|
||||||
|
runs-on: adsist
|
||||||
|
steps:
|
||||||
|
- name: Checkout code
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
- name: Set up SSH connection
|
||||||
|
run: |
|
||||||
|
mkdir -p ~/.ssh
|
||||||
|
echo "${{ secrets.DEPLOY_KEY_CMS }}" > ~/.ssh/id_rsa
|
||||||
|
chmod 600 ~/.ssh/id_rsa
|
||||||
|
ssh-keyscan -H ${{ vars.DEPLOY_HOST_CMS }} >> ~/.ssh/known_hosts
|
||||||
|
- name: Deploy stack
|
||||||
|
run: |
|
||||||
|
echo "Pulling and starting containers on server..."
|
||||||
|
if [ "${{ github.ref_name }}" = "main" ]; then
|
||||||
|
echo "Deploying production stack..."
|
||||||
|
ssh -i ~/.ssh/id_rsa ${{ vars.DEPLOY_USER_CMS }}@${{ vars.DEPLOY_HOST_CMS }} "cd ~/cms-system-k8s && docker compose -f docker-compose.production.yml pull && docker compose -f docker-compose.production.yml up -d"
|
||||||
|
else
|
||||||
|
echo "Deploying staging stack..."
|
||||||
|
ssh -i ~/.ssh/id_rsa ${{ vars.DEPLOY_USER_CMS }}@${{ vars.DEPLOY_HOST_CMS }} "cd ~/cms-system-k8s && docker compose -f docker-compose.staging.yml pull && docker compose -f docker-compose.staging.yml up -d"
|
||||||
|
fi
|
3
.gitignore
vendored
3
.gitignore
vendored
|
@ -10,3 +10,6 @@ mptas
|
||||||
detector_worker.log
|
detector_worker.log
|
||||||
.gitignore
|
.gitignore
|
||||||
no_frame_debug.log
|
no_frame_debug.log
|
||||||
|
|
||||||
|
feeder/
|
||||||
|
.venv/
|
||||||
|
|
277
CLAUDE.md
Normal file
277
CLAUDE.md
Normal file
|
@ -0,0 +1,277 @@
|
||||||
|
# Python Detector Worker - CLAUDE.md
|
||||||
|
|
||||||
|
## Project Overview
|
||||||
|
This is a FastAPI-based computer vision detection worker that processes video streams from RTSP/HTTP sources and runs advanced YOLO-based machine learning pipelines for multi-class object detection and parallel classification. The system features comprehensive database integration, Redis support, and hierarchical pipeline execution designed to work within a larger CMS (Content Management System) architecture.
|
||||||
|
|
||||||
|
### Key Features
|
||||||
|
- **Multi-Class Detection**: Simultaneous detection of multiple object classes (e.g., Car + Frontal)
|
||||||
|
- **Parallel Processing**: Concurrent execution of classification branches using ThreadPoolExecutor
|
||||||
|
- **Database Integration**: Automatic PostgreSQL schema management and record updates
|
||||||
|
- **Redis Actions**: Image storage with region cropping and pub/sub messaging
|
||||||
|
- **Pipeline Synchronization**: Branch coordination with `waitForBranches` functionality
|
||||||
|
- **Dynamic Field Mapping**: Template-based field resolution for database operations
|
||||||
|
|
||||||
|
## Architecture & Technology Stack
|
||||||
|
- **Framework**: FastAPI with WebSocket support
|
||||||
|
- **ML/CV**: PyTorch, Ultralytics YOLO, OpenCV
|
||||||
|
- **Containerization**: Docker (Python 3.13-bookworm base)
|
||||||
|
- **Data Storage**: Redis integration for action handling + PostgreSQL for persistent storage
|
||||||
|
- **Database**: Automatic schema management with gas_station_1 database
|
||||||
|
- **Parallel Processing**: ThreadPoolExecutor for concurrent classification
|
||||||
|
- **Communication**: WebSocket-based real-time protocol
|
||||||
|
|
||||||
|
## Core Components
|
||||||
|
|
||||||
|
### Main Application (`app.py`)
|
||||||
|
- **FastAPI WebSocket server** for real-time communication
|
||||||
|
- **Multi-camera stream management** with shared stream optimization
|
||||||
|
- **HTTP REST endpoint** for image retrieval (`/camera/{camera_id}/image`)
|
||||||
|
- **Threading-based frame readers** for RTSP streams and HTTP snapshots
|
||||||
|
- **Model loading and inference** using MPTA (Machine Learning Pipeline Archive) format
|
||||||
|
- **Session management** with display identifier mapping
|
||||||
|
- **Resource monitoring** (CPU, memory, GPU usage via psutil)
|
||||||
|
|
||||||
|
### Pipeline System (`siwatsystem/pympta.py`)
|
||||||
|
- **MPTA file handling** - ZIP archives containing model configurations
|
||||||
|
- **Hierarchical pipeline execution** with detection → classification branching
|
||||||
|
- **Multi-class detection** - Simultaneous detection of multiple classes (Car + Frontal)
|
||||||
|
- **Parallel processing** - Concurrent classification branches with ThreadPoolExecutor
|
||||||
|
- **Redis action system** - Image saving with region cropping and message publishing
|
||||||
|
- **PostgreSQL integration** - Automatic table creation and combined updates
|
||||||
|
- **Dynamic model loading** with GPU optimization
|
||||||
|
- **Configurable trigger classes and confidence thresholds**
|
||||||
|
- **Branch synchronization** - waitForBranches coordination for database updates
|
||||||
|
|
||||||
|
### Database System (`siwatsystem/database.py`)
|
||||||
|
- **DatabaseManager class** for PostgreSQL operations
|
||||||
|
- **Automatic table creation** with gas_station_1.car_frontal_info schema
|
||||||
|
- **Combined update operations** with field mapping from branch results
|
||||||
|
- **Session management** with UUID generation
|
||||||
|
- **Error handling** and connection management
|
||||||
|
|
||||||
|
### Testing & Debugging
|
||||||
|
- **Protocol test script** (`test_protocol.py`) for WebSocket communication validation
|
||||||
|
- **Pipeline webcam utility** (`pipeline_webcam.py`) for local testing with visual output
|
||||||
|
- **RTSP streaming debug tool** (`debug/rtsp_webcam.py`) using GStreamer
|
||||||
|
|
||||||
|
## Code Conventions & Patterns
|
||||||
|
|
||||||
|
### Logging
|
||||||
|
- **Structured logging** using Python's logging module
|
||||||
|
- **File + console output** to `detector_worker.log`
|
||||||
|
- **Debug level separation** for detailed troubleshooting
|
||||||
|
- **Context-aware messages** with camera IDs and model information
|
||||||
|
|
||||||
|
### Error Handling
|
||||||
|
- **Graceful failure handling** with retry mechanisms (configurable max_retries)
|
||||||
|
- **Thread-safe operations** using locks for streams and models
|
||||||
|
- **WebSocket disconnect handling** with proper cleanup
|
||||||
|
- **Model loading validation** with detailed error reporting
|
||||||
|
|
||||||
|
### Configuration
|
||||||
|
- **JSON configuration** (`config.json`) for runtime parameters:
|
||||||
|
- `poll_interval_ms`: Frame processing interval
|
||||||
|
- `max_streams`: Concurrent stream limit
|
||||||
|
- `target_fps`: Target frame rate
|
||||||
|
- `reconnect_interval_sec`: Stream reconnection delay
|
||||||
|
- `max_retries`: Maximum retry attempts (-1 for unlimited)
|
||||||
|
|
||||||
|
### Threading Model
|
||||||
|
- **Frame reader threads** for each camera stream (RTSP/HTTP)
|
||||||
|
- **Shared stream optimization** - multiple subscriptions can reuse the same camera stream
|
||||||
|
- **Async WebSocket handling** with concurrent task management
|
||||||
|
- **Thread-safe data structures** with proper locking mechanisms
|
||||||
|
|
||||||
|
## WebSocket Protocol
|
||||||
|
|
||||||
|
### Message Types
|
||||||
|
- **subscribe**: Start camera stream with model pipeline
|
||||||
|
- **unsubscribe**: Stop camera stream processing
|
||||||
|
- **requestState**: Request current worker status
|
||||||
|
- **setSessionId**: Associate display with session identifier
|
||||||
|
- **patchSession**: Update session data
|
||||||
|
- **stateReport**: Periodic heartbeat with system metrics
|
||||||
|
- **imageDetection**: Detection results with timestamp and model info
|
||||||
|
|
||||||
|
### Subscription Format
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "subscribe",
|
||||||
|
"payload": {
|
||||||
|
"subscriptionIdentifier": "display-001;cam-001",
|
||||||
|
"rtspUrl": "rtsp://...", // OR snapshotUrl
|
||||||
|
"snapshotUrl": "http://...",
|
||||||
|
"snapshotInterval": 5000,
|
||||||
|
"modelUrl": "http://...model.mpta",
|
||||||
|
"modelId": 101,
|
||||||
|
"modelName": "Vehicle Detection",
|
||||||
|
"cropX1": 100, "cropY1": 200,
|
||||||
|
"cropX2": 300, "cropY2": 400
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Model Pipeline (MPTA) Format
|
||||||
|
|
||||||
|
### Enhanced Structure
|
||||||
|
- **ZIP archive** containing models and configuration
|
||||||
|
- **pipeline.json** - Main configuration file with Redis + PostgreSQL settings
|
||||||
|
- **Model files** - YOLO .pt files for detection/classification
|
||||||
|
- **Multi-model support** - Detection + multiple classification models
|
||||||
|
|
||||||
|
### Advanced Pipeline Flow
|
||||||
|
1. **Multi-class detection stage** - YOLO detection of Car + Frontal simultaneously
|
||||||
|
2. **Validation stage** - Check for expected classes (flexible matching)
|
||||||
|
3. **Database initialization** - Create initial record with session_id
|
||||||
|
4. **Redis actions** - Save cropped frontal images with expiration
|
||||||
|
5. **Parallel classification** - Concurrent brand and body type classification
|
||||||
|
6. **Branch synchronization** - Wait for all classification branches to complete
|
||||||
|
7. **Database update** - Combined update with all classification results
|
||||||
|
|
||||||
|
### Enhanced Branch Configuration
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"modelId": "car_frontal_detection_v1",
|
||||||
|
"modelFile": "car_frontal_detection_v1.pt",
|
||||||
|
"multiClass": true,
|
||||||
|
"expectedClasses": ["Car", "Frontal"],
|
||||||
|
"triggerClasses": ["Car", "Frontal"],
|
||||||
|
"minConfidence": 0.8,
|
||||||
|
"actions": [
|
||||||
|
{
|
||||||
|
"type": "redis_save_image",
|
||||||
|
"region": "Frontal",
|
||||||
|
"key": "inference:{display_id}:{timestamp}:{session_id}:{filename}",
|
||||||
|
"expire_seconds": 600
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"branches": [
|
||||||
|
{
|
||||||
|
"modelId": "car_brand_cls_v1",
|
||||||
|
"modelFile": "car_brand_cls_v1.pt",
|
||||||
|
"parallel": true,
|
||||||
|
"crop": true,
|
||||||
|
"cropClass": "Frontal",
|
||||||
|
"triggerClasses": ["Frontal"],
|
||||||
|
"minConfidence": 0.85
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"parallelActions": [
|
||||||
|
{
|
||||||
|
"type": "postgresql_update_combined",
|
||||||
|
"table": "car_frontal_info",
|
||||||
|
"key_field": "session_id",
|
||||||
|
"waitForBranches": ["car_brand_cls_v1", "car_bodytype_cls_v1"],
|
||||||
|
"fields": {
|
||||||
|
"car_brand": "{car_brand_cls_v1.brand}",
|
||||||
|
"car_body_type": "{car_bodytype_cls_v1.body_type}"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Stream Management
|
||||||
|
|
||||||
|
### Shared Streams
|
||||||
|
- Multiple subscriptions can share the same camera URL
|
||||||
|
- Reference counting prevents premature stream termination
|
||||||
|
- Automatic cleanup when last subscription ends
|
||||||
|
|
||||||
|
### Frame Processing
|
||||||
|
- **Queue-based buffering** with single frame capacity (latest frame only)
|
||||||
|
- **Configurable polling interval** based on target FPS
|
||||||
|
- **Automatic reconnection** with exponential backoff
|
||||||
|
|
||||||
|
## Development & Testing
|
||||||
|
|
||||||
|
### Local Development
|
||||||
|
```bash
|
||||||
|
# Install dependencies
|
||||||
|
pip install -r requirements.txt
|
||||||
|
|
||||||
|
# Run the worker
|
||||||
|
python app.py
|
||||||
|
|
||||||
|
# Test protocol compliance
|
||||||
|
python test_protocol.py
|
||||||
|
|
||||||
|
# Test pipeline with webcam
|
||||||
|
python pipeline_webcam.py --mpta-file path/to/model.mpta --video 0
|
||||||
|
```
|
||||||
|
|
||||||
|
### Docker Deployment
|
||||||
|
```bash
|
||||||
|
# Build container
|
||||||
|
docker build -t detector-worker .
|
||||||
|
|
||||||
|
# Run with volume mounts for models
|
||||||
|
docker run -p 8000:8000 -v ./models:/app/models detector-worker
|
||||||
|
```
|
||||||
|
|
||||||
|
### Testing Commands
|
||||||
|
- **Protocol testing**: `python test_protocol.py`
|
||||||
|
- **Pipeline validation**: `python pipeline_webcam.py --mpta-file <path> --video 0`
|
||||||
|
- **RTSP debugging**: `python debug/rtsp_webcam.py`
|
||||||
|
|
||||||
|
## Dependencies
|
||||||
|
- **fastapi[standard]**: Web framework with WebSocket support
|
||||||
|
- **uvicorn**: ASGI server
|
||||||
|
- **torch, torchvision**: PyTorch for ML inference
|
||||||
|
- **ultralytics**: YOLO implementation
|
||||||
|
- **opencv-python**: Computer vision operations
|
||||||
|
- **websockets**: WebSocket client/server
|
||||||
|
- **redis**: Redis client for action execution
|
||||||
|
- **psycopg2-binary**: PostgreSQL database adapter
|
||||||
|
- **scipy**: Scientific computing for advanced algorithms
|
||||||
|
- **filterpy**: Kalman filtering and state estimation
|
||||||
|
|
||||||
|
## Security Considerations
|
||||||
|
- Model files are loaded from trusted sources only
|
||||||
|
- Redis connections use authentication when configured
|
||||||
|
- WebSocket connections handle disconnects gracefully
|
||||||
|
- Resource usage is monitored to prevent DoS
|
||||||
|
|
||||||
|
## Database Integration
|
||||||
|
|
||||||
|
### Schema Management
|
||||||
|
The system automatically creates and manages PostgreSQL tables:
|
||||||
|
|
||||||
|
```sql
|
||||||
|
CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
|
||||||
|
display_id VARCHAR(255),
|
||||||
|
captured_timestamp VARCHAR(255),
|
||||||
|
session_id VARCHAR(255) PRIMARY KEY,
|
||||||
|
license_character VARCHAR(255) DEFAULT NULL,
|
||||||
|
license_type VARCHAR(255) DEFAULT 'No model available',
|
||||||
|
car_brand VARCHAR(255) DEFAULT NULL,
|
||||||
|
car_model VARCHAR(255) DEFAULT NULL,
|
||||||
|
car_body_type VARCHAR(255) DEFAULT NULL,
|
||||||
|
created_at TIMESTAMP DEFAULT NOW(),
|
||||||
|
updated_at TIMESTAMP DEFAULT NOW()
|
||||||
|
);
|
||||||
|
```
|
||||||
|
|
||||||
|
### Workflow
|
||||||
|
1. **Detection**: When both "Car" and "Frontal" are detected, create initial database record with UUID session_id
|
||||||
|
2. **Redis Storage**: Save cropped frontal image to Redis with session_id in key
|
||||||
|
3. **Parallel Processing**: Run brand and body type classification concurrently
|
||||||
|
4. **Synchronization**: Wait for all branches to complete using `waitForBranches`
|
||||||
|
5. **Database Update**: Update record with combined classification results using field mapping
|
||||||
|
|
||||||
|
### Field Mapping
|
||||||
|
Templates like `{car_brand_cls_v1.brand}` are resolved to actual classification results:
|
||||||
|
- `car_brand_cls_v1.brand` → "Honda"
|
||||||
|
- `car_bodytype_cls_v1.body_type` → "Sedan"
|
||||||
|
|
||||||
|
## Performance Optimizations
|
||||||
|
- GPU acceleration when CUDA is available
|
||||||
|
- Shared camera streams reduce resource usage
|
||||||
|
- Frame queue optimization (single latest frame)
|
||||||
|
- Model caching across subscriptions
|
||||||
|
- Trigger class filtering for faster inference
|
||||||
|
- Parallel processing with ThreadPoolExecutor for classification branches
|
||||||
|
- Multi-class detection reduces inference passes
|
||||||
|
- Region-based cropping minimizes processing overhead
|
||||||
|
- Database connection pooling and prepared statements
|
||||||
|
- Redis image storage with automatic expiration
|
16
Dockerfile
16
Dockerfile
|
@ -1,19 +1,11 @@
|
||||||
# Use the official Python image from the Docker Hub
|
# Use our pre-built base image with ML dependencies
|
||||||
FROM python:3.13-bookworm
|
FROM git.siwatsystem.com/adsist-cms/worker-base:latest
|
||||||
|
|
||||||
# Set the working directory in the container
|
# Copy and install application requirements (frequently changing dependencies)
|
||||||
WORKDIR /app
|
|
||||||
|
|
||||||
# Copy the requirements file into the container at /app
|
|
||||||
COPY requirements.txt .
|
COPY requirements.txt .
|
||||||
|
|
||||||
# Update apt, install libgl1, and clear apt cache
|
|
||||||
RUN apt update && apt install -y libgl1 && rm -rf /var/lib/apt/lists/*
|
|
||||||
|
|
||||||
# Install any dependencies specified in requirements.txt
|
|
||||||
RUN pip install --no-cache-dir -r requirements.txt
|
RUN pip install --no-cache-dir -r requirements.txt
|
||||||
|
|
||||||
# Copy the rest of the application code into the container at /app
|
# Copy the application code
|
||||||
COPY . .
|
COPY . .
|
||||||
|
|
||||||
# Run the application
|
# Run the application
|
||||||
|
|
15
Dockerfile.base
Normal file
15
Dockerfile.base
Normal file
|
@ -0,0 +1,15 @@
|
||||||
|
# Base image with all ML dependencies
|
||||||
|
FROM python:3.13-bookworm
|
||||||
|
|
||||||
|
# Install system dependencies
|
||||||
|
RUN apt update && apt install -y libgl1 && rm -rf /var/lib/apt/lists/*
|
||||||
|
|
||||||
|
# Copy and install base requirements (ML dependencies that rarely change)
|
||||||
|
COPY requirements.base.txt .
|
||||||
|
RUN pip install --no-cache-dir -r requirements.base.txt
|
||||||
|
|
||||||
|
# Set working directory
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
# This base image will be reused for all worker builds
|
||||||
|
CMD ["python3", "-m", "fastapi", "run", "--host", "0.0.0.0", "--port", "8000"]
|
731
app.py
731
app.py
|
@ -13,9 +13,16 @@ import requests
|
||||||
import asyncio
|
import asyncio
|
||||||
import psutil
|
import psutil
|
||||||
import zipfile
|
import zipfile
|
||||||
|
import ssl
|
||||||
|
import urllib3
|
||||||
|
import subprocess
|
||||||
|
import tempfile
|
||||||
from urllib.parse import urlparse
|
from urllib.parse import urlparse
|
||||||
from fastapi import FastAPI, WebSocket
|
from requests.adapters import HTTPAdapter
|
||||||
|
from urllib3.util.ssl_ import create_urllib3_context
|
||||||
|
from fastapi import FastAPI, WebSocket, HTTPException
|
||||||
from fastapi.websockets import WebSocketDisconnect
|
from fastapi.websockets import WebSocketDisconnect
|
||||||
|
from fastapi.responses import Response
|
||||||
from websockets.exceptions import ConnectionClosedError
|
from websockets.exceptions import ConnectionClosedError
|
||||||
from ultralytics import YOLO
|
from ultralytics import YOLO
|
||||||
|
|
||||||
|
@ -28,6 +35,14 @@ app = FastAPI()
|
||||||
# "models" now holds a nested dict: { camera_id: { modelId: model_tree } }
|
# "models" now holds a nested dict: { camera_id: { modelId: model_tree } }
|
||||||
models: Dict[str, Dict[str, Any]] = {}
|
models: Dict[str, Dict[str, Any]] = {}
|
||||||
streams: Dict[str, Dict[str, Any]] = {}
|
streams: Dict[str, Dict[str, Any]] = {}
|
||||||
|
# Store session IDs per display
|
||||||
|
session_ids: Dict[str, int] = {}
|
||||||
|
# Track shared camera streams by camera URL
|
||||||
|
camera_streams: Dict[str, Dict[str, Any]] = {}
|
||||||
|
# Map subscriptions to their camera URL
|
||||||
|
subscription_to_camera: Dict[str, str] = {}
|
||||||
|
# Store latest frames for REST API access (separate from processing buffer)
|
||||||
|
latest_frames: Dict[str, Any] = {}
|
||||||
|
|
||||||
with open("config.json", "r") as f:
|
with open("config.json", "r") as f:
|
||||||
config = json.load(f)
|
config = json.load(f)
|
||||||
|
@ -102,25 +117,115 @@ def download_mpta(url: str, dest_path: str) -> str:
|
||||||
# Add helper to fetch snapshot image from HTTP/HTTPS URL
|
# Add helper to fetch snapshot image from HTTP/HTTPS URL
|
||||||
def fetch_snapshot(url: str):
|
def fetch_snapshot(url: str):
|
||||||
try:
|
try:
|
||||||
response = requests.get(url, timeout=10)
|
from requests.auth import HTTPBasicAuth, HTTPDigestAuth
|
||||||
|
|
||||||
|
# Parse URL to extract credentials
|
||||||
|
parsed = urlparse(url)
|
||||||
|
|
||||||
|
# Prepare headers - some cameras require User-Agent
|
||||||
|
headers = {
|
||||||
|
'User-Agent': 'Mozilla/5.0 (compatible; DetectorWorker/1.0)'
|
||||||
|
}
|
||||||
|
|
||||||
|
# Reconstruct URL without credentials
|
||||||
|
clean_url = f"{parsed.scheme}://{parsed.hostname}"
|
||||||
|
if parsed.port:
|
||||||
|
clean_url += f":{parsed.port}"
|
||||||
|
clean_url += parsed.path
|
||||||
|
if parsed.query:
|
||||||
|
clean_url += f"?{parsed.query}"
|
||||||
|
|
||||||
|
auth = None
|
||||||
|
if parsed.username and parsed.password:
|
||||||
|
# Try HTTP Digest authentication first (common for IP cameras)
|
||||||
|
try:
|
||||||
|
auth = HTTPDigestAuth(parsed.username, parsed.password)
|
||||||
|
response = requests.get(clean_url, auth=auth, headers=headers, timeout=10)
|
||||||
|
if response.status_code == 200:
|
||||||
|
logger.debug(f"Successfully authenticated using HTTP Digest for {clean_url}")
|
||||||
|
elif response.status_code == 401:
|
||||||
|
# If Digest fails, try Basic auth
|
||||||
|
logger.debug(f"HTTP Digest failed, trying Basic auth for {clean_url}")
|
||||||
|
auth = HTTPBasicAuth(parsed.username, parsed.password)
|
||||||
|
response = requests.get(clean_url, auth=auth, headers=headers, timeout=10)
|
||||||
|
if response.status_code == 200:
|
||||||
|
logger.debug(f"Successfully authenticated using HTTP Basic for {clean_url}")
|
||||||
|
except Exception as auth_error:
|
||||||
|
logger.debug(f"Authentication setup error: {auth_error}")
|
||||||
|
# Fallback to original URL with embedded credentials
|
||||||
|
response = requests.get(url, headers=headers, timeout=10)
|
||||||
|
else:
|
||||||
|
# No credentials in URL, make request as-is
|
||||||
|
response = requests.get(url, headers=headers, timeout=10)
|
||||||
|
|
||||||
if response.status_code == 200:
|
if response.status_code == 200:
|
||||||
# Convert response content to numpy array
|
# Convert response content to numpy array
|
||||||
nparr = np.frombuffer(response.content, np.uint8)
|
nparr = np.frombuffer(response.content, np.uint8)
|
||||||
# Decode image
|
# Decode image
|
||||||
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||||
if frame is not None:
|
if frame is not None:
|
||||||
logger.debug(f"Successfully fetched snapshot from {url}, shape: {frame.shape}")
|
logger.debug(f"Successfully fetched snapshot from {clean_url}, shape: {frame.shape}")
|
||||||
return frame
|
return frame
|
||||||
else:
|
else:
|
||||||
logger.error(f"Failed to decode image from snapshot URL: {url}")
|
logger.error(f"Failed to decode image from snapshot URL: {clean_url}")
|
||||||
return None
|
return None
|
||||||
else:
|
else:
|
||||||
logger.error(f"Failed to fetch snapshot (status code {response.status_code}): {url}")
|
logger.error(f"Failed to fetch snapshot (status code {response.status_code}): {clean_url}")
|
||||||
return None
|
return None
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Exception fetching snapshot from {url}: {str(e)}")
|
logger.error(f"Exception fetching snapshot from {url}: {str(e)}")
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
# Helper to get crop coordinates from stream
|
||||||
|
def get_crop_coords(stream):
|
||||||
|
return {
|
||||||
|
"cropX1": stream.get("cropX1"),
|
||||||
|
"cropY1": stream.get("cropY1"),
|
||||||
|
"cropX2": stream.get("cropX2"),
|
||||||
|
"cropY2": stream.get("cropY2")
|
||||||
|
}
|
||||||
|
|
||||||
|
####################################################
|
||||||
|
# REST API endpoint for image retrieval
|
||||||
|
####################################################
|
||||||
|
@app.get("/camera/{camera_id}/image")
|
||||||
|
async def get_camera_image(camera_id: str):
|
||||||
|
"""
|
||||||
|
Get the current frame from a camera as JPEG image
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# URL decode the camera_id to handle encoded characters like %3B for semicolon
|
||||||
|
from urllib.parse import unquote
|
||||||
|
original_camera_id = camera_id
|
||||||
|
camera_id = unquote(camera_id)
|
||||||
|
logger.debug(f"REST API request: original='{original_camera_id}', decoded='{camera_id}'")
|
||||||
|
|
||||||
|
with streams_lock:
|
||||||
|
if camera_id not in streams:
|
||||||
|
logger.warning(f"Camera ID '{camera_id}' not found in streams. Current streams: {list(streams.keys())}")
|
||||||
|
raise HTTPException(status_code=404, detail=f"Camera {camera_id} not found or not active")
|
||||||
|
|
||||||
|
# Check if we have a cached frame for this camera
|
||||||
|
if camera_id not in latest_frames:
|
||||||
|
logger.warning(f"No cached frame available for camera '{camera_id}'.")
|
||||||
|
raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
|
||||||
|
|
||||||
|
frame = latest_frames[camera_id]
|
||||||
|
logger.debug(f"Retrieved cached frame for camera '{camera_id}', frame shape: {frame.shape}")
|
||||||
|
# Encode frame as JPEG
|
||||||
|
success, buffer_img = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 85])
|
||||||
|
if not success:
|
||||||
|
raise HTTPException(status_code=500, detail="Failed to encode image as JPEG")
|
||||||
|
|
||||||
|
# Return image as binary response
|
||||||
|
return Response(content=buffer_img.tobytes(), media_type="image/jpeg")
|
||||||
|
|
||||||
|
except HTTPException:
|
||||||
|
raise
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error retrieving image for camera {camera_id}: {str(e)}", exc_info=True)
|
||||||
|
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
||||||
|
|
||||||
####################################################
|
####################################################
|
||||||
# Detection and frame processing functions
|
# Detection and frame processing functions
|
||||||
####################################################
|
####################################################
|
||||||
|
@ -131,73 +236,118 @@ async def detect(websocket: WebSocket):
|
||||||
|
|
||||||
async def handle_detection(camera_id, stream, frame, websocket, model_tree, persistent_data):
|
async def handle_detection(camera_id, stream, frame, websocket, model_tree, persistent_data):
|
||||||
try:
|
try:
|
||||||
|
# Apply crop if specified
|
||||||
|
cropped_frame = frame
|
||||||
|
if all(coord is not None for coord in [stream.get("cropX1"), stream.get("cropY1"), stream.get("cropX2"), stream.get("cropY2")]):
|
||||||
|
cropX1, cropY1, cropX2, cropY2 = stream["cropX1"], stream["cropY1"], stream["cropX2"], stream["cropY2"]
|
||||||
|
cropped_frame = frame[cropY1:cropY2, cropX1:cropX2]
|
||||||
|
logger.debug(f"Applied crop coordinates ({cropX1}, {cropY1}, {cropX2}, {cropY2}) to frame for camera {camera_id}")
|
||||||
|
|
||||||
logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}")
|
logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}")
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
detection_result = run_pipeline(frame, model_tree)
|
|
||||||
|
# Extract display identifier for pipeline context
|
||||||
|
subscription_parts = stream["subscriptionIdentifier"].split(';')
|
||||||
|
display_identifier = subscription_parts[0] if subscription_parts else None
|
||||||
|
|
||||||
|
# Create context for pipeline execution (session_id will be generated by pipeline)
|
||||||
|
pipeline_context = {
|
||||||
|
"camera_id": camera_id,
|
||||||
|
"display_id": display_identifier
|
||||||
|
}
|
||||||
|
|
||||||
|
detection_result = run_pipeline(cropped_frame, model_tree, context=pipeline_context)
|
||||||
process_time = (time.time() - start_time) * 1000
|
process_time = (time.time() - start_time) * 1000
|
||||||
logger.debug(f"Detection for camera {camera_id} completed in {process_time:.2f}ms")
|
logger.debug(f"Detection for camera {camera_id} completed in {process_time:.2f}ms")
|
||||||
|
|
||||||
# Log the raw detection result for debugging
|
# Log the raw detection result for debugging
|
||||||
logger.debug(f"Raw detection result for camera {camera_id}:\n{json.dumps(detection_result, indent=2, default=str)}")
|
logger.debug(f"Raw detection result for camera {camera_id}:\n{json.dumps(detection_result, indent=2, default=str)}")
|
||||||
|
|
||||||
# Direct class result (no detections/classifications structure)
|
# Extract session_id from pipeline result (generated during database record creation)
|
||||||
if detection_result and isinstance(detection_result, dict) and "class" in detection_result and "confidence" in detection_result:
|
session_id = None
|
||||||
highest_confidence_detection = {
|
if detection_result and isinstance(detection_result, dict):
|
||||||
"class": detection_result.get("class", "none"),
|
# Check if pipeline generated a session_id (happens when Car+Frontal detected together)
|
||||||
"confidence": detection_result.get("confidence", 1.0),
|
if "session_id" in detection_result:
|
||||||
"box": [0, 0, 0, 0] # Empty bounding box for classifications
|
session_id = detection_result["session_id"]
|
||||||
}
|
logger.debug(f"Extracted session_id from pipeline result: {session_id}")
|
||||||
# Handle case when no detections found or result is empty
|
|
||||||
elif not detection_result or not detection_result.get("detections"):
|
|
||||||
# Check if we have classification results
|
|
||||||
if detection_result and detection_result.get("classifications"):
|
|
||||||
# Get the highest confidence classification
|
|
||||||
classifications = detection_result.get("classifications", [])
|
|
||||||
highest_confidence_class = max(classifications, key=lambda x: x.get("confidence", 0)) if classifications else None
|
|
||||||
|
|
||||||
if highest_confidence_class:
|
# Process detection result - run_pipeline returns the primary detection directly
|
||||||
highest_confidence_detection = {
|
if detection_result and isinstance(detection_result, dict) and "class" in detection_result:
|
||||||
"class": highest_confidence_class.get("class", "none"),
|
highest_confidence_detection = detection_result
|
||||||
"confidence": highest_confidence_class.get("confidence", 1.0),
|
|
||||||
"box": [0, 0, 0, 0] # Empty bounding box for classifications
|
|
||||||
}
|
|
||||||
else:
|
else:
|
||||||
|
# No detection found
|
||||||
highest_confidence_detection = {
|
highest_confidence_detection = {
|
||||||
"class": "none",
|
"class": "none",
|
||||||
"confidence": 1.0,
|
"confidence": 1.0,
|
||||||
"box": [0, 0, 0, 0]
|
"bbox": [0, 0, 0, 0],
|
||||||
|
"branch_results": {}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
# Convert detection format to match backend expectations exactly as in worker.md section 4.2
|
||||||
|
detection_dict = {
|
||||||
|
"carModel": None,
|
||||||
|
"carBrand": None,
|
||||||
|
"carYear": None,
|
||||||
|
"bodyType": None,
|
||||||
|
"licensePlateText": None,
|
||||||
|
"licensePlateConfidence": None
|
||||||
|
}
|
||||||
|
|
||||||
|
# Extract and process branch results from parallel classification
|
||||||
|
branch_results = highest_confidence_detection.get("branch_results", {})
|
||||||
|
if branch_results:
|
||||||
|
logger.debug(f"Processing branch results: {branch_results}")
|
||||||
|
|
||||||
|
# Transform branch results into backend-expected detection attributes
|
||||||
|
for branch_id, branch_data in branch_results.items():
|
||||||
|
if isinstance(branch_data, dict):
|
||||||
|
logger.debug(f"Processing branch {branch_id}: {branch_data}")
|
||||||
|
|
||||||
|
# Map common classification fields to backend-expected names
|
||||||
|
if "brand" in branch_data:
|
||||||
|
detection_dict["carBrand"] = branch_data["brand"]
|
||||||
|
if "body_type" in branch_data:
|
||||||
|
detection_dict["bodyType"] = branch_data["body_type"]
|
||||||
|
if "class" in branch_data:
|
||||||
|
class_name = branch_data["class"]
|
||||||
|
|
||||||
|
# Map based on branch/model type
|
||||||
|
if "brand" in branch_id.lower():
|
||||||
|
detection_dict["carBrand"] = class_name
|
||||||
|
elif "bodytype" in branch_id.lower() or "body" in branch_id.lower():
|
||||||
|
detection_dict["bodyType"] = class_name
|
||||||
|
|
||||||
|
logger.info(f"Detection payload after branch processing: {detection_dict}")
|
||||||
else:
|
else:
|
||||||
highest_confidence_detection = {
|
logger.debug("No branch results found in detection result")
|
||||||
"class": "none",
|
|
||||||
"confidence": 1.0,
|
|
||||||
"box": [0, 0, 0, 0]
|
|
||||||
}
|
|
||||||
else:
|
|
||||||
# Find detection with highest confidence
|
|
||||||
detections = detection_result.get("detections", [])
|
|
||||||
highest_confidence_detection = max(detections, key=lambda x: x.get("confidence", 0)) if detections else {
|
|
||||||
"class": "none",
|
|
||||||
"confidence": 1.0,
|
|
||||||
"box": [0, 0, 0, 0]
|
|
||||||
}
|
|
||||||
|
|
||||||
detection_data = {
|
detection_data = {
|
||||||
"type": "imageDetection",
|
"type": "imageDetection",
|
||||||
"cameraIdentifier": camera_id,
|
"subscriptionIdentifier": stream["subscriptionIdentifier"],
|
||||||
"timestamp": time.time(),
|
"timestamp": time.strftime("%Y-%m-%dT%H:%M:%S.%fZ", time.gmtime()),
|
||||||
"data": {
|
"data": {
|
||||||
"detection": highest_confidence_detection, # Send only the highest confidence detection
|
"detection": detection_dict,
|
||||||
"modelId": stream["modelId"],
|
"modelId": stream["modelId"],
|
||||||
"modelName": stream["modelName"]
|
"modelName": stream["modelName"]
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if highest_confidence_detection["class"] != "none":
|
# Add session ID if available (generated by pipeline when Car+Frontal detected)
|
||||||
logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {highest_confidence_detection['confidence']:.2f} using model {stream['modelName']}")
|
if session_id is not None:
|
||||||
|
detection_data["sessionId"] = session_id
|
||||||
|
logger.debug(f"Added session_id to WebSocket response: {session_id}")
|
||||||
|
|
||||||
|
if highest_confidence_detection.get("class") != "none":
|
||||||
|
confidence = highest_confidence_detection.get("confidence", 0.0)
|
||||||
|
logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {confidence:.2f} using model {stream['modelName']}")
|
||||||
|
|
||||||
|
# Log session ID if available
|
||||||
|
if session_id:
|
||||||
|
logger.debug(f"Detection associated with session ID: {session_id}")
|
||||||
|
|
||||||
await websocket.send_json(detection_data)
|
await websocket.send_json(detection_data)
|
||||||
logger.debug(f"Sent detection data to client for camera {camera_id}:\n{json.dumps(detection_data, indent=2)}")
|
logger.debug(f"Sent detection data to client for camera {camera_id}")
|
||||||
|
logger.debug(f"Sent this detection data: {detection_data}")
|
||||||
return persistent_data
|
return persistent_data
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error in handle_detection for camera {camera_id}: {str(e)}", exc_info=True)
|
logger.error(f"Error in handle_detection for camera {camera_id}: {str(e)}", exc_info=True)
|
||||||
|
@ -264,12 +414,11 @@ async def detect(websocket: WebSocket):
|
||||||
if not buffer.empty():
|
if not buffer.empty():
|
||||||
try:
|
try:
|
||||||
buffer.get_nowait()
|
buffer.get_nowait()
|
||||||
logger.debug(f"Removed old frame from buffer for camera {camera_id}")
|
logger.debug(f"[frame_reader] Removed old frame from buffer for camera {camera_id}")
|
||||||
except queue.Empty:
|
except queue.Empty:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
buffer.put(frame)
|
buffer.put(frame)
|
||||||
logger.debug(f"Added new frame to buffer for camera {camera_id}")
|
logger.debug(f"[frame_reader] Added new frame to buffer for camera {camera_id}. Buffer size: {buffer.qsize()}")
|
||||||
|
|
||||||
# Short sleep to avoid CPU overuse
|
# Short sleep to avoid CPU overuse
|
||||||
time.sleep(0.01)
|
time.sleep(0.01)
|
||||||
|
@ -340,12 +489,11 @@ async def detect(websocket: WebSocket):
|
||||||
if not buffer.empty():
|
if not buffer.empty():
|
||||||
try:
|
try:
|
||||||
buffer.get_nowait()
|
buffer.get_nowait()
|
||||||
logger.debug(f"Removed old snapshot from buffer for camera {camera_id}")
|
logger.debug(f"[snapshot_reader] Removed old snapshot from buffer for camera {camera_id}")
|
||||||
except queue.Empty:
|
except queue.Empty:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
buffer.put(frame)
|
buffer.put(frame)
|
||||||
logger.debug(f"Added new snapshot to buffer for camera {camera_id}")
|
logger.debug(f"[snapshot_reader] Added new snapshot to buffer for camera {camera_id}. Buffer size: {buffer.qsize()}")
|
||||||
|
|
||||||
# Wait for the specified interval
|
# Wait for the specified interval
|
||||||
elapsed = time.time() - start_time
|
elapsed = time.time() - start_time
|
||||||
|
@ -365,6 +513,199 @@ async def detect(websocket: WebSocket):
|
||||||
finally:
|
finally:
|
||||||
logger.info(f"Snapshot reader thread for camera {camera_id} is exiting")
|
logger.info(f"Snapshot reader thread for camera {camera_id} is exiting")
|
||||||
|
|
||||||
|
async def reconcile_subscriptions(desired_subscriptions, websocket):
|
||||||
|
"""
|
||||||
|
Declarative reconciliation: Compare desired vs current subscriptions and make changes
|
||||||
|
"""
|
||||||
|
logger.info(f"Reconciling subscriptions: {len(desired_subscriptions)} desired")
|
||||||
|
|
||||||
|
with streams_lock:
|
||||||
|
# Get current subscriptions
|
||||||
|
current_subscription_ids = set(streams.keys())
|
||||||
|
desired_subscription_ids = set(sub["subscriptionIdentifier"] for sub in desired_subscriptions)
|
||||||
|
|
||||||
|
# Find what to add and remove
|
||||||
|
to_add = desired_subscription_ids - current_subscription_ids
|
||||||
|
to_remove = current_subscription_ids - desired_subscription_ids
|
||||||
|
to_check_for_changes = current_subscription_ids & desired_subscription_ids
|
||||||
|
|
||||||
|
logger.info(f"Reconciliation: {len(to_add)} to add, {len(to_remove)} to remove, {len(to_check_for_changes)} to check for changes")
|
||||||
|
|
||||||
|
# Remove subscriptions that are no longer wanted
|
||||||
|
for subscription_id in to_remove:
|
||||||
|
await unsubscribe_internal(subscription_id)
|
||||||
|
|
||||||
|
# Check existing subscriptions for parameter changes
|
||||||
|
for subscription_id in to_check_for_changes:
|
||||||
|
desired_sub = next(sub for sub in desired_subscriptions if sub["subscriptionIdentifier"] == subscription_id)
|
||||||
|
current_stream = streams[subscription_id]
|
||||||
|
|
||||||
|
# Check if parameters changed
|
||||||
|
if has_subscription_changed(desired_sub, current_stream):
|
||||||
|
logger.info(f"Parameters changed for {subscription_id}, resubscribing")
|
||||||
|
await unsubscribe_internal(subscription_id)
|
||||||
|
await subscribe_internal(desired_sub, websocket)
|
||||||
|
|
||||||
|
# Add new subscriptions
|
||||||
|
for subscription_id in to_add:
|
||||||
|
desired_sub = next(sub for sub in desired_subscriptions if sub["subscriptionIdentifier"] == subscription_id)
|
||||||
|
await subscribe_internal(desired_sub, websocket)
|
||||||
|
|
||||||
|
def has_subscription_changed(desired_sub, current_stream):
|
||||||
|
"""Check if subscription parameters have changed"""
|
||||||
|
return (
|
||||||
|
desired_sub.get("rtspUrl") != current_stream.get("rtsp_url") or
|
||||||
|
desired_sub.get("snapshotUrl") != current_stream.get("snapshot_url") or
|
||||||
|
desired_sub.get("snapshotInterval") != current_stream.get("snapshot_interval") or
|
||||||
|
desired_sub.get("cropX1") != current_stream.get("cropX1") or
|
||||||
|
desired_sub.get("cropY1") != current_stream.get("cropY1") or
|
||||||
|
desired_sub.get("cropX2") != current_stream.get("cropX2") or
|
||||||
|
desired_sub.get("cropY2") != current_stream.get("cropY2") or
|
||||||
|
desired_sub.get("modelId") != current_stream.get("modelId") or
|
||||||
|
desired_sub.get("modelName") != current_stream.get("modelName")
|
||||||
|
)
|
||||||
|
|
||||||
|
async def subscribe_internal(subscription, websocket):
|
||||||
|
"""Internal subscription logic extracted from original subscribe handler"""
|
||||||
|
subscriptionIdentifier = subscription.get("subscriptionIdentifier")
|
||||||
|
rtsp_url = subscription.get("rtspUrl")
|
||||||
|
snapshot_url = subscription.get("snapshotUrl")
|
||||||
|
snapshot_interval = subscription.get("snapshotInterval")
|
||||||
|
model_url = subscription.get("modelUrl")
|
||||||
|
modelId = subscription.get("modelId")
|
||||||
|
modelName = subscription.get("modelName")
|
||||||
|
cropX1 = subscription.get("cropX1")
|
||||||
|
cropY1 = subscription.get("cropY1")
|
||||||
|
cropX2 = subscription.get("cropX2")
|
||||||
|
cropY2 = subscription.get("cropY2")
|
||||||
|
|
||||||
|
# Extract camera_id from subscriptionIdentifier
|
||||||
|
parts = subscriptionIdentifier.split(';')
|
||||||
|
if len(parts) != 2:
|
||||||
|
logger.error(f"Invalid subscriptionIdentifier format: {subscriptionIdentifier}")
|
||||||
|
return
|
||||||
|
|
||||||
|
display_identifier, camera_identifier = parts
|
||||||
|
camera_id = subscriptionIdentifier
|
||||||
|
|
||||||
|
# Load model if needed
|
||||||
|
if model_url:
|
||||||
|
with models_lock:
|
||||||
|
if (camera_id not in models) or (modelId not in models[camera_id]):
|
||||||
|
logger.info(f"Loading model from {model_url} for camera {camera_id}, modelId {modelId}")
|
||||||
|
extraction_dir = os.path.join("models", camera_identifier, str(modelId))
|
||||||
|
os.makedirs(extraction_dir, exist_ok=True)
|
||||||
|
|
||||||
|
# Handle model loading (same as original)
|
||||||
|
parsed = urlparse(model_url)
|
||||||
|
if parsed.scheme in ("http", "https"):
|
||||||
|
filename = os.path.basename(parsed.path) or f"model_{modelId}.mpta"
|
||||||
|
local_mpta = os.path.join(extraction_dir, filename)
|
||||||
|
local_path = download_mpta(model_url, local_mpta)
|
||||||
|
if not local_path:
|
||||||
|
logger.error(f"Failed to download model from {model_url}")
|
||||||
|
return
|
||||||
|
model_tree = load_pipeline_from_zip(local_path, extraction_dir)
|
||||||
|
else:
|
||||||
|
if not os.path.exists(model_url):
|
||||||
|
logger.error(f"Model file not found: {model_url}")
|
||||||
|
return
|
||||||
|
model_tree = load_pipeline_from_zip(model_url, extraction_dir)
|
||||||
|
|
||||||
|
if model_tree is None:
|
||||||
|
logger.error(f"Failed to load model {modelId}")
|
||||||
|
return
|
||||||
|
|
||||||
|
if camera_id not in models:
|
||||||
|
models[camera_id] = {}
|
||||||
|
models[camera_id][modelId] = model_tree
|
||||||
|
|
||||||
|
# Create stream (same logic as original)
|
||||||
|
if camera_id and (rtsp_url or snapshot_url) and len(streams) < max_streams:
|
||||||
|
camera_url = snapshot_url if snapshot_url else rtsp_url
|
||||||
|
|
||||||
|
# Check if we already have a stream for this camera URL
|
||||||
|
shared_stream = camera_streams.get(camera_url)
|
||||||
|
|
||||||
|
if shared_stream:
|
||||||
|
# Reuse existing stream
|
||||||
|
buffer = shared_stream["buffer"]
|
||||||
|
stop_event = shared_stream["stop_event"]
|
||||||
|
thread = shared_stream["thread"]
|
||||||
|
mode = shared_stream["mode"]
|
||||||
|
shared_stream["ref_count"] = shared_stream.get("ref_count", 0) + 1
|
||||||
|
else:
|
||||||
|
# Create new stream
|
||||||
|
buffer = queue.Queue(maxsize=1)
|
||||||
|
stop_event = threading.Event()
|
||||||
|
|
||||||
|
if snapshot_url and snapshot_interval:
|
||||||
|
thread = threading.Thread(target=snapshot_reader, args=(camera_id, snapshot_url, snapshot_interval, buffer, stop_event))
|
||||||
|
thread.daemon = True
|
||||||
|
thread.start()
|
||||||
|
mode = "snapshot"
|
||||||
|
shared_stream = {
|
||||||
|
"buffer": buffer, "thread": thread, "stop_event": stop_event,
|
||||||
|
"mode": mode, "url": snapshot_url, "snapshot_interval": snapshot_interval, "ref_count": 1
|
||||||
|
}
|
||||||
|
camera_streams[camera_url] = shared_stream
|
||||||
|
elif rtsp_url:
|
||||||
|
cap = cv2.VideoCapture(rtsp_url)
|
||||||
|
if not cap.isOpened():
|
||||||
|
logger.error(f"Failed to open RTSP stream for camera {camera_id}")
|
||||||
|
return
|
||||||
|
thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
|
||||||
|
thread.daemon = True
|
||||||
|
thread.start()
|
||||||
|
mode = "rtsp"
|
||||||
|
shared_stream = {
|
||||||
|
"buffer": buffer, "thread": thread, "stop_event": stop_event,
|
||||||
|
"mode": mode, "url": rtsp_url, "cap": cap, "ref_count": 1
|
||||||
|
}
|
||||||
|
camera_streams[camera_url] = shared_stream
|
||||||
|
else:
|
||||||
|
logger.error(f"No valid URL provided for camera {camera_id}")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Create stream info
|
||||||
|
stream_info = {
|
||||||
|
"buffer": buffer, "thread": thread, "stop_event": stop_event,
|
||||||
|
"modelId": modelId, "modelName": modelName, "subscriptionIdentifier": subscriptionIdentifier,
|
||||||
|
"cropX1": cropX1, "cropY1": cropY1, "cropX2": cropX2, "cropY2": cropY2,
|
||||||
|
"mode": mode, "camera_url": camera_url, "modelUrl": model_url
|
||||||
|
}
|
||||||
|
|
||||||
|
if mode == "snapshot":
|
||||||
|
stream_info["snapshot_url"] = snapshot_url
|
||||||
|
stream_info["snapshot_interval"] = snapshot_interval
|
||||||
|
elif mode == "rtsp":
|
||||||
|
stream_info["rtsp_url"] = rtsp_url
|
||||||
|
stream_info["cap"] = shared_stream["cap"]
|
||||||
|
|
||||||
|
streams[camera_id] = stream_info
|
||||||
|
subscription_to_camera[camera_id] = camera_url
|
||||||
|
logger.info(f"Subscribed to camera {camera_id}")
|
||||||
|
|
||||||
|
async def unsubscribe_internal(subscription_id):
|
||||||
|
"""Internal unsubscription logic"""
|
||||||
|
if subscription_id in streams:
|
||||||
|
stream = streams.pop(subscription_id)
|
||||||
|
camera_url = subscription_to_camera.pop(subscription_id, None)
|
||||||
|
|
||||||
|
if camera_url and camera_url in camera_streams:
|
||||||
|
shared_stream = camera_streams[camera_url]
|
||||||
|
shared_stream["ref_count"] -= 1
|
||||||
|
|
||||||
|
if shared_stream["ref_count"] <= 0:
|
||||||
|
shared_stream["stop_event"].set()
|
||||||
|
shared_stream["thread"].join()
|
||||||
|
if "cap" in shared_stream:
|
||||||
|
shared_stream["cap"].release()
|
||||||
|
del camera_streams[camera_url]
|
||||||
|
|
||||||
|
latest_frames.pop(subscription_id, None)
|
||||||
|
logger.info(f"Unsubscribed from camera {subscription_id}")
|
||||||
|
|
||||||
async def process_streams():
|
async def process_streams():
|
||||||
logger.info("Started processing streams")
|
logger.info("Started processing streams")
|
||||||
try:
|
try:
|
||||||
|
@ -386,6 +727,10 @@ async def detect(websocket: WebSocket):
|
||||||
logger.debug(f"Got frame from buffer for camera {camera_id}")
|
logger.debug(f"Got frame from buffer for camera {camera_id}")
|
||||||
frame = buffer.get()
|
frame = buffer.get()
|
||||||
|
|
||||||
|
# Cache the frame for REST API access
|
||||||
|
latest_frames[camera_id] = frame.copy()
|
||||||
|
logger.debug(f"Cached frame for REST API access for camera {camera_id}")
|
||||||
|
|
||||||
with models_lock:
|
with models_lock:
|
||||||
model_tree = models.get(camera_id, {}).get(stream["modelId"])
|
model_tree = models.get(camera_id, {}).get(stream["modelId"])
|
||||||
if not model_tree:
|
if not model_tree:
|
||||||
|
@ -416,18 +761,23 @@ async def detect(websocket: WebSocket):
|
||||||
cpu_usage = psutil.cpu_percent()
|
cpu_usage = psutil.cpu_percent()
|
||||||
memory_usage = psutil.virtual_memory().percent
|
memory_usage = psutil.virtual_memory().percent
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2) # MB
|
gpu_usage = torch.cuda.utilization() if hasattr(torch.cuda, 'utilization') else None
|
||||||
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2) # MB
|
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)
|
||||||
else:
|
else:
|
||||||
gpu_usage = None
|
gpu_usage = None
|
||||||
gpu_memory_usage = None
|
gpu_memory_usage = None
|
||||||
|
|
||||||
camera_connections = [
|
camera_connections = [
|
||||||
{
|
{
|
||||||
"cameraIdentifier": camera_id,
|
"subscriptionIdentifier": stream["subscriptionIdentifier"],
|
||||||
"modelId": stream["modelId"],
|
"modelId": stream["modelId"],
|
||||||
"modelName": stream["modelName"],
|
"modelName": stream["modelName"],
|
||||||
"online": True
|
"online": True,
|
||||||
|
# Include all subscription parameters for proper change detection
|
||||||
|
"rtspUrl": stream.get("rtsp_url"),
|
||||||
|
"snapshotUrl": stream.get("snapshot_url"),
|
||||||
|
"snapshotInterval": stream.get("snapshot_interval"),
|
||||||
|
**{k: v for k, v in get_crop_coords(stream).items() if v is not None}
|
||||||
}
|
}
|
||||||
for camera_id, stream in streams.items()
|
for camera_id, stream in streams.items()
|
||||||
]
|
]
|
||||||
|
@ -455,58 +805,87 @@ async def detect(websocket: WebSocket):
|
||||||
data = json.loads(msg)
|
data = json.loads(msg)
|
||||||
msg_type = data.get("type")
|
msg_type = data.get("type")
|
||||||
|
|
||||||
if msg_type == "subscribe":
|
if msg_type == "setSubscriptionList":
|
||||||
payload = data.get("payload", {})
|
# Declarative approach: Backend sends list of subscriptions this worker should have
|
||||||
camera_id = payload.get("cameraIdentifier")
|
desired_subscriptions = data.get("subscriptions", [])
|
||||||
rtsp_url = payload.get("rtspUrl")
|
logger.info(f"Received subscription list with {len(desired_subscriptions)} subscriptions")
|
||||||
snapshot_url = payload.get("snapshotUrl")
|
|
||||||
snapshot_interval = payload.get("snapshotInterval") # in milliseconds
|
|
||||||
model_url = payload.get("modelUrl") # may be remote or local
|
|
||||||
modelId = payload.get("modelId")
|
|
||||||
modelName = payload.get("modelName")
|
|
||||||
|
|
||||||
|
await reconcile_subscriptions(desired_subscriptions, websocket)
|
||||||
|
|
||||||
|
elif msg_type == "subscribe":
|
||||||
|
# Legacy support - convert single subscription to list
|
||||||
|
payload = data.get("payload", {})
|
||||||
|
await reconcile_subscriptions([payload], websocket)
|
||||||
|
|
||||||
|
elif msg_type == "unsubscribe":
|
||||||
|
# Legacy support - remove subscription
|
||||||
|
payload = data.get("payload", {})
|
||||||
|
subscriptionIdentifier = payload.get("subscriptionIdentifier")
|
||||||
|
# Remove from current subscriptions and reconcile
|
||||||
|
current_subs = []
|
||||||
|
with streams_lock:
|
||||||
|
for camera_id, stream in streams.items():
|
||||||
|
if stream["subscriptionIdentifier"] != subscriptionIdentifier:
|
||||||
|
# Convert stream back to subscription format
|
||||||
|
current_subs.append({
|
||||||
|
"subscriptionIdentifier": stream["subscriptionIdentifier"],
|
||||||
|
"rtspUrl": stream.get("rtsp_url"),
|
||||||
|
"snapshotUrl": stream.get("snapshot_url"),
|
||||||
|
"snapshotInterval": stream.get("snapshot_interval"),
|
||||||
|
"modelId": stream["modelId"],
|
||||||
|
"modelName": stream["modelName"],
|
||||||
|
"modelUrl": stream.get("modelUrl", ""),
|
||||||
|
"cropX1": stream.get("cropX1"),
|
||||||
|
"cropY1": stream.get("cropY1"),
|
||||||
|
"cropX2": stream.get("cropX2"),
|
||||||
|
"cropY2": stream.get("cropY2")
|
||||||
|
})
|
||||||
|
await reconcile_subscriptions(current_subs, websocket)
|
||||||
|
|
||||||
|
elif msg_type == "old_subscribe_logic_removed":
|
||||||
if model_url:
|
if model_url:
|
||||||
with models_lock:
|
with models_lock:
|
||||||
if (camera_id not in models) or (modelId not in models[camera_id]):
|
if (camera_id not in models) or (modelId not in models[camera_id]):
|
||||||
logger.info(f"Loading model from {model_url} for camera {camera_id}, modelId {modelId}")
|
logger.info(f"Loading model from {model_url} for camera {camera_id}, modelId {modelId}")
|
||||||
extraction_dir = os.path.join("models", camera_id, str(modelId))
|
extraction_dir = os.path.join("models", camera_identifier, str(modelId))
|
||||||
os.makedirs(extraction_dir, exist_ok=True)
|
os.makedirs(extraction_dir, exist_ok=True)
|
||||||
# If model_url is remote, download it first.
|
# If model_url is remote, download it first.
|
||||||
parsed = urlparse(model_url)
|
parsed = urlparse(model_url)
|
||||||
if parsed.scheme in ("http", "https"):
|
if parsed.scheme in ("http", "https"):
|
||||||
logger.info(f"Downloading remote model from {model_url}")
|
logger.info(f"Downloading remote .mpta file from {model_url}")
|
||||||
local_mpta = os.path.join(extraction_dir, os.path.basename(parsed.path))
|
filename = os.path.basename(parsed.path) or f"model_{modelId}.mpta"
|
||||||
|
local_mpta = os.path.join(extraction_dir, filename)
|
||||||
logger.debug(f"Download destination: {local_mpta}")
|
logger.debug(f"Download destination: {local_mpta}")
|
||||||
local_path = download_mpta(model_url, local_mpta)
|
local_path = download_mpta(model_url, local_mpta)
|
||||||
if not local_path:
|
if not local_path:
|
||||||
logger.error(f"Failed to download the remote mpta file from {model_url}")
|
logger.error(f"Failed to download the remote .mpta file from {model_url}")
|
||||||
error_response = {
|
error_response = {
|
||||||
"type": "error",
|
"type": "error",
|
||||||
"cameraIdentifier": camera_id,
|
"subscriptionIdentifier": subscriptionIdentifier,
|
||||||
"error": f"Failed to download model from {model_url}"
|
"error": f"Failed to download model from {model_url}"
|
||||||
}
|
}
|
||||||
await websocket.send_json(error_response)
|
await websocket.send_json(error_response)
|
||||||
continue
|
continue
|
||||||
model_tree = load_pipeline_from_zip(local_path, extraction_dir)
|
model_tree = load_pipeline_from_zip(local_path, extraction_dir)
|
||||||
else:
|
else:
|
||||||
logger.info(f"Loading local model from {model_url}")
|
logger.info(f"Loading local .mpta file from {model_url}")
|
||||||
# Check if file exists before attempting to load
|
# Check if file exists before attempting to load
|
||||||
if not os.path.exists(model_url):
|
if not os.path.exists(model_url):
|
||||||
logger.error(f"Local model file not found: {model_url}")
|
logger.error(f"Local .mpta file not found: {model_url}")
|
||||||
logger.debug(f"Current working directory: {os.getcwd()}")
|
logger.debug(f"Current working directory: {os.getcwd()}")
|
||||||
error_response = {
|
error_response = {
|
||||||
"type": "error",
|
"type": "error",
|
||||||
"cameraIdentifier": camera_id,
|
"subscriptionIdentifier": subscriptionIdentifier,
|
||||||
"error": f"Model file not found: {model_url}"
|
"error": f"Model file not found: {model_url}"
|
||||||
}
|
}
|
||||||
await websocket.send_json(error_response)
|
await websocket.send_json(error_response)
|
||||||
continue
|
continue
|
||||||
model_tree = load_pipeline_from_zip(model_url, extraction_dir)
|
model_tree = load_pipeline_from_zip(model_url, extraction_dir)
|
||||||
if model_tree is None:
|
if model_tree is None:
|
||||||
logger.error(f"Failed to load model {modelId} from mpta file for camera {camera_id}")
|
logger.error(f"Failed to load model {modelId} from .mpta file for camera {camera_id}")
|
||||||
error_response = {
|
error_response = {
|
||||||
"type": "error",
|
"type": "error",
|
||||||
"cameraIdentifier": camera_id,
|
"subscriptionIdentifier": subscriptionIdentifier,
|
||||||
"error": f"Failed to load model {modelId}"
|
"error": f"Failed to load model {modelId}"
|
||||||
}
|
}
|
||||||
await websocket.send_json(error_response)
|
await websocket.send_json(error_response)
|
||||||
|
@ -515,37 +894,52 @@ async def detect(websocket: WebSocket):
|
||||||
models[camera_id] = {}
|
models[camera_id] = {}
|
||||||
models[camera_id][modelId] = model_tree
|
models[camera_id][modelId] = model_tree
|
||||||
logger.info(f"Successfully loaded model {modelId} for camera {camera_id}")
|
logger.info(f"Successfully loaded model {modelId} for camera {camera_id}")
|
||||||
success_response = {
|
logger.debug(f"Model extraction directory: {extraction_dir}")
|
||||||
"type": "modelLoaded",
|
|
||||||
"cameraIdentifier": camera_id,
|
|
||||||
"modelId": modelId
|
|
||||||
}
|
|
||||||
await websocket.send_json(success_response)
|
|
||||||
if camera_id and (rtsp_url or snapshot_url):
|
if camera_id and (rtsp_url or snapshot_url):
|
||||||
with streams_lock:
|
with streams_lock:
|
||||||
|
# Determine camera URL for shared stream management
|
||||||
|
camera_url = snapshot_url if snapshot_url else rtsp_url
|
||||||
|
|
||||||
if camera_id not in streams and len(streams) < max_streams:
|
if camera_id not in streams and len(streams) < max_streams:
|
||||||
|
# Check if we already have a stream for this camera URL
|
||||||
|
shared_stream = camera_streams.get(camera_url)
|
||||||
|
|
||||||
|
if shared_stream:
|
||||||
|
# Reuse existing stream
|
||||||
|
logger.info(f"Reusing existing stream for camera URL: {camera_url}")
|
||||||
|
buffer = shared_stream["buffer"]
|
||||||
|
stop_event = shared_stream["stop_event"]
|
||||||
|
thread = shared_stream["thread"]
|
||||||
|
mode = shared_stream["mode"]
|
||||||
|
|
||||||
|
# Increment reference count
|
||||||
|
shared_stream["ref_count"] = shared_stream.get("ref_count", 0) + 1
|
||||||
|
else:
|
||||||
|
# Create new stream
|
||||||
buffer = queue.Queue(maxsize=1)
|
buffer = queue.Queue(maxsize=1)
|
||||||
stop_event = threading.Event()
|
stop_event = threading.Event()
|
||||||
|
|
||||||
# Choose between snapshot and RTSP based on availability
|
|
||||||
if snapshot_url and snapshot_interval:
|
if snapshot_url and snapshot_interval:
|
||||||
logger.info(f"Using snapshot mode for camera {camera_id}: {snapshot_url}")
|
logger.info(f"Creating new snapshot stream for camera {camera_id}: {snapshot_url}")
|
||||||
thread = threading.Thread(target=snapshot_reader, args=(camera_id, snapshot_url, snapshot_interval, buffer, stop_event))
|
thread = threading.Thread(target=snapshot_reader, args=(camera_id, snapshot_url, snapshot_interval, buffer, stop_event))
|
||||||
thread.daemon = True
|
thread.daemon = True
|
||||||
thread.start()
|
thread.start()
|
||||||
streams[camera_id] = {
|
mode = "snapshot"
|
||||||
|
|
||||||
|
# Store shared stream info
|
||||||
|
shared_stream = {
|
||||||
"buffer": buffer,
|
"buffer": buffer,
|
||||||
"thread": thread,
|
"thread": thread,
|
||||||
"snapshot_url": snapshot_url,
|
|
||||||
"snapshot_interval": snapshot_interval,
|
|
||||||
"stop_event": stop_event,
|
"stop_event": stop_event,
|
||||||
"modelId": modelId,
|
"mode": mode,
|
||||||
"modelName": modelName,
|
"url": snapshot_url,
|
||||||
"mode": "snapshot"
|
"snapshot_interval": snapshot_interval,
|
||||||
|
"ref_count": 1
|
||||||
}
|
}
|
||||||
logger.info(f"Subscribed to camera {camera_id} (snapshot mode) with modelId {modelId}, modelName {modelName}, URL {snapshot_url}, interval {snapshot_interval}ms")
|
camera_streams[camera_url] = shared_stream
|
||||||
|
|
||||||
elif rtsp_url:
|
elif rtsp_url:
|
||||||
logger.info(f"Using RTSP mode for camera {camera_id}: {rtsp_url}")
|
logger.info(f"Creating new RTSP stream for camera {camera_id}: {rtsp_url}")
|
||||||
cap = cv2.VideoCapture(rtsp_url)
|
cap = cv2.VideoCapture(rtsp_url)
|
||||||
if not cap.isOpened():
|
if not cap.isOpened():
|
||||||
logger.error(f"Failed to open RTSP stream for camera {camera_id}")
|
logger.error(f"Failed to open RTSP stream for camera {camera_id}")
|
||||||
|
@ -553,57 +947,86 @@ async def detect(websocket: WebSocket):
|
||||||
thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
|
thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
|
||||||
thread.daemon = True
|
thread.daemon = True
|
||||||
thread.start()
|
thread.start()
|
||||||
streams[camera_id] = {
|
mode = "rtsp"
|
||||||
"cap": cap,
|
|
||||||
|
# Store shared stream info
|
||||||
|
shared_stream = {
|
||||||
"buffer": buffer,
|
"buffer": buffer,
|
||||||
"thread": thread,
|
"thread": thread,
|
||||||
"rtsp_url": rtsp_url,
|
|
||||||
"stop_event": stop_event,
|
"stop_event": stop_event,
|
||||||
"modelId": modelId,
|
"mode": mode,
|
||||||
"modelName": modelName,
|
"url": rtsp_url,
|
||||||
"mode": "rtsp"
|
"cap": cap,
|
||||||
|
"ref_count": 1
|
||||||
}
|
}
|
||||||
logger.info(f"Subscribed to camera {camera_id} (RTSP mode) with modelId {modelId}, modelName {modelName}, URL {rtsp_url}")
|
camera_streams[camera_url] = shared_stream
|
||||||
else:
|
else:
|
||||||
logger.error(f"No valid URL provided for camera {camera_id}")
|
logger.error(f"No valid URL provided for camera {camera_id}")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
|
# Create stream info for this subscription
|
||||||
|
stream_info = {
|
||||||
|
"buffer": buffer,
|
||||||
|
"thread": thread,
|
||||||
|
"stop_event": stop_event,
|
||||||
|
"modelId": modelId,
|
||||||
|
"modelName": modelName,
|
||||||
|
"subscriptionIdentifier": subscriptionIdentifier,
|
||||||
|
"cropX1": cropX1,
|
||||||
|
"cropY1": cropY1,
|
||||||
|
"cropX2": cropX2,
|
||||||
|
"cropY2": cropY2,
|
||||||
|
"mode": mode,
|
||||||
|
"camera_url": camera_url
|
||||||
|
}
|
||||||
|
|
||||||
|
if mode == "snapshot":
|
||||||
|
stream_info["snapshot_url"] = snapshot_url
|
||||||
|
stream_info["snapshot_interval"] = snapshot_interval
|
||||||
|
elif mode == "rtsp":
|
||||||
|
stream_info["rtsp_url"] = rtsp_url
|
||||||
|
stream_info["cap"] = shared_stream["cap"]
|
||||||
|
|
||||||
|
streams[camera_id] = stream_info
|
||||||
|
subscription_to_camera[camera_id] = camera_url
|
||||||
|
|
||||||
elif camera_id and camera_id in streams:
|
elif camera_id and camera_id in streams:
|
||||||
# If already subscribed, unsubscribe first
|
# If already subscribed, unsubscribe first
|
||||||
stream = streams.pop(camera_id)
|
logger.info(f"Resubscribing to camera {camera_id}")
|
||||||
stream["stop_event"].set()
|
# Note: Keep models in memory for reuse across subscriptions
|
||||||
stream["thread"].join()
|
|
||||||
if "cap" in stream:
|
|
||||||
stream["cap"].release()
|
|
||||||
logger.info(f"Unsubscribed from camera {camera_id} for resubscription")
|
|
||||||
with models_lock:
|
|
||||||
if camera_id in models and modelId in models[camera_id]:
|
|
||||||
del models[camera_id][modelId]
|
|
||||||
if not models[camera_id]:
|
|
||||||
del models[camera_id]
|
|
||||||
elif msg_type == "unsubscribe":
|
elif msg_type == "unsubscribe":
|
||||||
payload = data.get("payload", {})
|
payload = data.get("payload", {})
|
||||||
camera_id = payload.get("cameraIdentifier")
|
subscriptionIdentifier = payload.get("subscriptionIdentifier")
|
||||||
logger.debug(f"Unsubscribing from camera {camera_id}")
|
camera_id = subscriptionIdentifier
|
||||||
with streams_lock:
|
with streams_lock:
|
||||||
if camera_id and camera_id in streams:
|
if camera_id and camera_id in streams:
|
||||||
stream = streams.pop(camera_id)
|
stream = streams.pop(camera_id)
|
||||||
stream["stop_event"].set()
|
camera_url = subscription_to_camera.pop(camera_id, None)
|
||||||
stream["thread"].join()
|
|
||||||
# Only release cap if it exists (RTSP mode)
|
if camera_url and camera_url in camera_streams:
|
||||||
if "cap" in stream:
|
shared_stream = camera_streams[camera_url]
|
||||||
stream["cap"].release()
|
shared_stream["ref_count"] -= 1
|
||||||
logger.info(f"Released RTSP capture for camera {camera_id}")
|
|
||||||
|
# If no more references, stop the shared stream
|
||||||
|
if shared_stream["ref_count"] <= 0:
|
||||||
|
logger.info(f"Stopping shared stream for camera URL: {camera_url}")
|
||||||
|
shared_stream["stop_event"].set()
|
||||||
|
shared_stream["thread"].join()
|
||||||
|
if "cap" in shared_stream:
|
||||||
|
shared_stream["cap"].release()
|
||||||
|
del camera_streams[camera_url]
|
||||||
else:
|
else:
|
||||||
logger.info(f"Released snapshot reader for camera {camera_id}")
|
logger.info(f"Shared stream for {camera_url} still has {shared_stream['ref_count']} references")
|
||||||
|
|
||||||
|
# Clean up cached frame
|
||||||
|
latest_frames.pop(camera_id, None)
|
||||||
logger.info(f"Unsubscribed from camera {camera_id}")
|
logger.info(f"Unsubscribed from camera {camera_id}")
|
||||||
with models_lock:
|
# Note: Keep models in memory for potential reuse
|
||||||
if camera_id in models:
|
|
||||||
del models[camera_id]
|
|
||||||
elif msg_type == "requestState":
|
elif msg_type == "requestState":
|
||||||
cpu_usage = psutil.cpu_percent()
|
cpu_usage = psutil.cpu_percent()
|
||||||
memory_usage = psutil.virtual_memory().percent
|
memory_usage = psutil.virtual_memory().percent
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2)
|
gpu_usage = torch.cuda.utilization() if hasattr(torch.cuda, 'utilization') else None
|
||||||
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)
|
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)
|
||||||
else:
|
else:
|
||||||
gpu_usage = None
|
gpu_usage = None
|
||||||
|
@ -611,10 +1034,15 @@ async def detect(websocket: WebSocket):
|
||||||
|
|
||||||
camera_connections = [
|
camera_connections = [
|
||||||
{
|
{
|
||||||
"cameraIdentifier": camera_id,
|
"subscriptionIdentifier": stream["subscriptionIdentifier"],
|
||||||
"modelId": stream["modelId"],
|
"modelId": stream["modelId"],
|
||||||
"modelName": stream["modelName"],
|
"modelName": stream["modelName"],
|
||||||
"online": True
|
"online": True,
|
||||||
|
# Include all subscription parameters for proper change detection
|
||||||
|
"rtspUrl": stream.get("rtsp_url"),
|
||||||
|
"snapshotUrl": stream.get("snapshot_url"),
|
||||||
|
"snapshotInterval": stream.get("snapshot_interval"),
|
||||||
|
**{k: v for k, v in get_crop_coords(stream).items() if v is not None}
|
||||||
}
|
}
|
||||||
for camera_id, stream in streams.items()
|
for camera_id, stream in streams.items()
|
||||||
]
|
]
|
||||||
|
@ -628,6 +1056,37 @@ async def detect(websocket: WebSocket):
|
||||||
"cameraConnections": camera_connections
|
"cameraConnections": camera_connections
|
||||||
}
|
}
|
||||||
await websocket.send_text(json.dumps(state_report))
|
await websocket.send_text(json.dumps(state_report))
|
||||||
|
|
||||||
|
elif msg_type == "setSessionId":
|
||||||
|
payload = data.get("payload", {})
|
||||||
|
display_identifier = payload.get("displayIdentifier")
|
||||||
|
session_id = payload.get("sessionId")
|
||||||
|
|
||||||
|
if display_identifier:
|
||||||
|
# Store session ID for this display
|
||||||
|
if session_id is None:
|
||||||
|
session_ids.pop(display_identifier, None)
|
||||||
|
logger.info(f"Cleared session ID for display {display_identifier}")
|
||||||
|
else:
|
||||||
|
session_ids[display_identifier] = session_id
|
||||||
|
logger.info(f"Set session ID {session_id} for display {display_identifier}")
|
||||||
|
|
||||||
|
elif msg_type == "patchSession":
|
||||||
|
session_id = data.get("sessionId")
|
||||||
|
patch_data = data.get("data", {})
|
||||||
|
|
||||||
|
# For now, just acknowledge the patch - actual implementation depends on backend requirements
|
||||||
|
response = {
|
||||||
|
"type": "patchSessionResult",
|
||||||
|
"payload": {
|
||||||
|
"sessionId": session_id,
|
||||||
|
"success": True,
|
||||||
|
"message": "Session patch acknowledged"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
await websocket.send_json(response)
|
||||||
|
logger.info(f"Acknowledged patch for session {session_id}")
|
||||||
|
|
||||||
else:
|
else:
|
||||||
logger.error(f"Unknown message type: {msg_type}")
|
logger.error(f"Unknown message type: {msg_type}")
|
||||||
except json.JSONDecodeError:
|
except json.JSONDecodeError:
|
||||||
|
@ -638,7 +1097,6 @@ async def detect(websocket: WebSocket):
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Error handling message: {e}")
|
logger.error(f"Error handling message: {e}")
|
||||||
break
|
break
|
||||||
|
|
||||||
try:
|
try:
|
||||||
await websocket.accept()
|
await websocket.accept()
|
||||||
stream_task = asyncio.create_task(process_streams())
|
stream_task = asyncio.create_task(process_streams())
|
||||||
|
@ -651,19 +1109,24 @@ async def detect(websocket: WebSocket):
|
||||||
stream_task.cancel()
|
stream_task.cancel()
|
||||||
await stream_task
|
await stream_task
|
||||||
with streams_lock:
|
with streams_lock:
|
||||||
for camera_id, stream in streams.items():
|
# Clean up shared camera streams
|
||||||
stream["stop_event"].set()
|
for camera_url, shared_stream in camera_streams.items():
|
||||||
stream["thread"].join()
|
shared_stream["stop_event"].set()
|
||||||
# Only release cap if it exists (RTSP mode)
|
shared_stream["thread"].join()
|
||||||
if "cap" in stream:
|
if "cap" in shared_stream:
|
||||||
stream["cap"].release()
|
shared_stream["cap"].release()
|
||||||
while not stream["buffer"].empty():
|
while not shared_stream["buffer"].empty():
|
||||||
try:
|
try:
|
||||||
stream["buffer"].get_nowait()
|
shared_stream["buffer"].get_nowait()
|
||||||
except queue.Empty:
|
except queue.Empty:
|
||||||
pass
|
pass
|
||||||
logger.info(f"Released camera {camera_id} and cleaned up resources")
|
logger.info(f"Released shared camera stream for {camera_url}")
|
||||||
|
|
||||||
streams.clear()
|
streams.clear()
|
||||||
|
camera_streams.clear()
|
||||||
|
subscription_to_camera.clear()
|
||||||
with models_lock:
|
with models_lock:
|
||||||
models.clear()
|
models.clear()
|
||||||
|
latest_frames.clear()
|
||||||
|
session_ids.clear()
|
||||||
logger.info("WebSocket connection closed")
|
logger.info("WebSocket connection closed")
|
||||||
|
|
366
app_single.py
366
app_single.py
|
@ -1,366 +0,0 @@
|
||||||
from typing import List
|
|
||||||
from fastapi import FastAPI, WebSocket
|
|
||||||
from fastapi.websockets import WebSocketDisconnect
|
|
||||||
from websockets.exceptions import ConnectionClosedError
|
|
||||||
from ultralytics import YOLO
|
|
||||||
import torch
|
|
||||||
import cv2
|
|
||||||
import base64
|
|
||||||
import numpy as np
|
|
||||||
import json
|
|
||||||
import logging
|
|
||||||
import threading
|
|
||||||
import queue
|
|
||||||
import os
|
|
||||||
import requests
|
|
||||||
from urllib.parse import urlparse
|
|
||||||
import asyncio
|
|
||||||
import psutil
|
|
||||||
|
|
||||||
app = FastAPI()
|
|
||||||
|
|
||||||
models = {}
|
|
||||||
|
|
||||||
with open("config.json", "r") as f:
|
|
||||||
config = json.load(f)
|
|
||||||
|
|
||||||
poll_interval = config.get("poll_interval_ms", 100)
|
|
||||||
reconnect_interval = config.get("reconnect_interval_sec", 5)
|
|
||||||
TARGET_FPS = config.get("target_fps", 10)
|
|
||||||
poll_interval = 1000 / TARGET_FPS
|
|
||||||
logging.info(f"Poll interval: {poll_interval}ms")
|
|
||||||
max_streams = config.get("max_streams", 5)
|
|
||||||
max_retries = config.get("max_retries", 3)
|
|
||||||
|
|
||||||
# Configure logging
|
|
||||||
logging.basicConfig(
|
|
||||||
level=logging.DEBUG,
|
|
||||||
format="%(asctime)s [%(levelname)s] %(message)s",
|
|
||||||
handlers=[
|
|
||||||
logging.FileHandler("app.log"),
|
|
||||||
logging.StreamHandler()
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
# Ensure the models directory exists
|
|
||||||
os.makedirs("models", exist_ok=True)
|
|
||||||
|
|
||||||
# Add constants for heartbeat
|
|
||||||
HEARTBEAT_INTERVAL = 2 # seconds
|
|
||||||
WORKER_TIMEOUT_MS = 10000
|
|
||||||
|
|
||||||
# Add a lock for thread-safe operations on shared resources
|
|
||||||
streams_lock = threading.Lock()
|
|
||||||
models_lock = threading.Lock()
|
|
||||||
|
|
||||||
@app.websocket("/")
|
|
||||||
async def detect(websocket: WebSocket):
|
|
||||||
import asyncio
|
|
||||||
import time
|
|
||||||
|
|
||||||
logging.info("WebSocket connection accepted")
|
|
||||||
|
|
||||||
streams = {}
|
|
||||||
|
|
||||||
# This function is user-modifiable
|
|
||||||
# Save data you want to persist across frames in the persistent_data dictionary
|
|
||||||
async def handle_detection(camera_id, stream, frame, websocket, model: YOLO, persistent_data):
|
|
||||||
try:
|
|
||||||
highest_conf_box = None
|
|
||||||
max_conf = -1
|
|
||||||
|
|
||||||
for r in model.track(frame, stream=False, persist=True):
|
|
||||||
for box in r.boxes:
|
|
||||||
box_cpu = box.cpu()
|
|
||||||
conf = float(box_cpu.conf[0])
|
|
||||||
if conf > max_conf and hasattr(box, "id") and box.id is not None:
|
|
||||||
max_conf = conf
|
|
||||||
highest_conf_box = {
|
|
||||||
"class": model.names[int(box_cpu.cls[0])],
|
|
||||||
"confidence": conf,
|
|
||||||
"id": box.id.item(),
|
|
||||||
}
|
|
||||||
|
|
||||||
# Broadcast to all subscribers of this URL
|
|
||||||
detection_data = {
|
|
||||||
"type": "imageDetection",
|
|
||||||
"cameraIdentifier": camera_id,
|
|
||||||
"timestamp": time.time(),
|
|
||||||
"data": {
|
|
||||||
"detections": highest_conf_box if highest_conf_box else None,
|
|
||||||
"modelId": stream['modelId'],
|
|
||||||
"modelName": stream['modelName']
|
|
||||||
}
|
|
||||||
}
|
|
||||||
logging.debug(f"Sending detection data for camera {camera_id}: {detection_data}")
|
|
||||||
await websocket.send_json(detection_data)
|
|
||||||
return persistent_data
|
|
||||||
except Exception as e:
|
|
||||||
logging.error(f"Error in handle_detection for camera {camera_id}: {e}")
|
|
||||||
return persistent_data
|
|
||||||
|
|
||||||
def frame_reader(camera_id, cap, buffer, stop_event):
|
|
||||||
import time
|
|
||||||
retries = 0
|
|
||||||
try:
|
|
||||||
while not stop_event.is_set():
|
|
||||||
try:
|
|
||||||
ret, frame = cap.read()
|
|
||||||
if not ret:
|
|
||||||
logging.warning(f"Connection lost for camera: {camera_id}, retry {retries+1}/{max_retries}")
|
|
||||||
cap.release()
|
|
||||||
time.sleep(reconnect_interval)
|
|
||||||
retries += 1
|
|
||||||
if retries > max_retries and max_retries != -1:
|
|
||||||
logging.error(f"Max retries reached for camera: {camera_id}")
|
|
||||||
break
|
|
||||||
# Re-open the VideoCapture
|
|
||||||
cap = cv2.VideoCapture(streams[camera_id]['rtsp_url'])
|
|
||||||
if not cap.isOpened():
|
|
||||||
logging.error(f"Failed to reopen RTSP stream for camera: {camera_id}")
|
|
||||||
continue
|
|
||||||
continue
|
|
||||||
retries = 0 # Reset on success
|
|
||||||
if not buffer.empty():
|
|
||||||
try:
|
|
||||||
buffer.get_nowait() # Discard the old frame
|
|
||||||
except queue.Empty:
|
|
||||||
pass
|
|
||||||
buffer.put(frame)
|
|
||||||
except cv2.error as e:
|
|
||||||
logging.error(f"OpenCV error for camera {camera_id}: {e}")
|
|
||||||
cap.release()
|
|
||||||
time.sleep(reconnect_interval)
|
|
||||||
retries += 1
|
|
||||||
if retries > max_retries and max_retries != -1:
|
|
||||||
logging.error(f"Max retries reached after OpenCV error for camera: {camera_id}")
|
|
||||||
break
|
|
||||||
# Re-open the VideoCapture
|
|
||||||
cap = cv2.VideoCapture(streams[camera_id]['rtsp_url'])
|
|
||||||
if not cap.isOpened():
|
|
||||||
logging.error(f"Failed to reopen RTSP stream for camera {camera_id} after OpenCV error")
|
|
||||||
continue
|
|
||||||
except Exception as e:
|
|
||||||
logging.error(f"Unexpected error for camera {camera_id}: {e}")
|
|
||||||
cap.release()
|
|
||||||
break
|
|
||||||
except Exception as e:
|
|
||||||
logging.error(f"Error in frame_reader thread for camera {camera_id}: {e}")
|
|
||||||
|
|
||||||
async def process_streams():
|
|
||||||
global models
|
|
||||||
logging.info("Started processing streams")
|
|
||||||
persistent_data_dict = {}
|
|
||||||
try:
|
|
||||||
while True:
|
|
||||||
start_time = time.time()
|
|
||||||
# Round-robin processing
|
|
||||||
with streams_lock:
|
|
||||||
current_streams = list(streams.items())
|
|
||||||
for camera_id, stream in current_streams:
|
|
||||||
buffer = stream['buffer']
|
|
||||||
if not buffer.empty():
|
|
||||||
frame = buffer.get()
|
|
||||||
with models_lock:
|
|
||||||
model = models.get(camera_id, {}).get(stream['modelId'])
|
|
||||||
key = (camera_id, stream['modelId'])
|
|
||||||
persistent_data = persistent_data_dict.get(key, {})
|
|
||||||
updated_persistent_data = await handle_detection(camera_id, stream, frame, websocket, model, persistent_data)
|
|
||||||
persistent_data_dict[key] = updated_persistent_data
|
|
||||||
elapsed_time = (time.time() - start_time) * 1000 # in ms
|
|
||||||
sleep_time = max(poll_interval - elapsed_time, 0)
|
|
||||||
logging.debug(f"Elapsed time: {elapsed_time}ms, sleeping for: {sleep_time}ms")
|
|
||||||
await asyncio.sleep(sleep_time / 1000.0)
|
|
||||||
except asyncio.CancelledError:
|
|
||||||
logging.info("Stream processing task cancelled")
|
|
||||||
except Exception as e:
|
|
||||||
logging.error(f"Error in process_streams: {e}")
|
|
||||||
|
|
||||||
async def send_heartbeat():
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
cpu_usage = psutil.cpu_percent()
|
|
||||||
memory_usage = psutil.virtual_memory().percent
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2) # Convert to MB
|
|
||||||
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2) # Convert to MB
|
|
||||||
else:
|
|
||||||
gpu_usage = None
|
|
||||||
gpu_memory_usage = None
|
|
||||||
|
|
||||||
camera_connections = [
|
|
||||||
{
|
|
||||||
"cameraIdentifier": camera_id,
|
|
||||||
"modelId": stream['modelId'],
|
|
||||||
"modelName": stream['modelName'],
|
|
||||||
"online": True
|
|
||||||
}
|
|
||||||
for camera_id, stream in streams.items()
|
|
||||||
]
|
|
||||||
|
|
||||||
state_report = {
|
|
||||||
"type": "stateReport",
|
|
||||||
"cpuUsage": cpu_usage,
|
|
||||||
"memoryUsage": memory_usage,
|
|
||||||
"gpuUsage": gpu_usage,
|
|
||||||
"gpuMemoryUsage": gpu_memory_usage,
|
|
||||||
"cameraConnections": camera_connections
|
|
||||||
}
|
|
||||||
await websocket.send_text(json.dumps(state_report))
|
|
||||||
logging.debug("Sent stateReport as heartbeat")
|
|
||||||
await asyncio.sleep(HEARTBEAT_INTERVAL)
|
|
||||||
except Exception as e:
|
|
||||||
logging.error(f"Error sending stateReport heartbeat: {e}")
|
|
||||||
break
|
|
||||||
|
|
||||||
async def on_message():
|
|
||||||
global models
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
msg = await websocket.receive_text()
|
|
||||||
logging.debug(f"Received message: {msg}")
|
|
||||||
print(f"Received message: {msg}")
|
|
||||||
data = json.loads(msg)
|
|
||||||
msg_type = data.get("type")
|
|
||||||
|
|
||||||
if msg_type == "subscribe":
|
|
||||||
payload = data.get("payload", {})
|
|
||||||
camera_id = payload.get("cameraIdentifier")
|
|
||||||
rtsp_url = payload.get("rtspUrl")
|
|
||||||
model_url = payload.get("modelUrl")
|
|
||||||
modelId = payload.get("modelId")
|
|
||||||
modelName = payload.get("modelName")
|
|
||||||
|
|
||||||
if model_url:
|
|
||||||
with models_lock:
|
|
||||||
if camera_id not in models:
|
|
||||||
models[camera_id] = {}
|
|
||||||
if modelId not in models[camera_id]:
|
|
||||||
print(f"Downloading model from {model_url}")
|
|
||||||
parsed_url = urlparse(model_url)
|
|
||||||
filename = os.path.basename(parsed_url.path)
|
|
||||||
model_filename = os.path.join("models", filename)
|
|
||||||
# Download the model
|
|
||||||
response = requests.get(model_url, stream=True)
|
|
||||||
if response.status_code == 200:
|
|
||||||
with open(model_filename, 'wb') as f:
|
|
||||||
for chunk in response.iter_content(chunk_size=8192):
|
|
||||||
f.write(chunk)
|
|
||||||
logging.info(f"Downloaded model from {model_url} to {model_filename}")
|
|
||||||
model = YOLO(model_filename)
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
model.to('cuda')
|
|
||||||
models[camera_id][modelId] = model
|
|
||||||
logging.info(f"Loaded model {modelId} for camera {camera_id}")
|
|
||||||
else:
|
|
||||||
logging.error(f"Failed to download model from {model_url}")
|
|
||||||
continue
|
|
||||||
if camera_id and rtsp_url:
|
|
||||||
with streams_lock:
|
|
||||||
if camera_id not in streams and len(streams) < max_streams:
|
|
||||||
cap = cv2.VideoCapture(rtsp_url)
|
|
||||||
if not cap.isOpened():
|
|
||||||
logging.error(f"Failed to open RTSP stream for camera {camera_id}")
|
|
||||||
continue
|
|
||||||
buffer = queue.Queue(maxsize=1)
|
|
||||||
stop_event = threading.Event()
|
|
||||||
thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
|
|
||||||
thread.daemon = True
|
|
||||||
thread.start()
|
|
||||||
streams[camera_id] = {
|
|
||||||
'cap': cap,
|
|
||||||
'buffer': buffer,
|
|
||||||
'thread': thread,
|
|
||||||
'rtsp_url': rtsp_url,
|
|
||||||
'stop_event': stop_event,
|
|
||||||
'modelId': modelId,
|
|
||||||
'modelName': modelName
|
|
||||||
}
|
|
||||||
logging.info(f"Subscribed to camera {camera_id} with modelId {modelId}, modelName {modelName} and URL {rtsp_url}")
|
|
||||||
elif camera_id and camera_id in streams:
|
|
||||||
stream = streams.pop(camera_id)
|
|
||||||
stream['cap'].release()
|
|
||||||
logging.info(f"Unsubscribed from camera {camera_id}")
|
|
||||||
if camera_id in models and modelId in models[camera_id]:
|
|
||||||
del models[camera_id][modelId]
|
|
||||||
if not models[camera_id]:
|
|
||||||
del models[camera_id]
|
|
||||||
elif msg_type == "unsubscribe":
|
|
||||||
payload = data.get("payload", {})
|
|
||||||
camera_id = payload.get("cameraIdentifier")
|
|
||||||
logging.debug(f"Unsubscribing from camera {camera_id}")
|
|
||||||
with streams_lock:
|
|
||||||
if camera_id and camera_id in streams:
|
|
||||||
stream = streams.pop(camera_id)
|
|
||||||
stream['stop_event'].set()
|
|
||||||
stream['thread'].join()
|
|
||||||
stream['cap'].release()
|
|
||||||
logging.info(f"Unsubscribed from camera {camera_id}")
|
|
||||||
if camera_id in models and modelId in models[camera_id]:
|
|
||||||
del models[camera_id][modelId]
|
|
||||||
if not models[camera_id]:
|
|
||||||
del models[camera_id]
|
|
||||||
elif msg_type == "requestState":
|
|
||||||
# Handle state request
|
|
||||||
cpu_usage = psutil.cpu_percent()
|
|
||||||
memory_usage = psutil.virtual_memory().percent
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2) # Convert to MB
|
|
||||||
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2) # Convert to MB
|
|
||||||
else:
|
|
||||||
gpu_usage = None
|
|
||||||
gpu_memory_usage = None
|
|
||||||
|
|
||||||
camera_connections = [
|
|
||||||
{
|
|
||||||
"cameraIdentifier": camera_id,
|
|
||||||
"modelId": stream['modelId'],
|
|
||||||
"modelName": stream['modelName'],
|
|
||||||
"online": True
|
|
||||||
}
|
|
||||||
for camera_id, stream in streams.items()
|
|
||||||
]
|
|
||||||
|
|
||||||
state_report = {
|
|
||||||
"type": "stateReport",
|
|
||||||
"cpuUsage": cpu_usage,
|
|
||||||
"memoryUsage": memory_usage,
|
|
||||||
"gpuUsage": gpu_usage,
|
|
||||||
"gpuMemoryUsage": gpu_memory_usage,
|
|
||||||
"cameraConnections": camera_connections
|
|
||||||
}
|
|
||||||
await websocket.send_text(json.dumps(state_report))
|
|
||||||
else:
|
|
||||||
logging.error(f"Unknown message type: {msg_type}")
|
|
||||||
except json.JSONDecodeError:
|
|
||||||
logging.error("Received invalid JSON message")
|
|
||||||
except (WebSocketDisconnect, ConnectionClosedError) as e:
|
|
||||||
logging.warning(f"WebSocket disconnected: {e}")
|
|
||||||
break
|
|
||||||
except Exception as e:
|
|
||||||
logging.error(f"Error handling message: {e}")
|
|
||||||
break
|
|
||||||
|
|
||||||
try:
|
|
||||||
await websocket.accept()
|
|
||||||
task = asyncio.create_task(process_streams())
|
|
||||||
heartbeat_task = asyncio.create_task(send_heartbeat())
|
|
||||||
message_task = asyncio.create_task(on_message())
|
|
||||||
|
|
||||||
await asyncio.gather(heartbeat_task, message_task)
|
|
||||||
except Exception as e:
|
|
||||||
logging.error(f"Error in detect websocket: {e}")
|
|
||||||
finally:
|
|
||||||
task.cancel()
|
|
||||||
await task
|
|
||||||
with streams_lock:
|
|
||||||
for camera_id, stream in streams.items():
|
|
||||||
stream['stop_event'].set()
|
|
||||||
stream['thread'].join()
|
|
||||||
stream['cap'].release()
|
|
||||||
stream['buffer'].queue.clear()
|
|
||||||
logging.info(f"Released camera {camera_id} and cleaned up resources")
|
|
||||||
streams.clear()
|
|
||||||
with models_lock:
|
|
||||||
models.clear()
|
|
||||||
logging.info("WebSocket connection closed")
|
|
1449
docs/MasterElection.md
Normal file
1449
docs/MasterElection.md
Normal file
File diff suppressed because it is too large
Load diff
1498
docs/WorkerConnection.md
Normal file
1498
docs/WorkerConnection.md
Normal file
File diff suppressed because it is too large
Load diff
327
pympta.md
Normal file
327
pympta.md
Normal file
|
@ -0,0 +1,327 @@
|
||||||
|
# pympta: Modular Pipeline Task Executor
|
||||||
|
|
||||||
|
`pympta` is a Python module designed to load and execute modular, multi-stage AI pipelines defined in a special package format (`.mpta`). It is primarily used within the detector worker to run complex computer vision tasks where the output of one model can trigger a subsequent model on a specific region of interest.
|
||||||
|
|
||||||
|
## Core Concepts
|
||||||
|
|
||||||
|
### 1. MPTA Package (`.mpta`)
|
||||||
|
|
||||||
|
An `.mpta` file is a standard `.zip` archive with a different extension. It bundles all the necessary components for a pipeline to run.
|
||||||
|
|
||||||
|
A typical `.mpta` file has the following structure:
|
||||||
|
|
||||||
|
```
|
||||||
|
my_pipeline.mpta/
|
||||||
|
├── pipeline.json
|
||||||
|
├── model1.pt
|
||||||
|
├── model2.pt
|
||||||
|
└── ...
|
||||||
|
```
|
||||||
|
|
||||||
|
- **`pipeline.json`**: (Required) The manifest file that defines the structure of the pipeline, the models to use, and the logic connecting them.
|
||||||
|
- **Model Files (`.pt`, etc.)**: The actual pre-trained model files (e.g., PyTorch, ONNX). The pipeline currently uses `ultralytics.YOLO` models.
|
||||||
|
|
||||||
|
### 2. Pipeline Structure
|
||||||
|
|
||||||
|
A pipeline is a tree-like structure of "nodes," defined in `pipeline.json`.
|
||||||
|
|
||||||
|
- **Root Node**: The entry point of the pipeline. It processes the initial, full-frame image.
|
||||||
|
- **Branch Nodes**: Child nodes that are triggered by specific detection results from their parent. For example, a root node might detect a "vehicle," which then triggers a branch node to detect a "license plate" within the vehicle's bounding box.
|
||||||
|
|
||||||
|
This modular structure allows for creating complex and efficient inference logic, avoiding the need to run every model on every frame.
|
||||||
|
|
||||||
|
## `pipeline.json` Specification
|
||||||
|
|
||||||
|
This file defines the entire pipeline logic. The root object contains a `pipeline` key for the pipeline definition, optional `redis` key for Redis configuration, and optional `postgresql` key for database integration.
|
||||||
|
|
||||||
|
### Top-Level Object Structure
|
||||||
|
|
||||||
|
| Key | Type | Required | Description |
|
||||||
|
| ------------ | ------ | -------- | ------------------------------------------------------- |
|
||||||
|
| `pipeline` | Object | Yes | The root node object of the pipeline. |
|
||||||
|
| `redis` | Object | No | Configuration for connecting to a Redis server. |
|
||||||
|
| `postgresql` | Object | No | Configuration for connecting to a PostgreSQL database. |
|
||||||
|
|
||||||
|
### Redis Configuration (`redis`)
|
||||||
|
|
||||||
|
| Key | Type | Required | Description |
|
||||||
|
| ---------- | ------ | -------- | ------------------------------------------------------- |
|
||||||
|
| `host` | String | Yes | The hostname or IP address of the Redis server. |
|
||||||
|
| `port` | Number | Yes | The port number of the Redis server. |
|
||||||
|
| `password` | String | No | The password for Redis authentication. |
|
||||||
|
| `db` | Number | No | The Redis database number to use. Defaults to `0`. |
|
||||||
|
|
||||||
|
### PostgreSQL Configuration (`postgresql`)
|
||||||
|
|
||||||
|
| Key | Type | Required | Description |
|
||||||
|
| ---------- | ------ | -------- | ------------------------------------------------------- |
|
||||||
|
| `host` | String | Yes | The hostname or IP address of the PostgreSQL server. |
|
||||||
|
| `port` | Number | Yes | The port number of the PostgreSQL server. |
|
||||||
|
| `database` | String | Yes | The database name to connect to. |
|
||||||
|
| `username` | String | Yes | The username for database authentication. |
|
||||||
|
| `password` | String | Yes | The password for database authentication. |
|
||||||
|
|
||||||
|
### Node Object Structure
|
||||||
|
|
||||||
|
| Key | Type | Required | Description |
|
||||||
|
| ------------------- | ------------- | -------- | -------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
|
| `modelId` | String | Yes | A unique identifier for this model node (e.g., "vehicle-detector"). |
|
||||||
|
| `modelFile` | String | Yes | The path to the model file within the `.mpta` archive (e.g., "yolov8n.pt"). |
|
||||||
|
| `minConfidence` | Float | Yes | The minimum confidence score (0.0 to 1.0) required for a detection to be considered valid and potentially trigger a branch. |
|
||||||
|
| `triggerClasses` | Array<String> | Yes | A list of class names that, when detected by the parent, can trigger this node. For the root node, this lists all classes of interest. |
|
||||||
|
| `crop` | Boolean | No | If `true`, the image is cropped to the parent's detection bounding box before being passed to this node's model. Defaults to `false`. |
|
||||||
|
| `cropClass` | String | No | The specific class to use for cropping (e.g., "Frontal" for frontal view cropping). |
|
||||||
|
| `multiClass` | Boolean | No | If `true`, enables multi-class detection mode where multiple classes can be detected simultaneously. |
|
||||||
|
| `expectedClasses` | Array<String> | No | When `multiClass` is true, defines which classes are expected. At least one must be detected for processing to continue. |
|
||||||
|
| `parallel` | Boolean | No | If `true`, this branch will be processed in parallel with other parallel branches. |
|
||||||
|
| `branches` | Array<Node> | No | A list of child node objects that can be triggered by this node's detections. |
|
||||||
|
| `actions` | Array<Action> | No | A list of actions to execute upon a successful detection in this node. |
|
||||||
|
| `parallelActions` | Array<Action> | No | A list of actions to execute after all specified branches have completed. |
|
||||||
|
|
||||||
|
### Action Object Structure
|
||||||
|
|
||||||
|
Actions allow the pipeline to interact with Redis and PostgreSQL databases. They are executed sequentially for a given detection.
|
||||||
|
|
||||||
|
#### Action Context & Dynamic Keys
|
||||||
|
|
||||||
|
All actions have access to a dynamic context for formatting keys and messages. The context is created for each detection event and includes:
|
||||||
|
|
||||||
|
- All key-value pairs from the detection result (e.g., `class`, `confidence`, `id`).
|
||||||
|
- `{timestamp_ms}`: The current Unix timestamp in milliseconds.
|
||||||
|
- `{timestamp}`: Formatted timestamp string (YYYY-MM-DDTHH-MM-SS).
|
||||||
|
- `{uuid}`: A unique identifier (UUID4) for the detection event.
|
||||||
|
- `{filename}`: Generated filename with UUID.
|
||||||
|
- `{camera_id}`: Full camera subscription identifier.
|
||||||
|
- `{display_id}`: Display identifier extracted from subscription.
|
||||||
|
- `{session_id}`: Session ID for database operations.
|
||||||
|
- `{image_key}`: If a `redis_save_image` action has already been executed for this event, this placeholder will be replaced with the key where the image was stored.
|
||||||
|
|
||||||
|
#### `redis_save_image`
|
||||||
|
|
||||||
|
Saves the current image frame (or cropped sub-image) to a Redis key.
|
||||||
|
|
||||||
|
| Key | Type | Required | Description |
|
||||||
|
| ---------------- | ------ | -------- | ------------------------------------------------------------------------------------------------------- |
|
||||||
|
| `type` | String | Yes | Must be `"redis_save_image"`. |
|
||||||
|
| `key` | String | Yes | The Redis key to save the image to. Can contain any of the dynamic placeholders. |
|
||||||
|
| `region` | String | No | Specific detected region to crop and save (e.g., "Frontal"). |
|
||||||
|
| `format` | String | No | Image format: "jpeg" or "png". Defaults to "jpeg". |
|
||||||
|
| `quality` | Number | No | JPEG quality (1-100). Defaults to 90. |
|
||||||
|
| `expire_seconds` | Number | No | If provided, sets an expiration time (in seconds) for the Redis key. |
|
||||||
|
|
||||||
|
#### `redis_publish`
|
||||||
|
|
||||||
|
Publishes a message to a Redis channel.
|
||||||
|
|
||||||
|
| Key | Type | Required | Description |
|
||||||
|
| --------- | ------ | -------- | ------------------------------------------------------------------------------------------------------- |
|
||||||
|
| `type` | String | Yes | Must be `"redis_publish"`. |
|
||||||
|
| `channel` | String | Yes | The Redis channel to publish the message to. |
|
||||||
|
| `message` | String | Yes | The message to publish. Can contain any of the dynamic placeholders, including `{image_key}`. |
|
||||||
|
|
||||||
|
#### `postgresql_update_combined`
|
||||||
|
|
||||||
|
Updates PostgreSQL database with results from multiple branches after they complete.
|
||||||
|
|
||||||
|
| Key | Type | Required | Description |
|
||||||
|
| ------------------ | ------------- | -------- | ------------------------------------------------------------------------------------------------------- |
|
||||||
|
| `type` | String | Yes | Must be `"postgresql_update_combined"`. |
|
||||||
|
| `table` | String | Yes | The database table name (will be prefixed with `gas_station_1.` schema). |
|
||||||
|
| `key_field` | String | Yes | The field to use as the update key (typically "session_id"). |
|
||||||
|
| `key_value` | String | Yes | Template for the key value (e.g., "{session_id}"). |
|
||||||
|
| `waitForBranches` | Array<String> | Yes | List of branch model IDs to wait for completion before executing update. |
|
||||||
|
| `fields` | Object | Yes | Field mapping object where keys are database columns and values are templates (e.g., "{branch.field}").|
|
||||||
|
|
||||||
|
### Complete Example `pipeline.json`
|
||||||
|
|
||||||
|
This example demonstrates a comprehensive pipeline for vehicle detection with parallel classification and database integration:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"redis": {
|
||||||
|
"host": "10.100.1.3",
|
||||||
|
"port": 6379,
|
||||||
|
"password": "your-redis-password",
|
||||||
|
"db": 0
|
||||||
|
},
|
||||||
|
"postgresql": {
|
||||||
|
"host": "10.100.1.3",
|
||||||
|
"port": 5432,
|
||||||
|
"database": "inference",
|
||||||
|
"username": "root",
|
||||||
|
"password": "your-db-password"
|
||||||
|
},
|
||||||
|
"pipeline": {
|
||||||
|
"modelId": "car_frontal_detection_v1",
|
||||||
|
"modelFile": "car_frontal_detection_v1.pt",
|
||||||
|
"crop": false,
|
||||||
|
"triggerClasses": ["Car", "Frontal"],
|
||||||
|
"minConfidence": 0.8,
|
||||||
|
"multiClass": true,
|
||||||
|
"expectedClasses": ["Car", "Frontal"],
|
||||||
|
"actions": [
|
||||||
|
{
|
||||||
|
"type": "redis_save_image",
|
||||||
|
"region": "Frontal",
|
||||||
|
"key": "inference:{display_id}:{timestamp}:{session_id}:{filename}",
|
||||||
|
"expire_seconds": 600,
|
||||||
|
"format": "jpeg",
|
||||||
|
"quality": 90
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "redis_publish",
|
||||||
|
"channel": "car_detections",
|
||||||
|
"message": "{\"event\":\"frontal_detected\"}"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"branches": [
|
||||||
|
{
|
||||||
|
"modelId": "car_brand_cls_v1",
|
||||||
|
"modelFile": "car_brand_cls_v1.pt",
|
||||||
|
"crop": true,
|
||||||
|
"cropClass": "Frontal",
|
||||||
|
"resizeTarget": [224, 224],
|
||||||
|
"triggerClasses": ["Frontal"],
|
||||||
|
"minConfidence": 0.85,
|
||||||
|
"parallel": true,
|
||||||
|
"branches": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"modelId": "car_bodytype_cls_v1",
|
||||||
|
"modelFile": "car_bodytype_cls_v1.pt",
|
||||||
|
"crop": true,
|
||||||
|
"cropClass": "Car",
|
||||||
|
"resizeTarget": [224, 224],
|
||||||
|
"triggerClasses": ["Car"],
|
||||||
|
"minConfidence": 0.85,
|
||||||
|
"parallel": true,
|
||||||
|
"branches": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"parallelActions": [
|
||||||
|
{
|
||||||
|
"type": "postgresql_update_combined",
|
||||||
|
"table": "car_frontal_info",
|
||||||
|
"key_field": "session_id",
|
||||||
|
"key_value": "{session_id}",
|
||||||
|
"waitForBranches": ["car_brand_cls_v1", "car_bodytype_cls_v1"],
|
||||||
|
"fields": {
|
||||||
|
"car_brand": "{car_brand_cls_v1.brand}",
|
||||||
|
"car_body_type": "{car_bodytype_cls_v1.body_type}"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## API Reference
|
||||||
|
|
||||||
|
The `pympta` module exposes two main functions.
|
||||||
|
|
||||||
|
### `load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict`
|
||||||
|
|
||||||
|
Loads, extracts, and parses an `.mpta` file to build a pipeline tree in memory. It also establishes Redis and PostgreSQL connections if configured in `pipeline.json`.
|
||||||
|
|
||||||
|
- **Parameters:**
|
||||||
|
- `zip_source` (str): The file path to the local `.mpta` zip archive.
|
||||||
|
- `target_dir` (str): A directory path where the archive's contents will be extracted.
|
||||||
|
- **Returns:**
|
||||||
|
- A dictionary representing the root node of the pipeline, ready to be used with `run_pipeline`. Returns `None` if loading fails.
|
||||||
|
|
||||||
|
### `run_pipeline(frame, node: dict, return_bbox: bool = False, context: dict = None)`
|
||||||
|
|
||||||
|
Executes the inference pipeline on a single image frame.
|
||||||
|
|
||||||
|
- **Parameters:**
|
||||||
|
- `frame`: The input image frame (e.g., a NumPy array from OpenCV).
|
||||||
|
- `node` (dict): The pipeline node to execute (typically the root node returned by `load_pipeline_from_zip`).
|
||||||
|
- `return_bbox` (bool): If `True`, the function returns a tuple `(detection, bounding_box)`. Otherwise, it returns only the `detection`.
|
||||||
|
- `context` (dict): Optional context dictionary containing camera_id, display_id, session_id for action formatting.
|
||||||
|
- **Returns:**
|
||||||
|
- The final detection result from the last executed node in the chain. A detection is a dictionary like `{'class': 'car', 'confidence': 0.95, 'id': 1}`. If no detection meets the criteria, it returns `None` (or `(None, None)` if `return_bbox` is `True`).
|
||||||
|
|
||||||
|
## Database Integration
|
||||||
|
|
||||||
|
The pipeline system includes automatic PostgreSQL database management:
|
||||||
|
|
||||||
|
### Table Schema (`gas_station_1.car_frontal_info`)
|
||||||
|
|
||||||
|
The system automatically creates and manages the following table structure:
|
||||||
|
|
||||||
|
```sql
|
||||||
|
CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
|
||||||
|
display_id VARCHAR(255),
|
||||||
|
captured_timestamp VARCHAR(255),
|
||||||
|
session_id VARCHAR(255) PRIMARY KEY,
|
||||||
|
license_character VARCHAR(255) DEFAULT NULL,
|
||||||
|
license_type VARCHAR(255) DEFAULT 'No model available',
|
||||||
|
car_brand VARCHAR(255) DEFAULT NULL,
|
||||||
|
car_model VARCHAR(255) DEFAULT NULL,
|
||||||
|
car_body_type VARCHAR(255) DEFAULT NULL,
|
||||||
|
created_at TIMESTAMP DEFAULT NOW(),
|
||||||
|
updated_at TIMESTAMP DEFAULT NOW()
|
||||||
|
);
|
||||||
|
```
|
||||||
|
|
||||||
|
### Workflow
|
||||||
|
|
||||||
|
1. **Initial Record Creation**: When both "Car" and "Frontal" are detected, an initial database record is created with a UUID session_id.
|
||||||
|
2. **Redis Storage**: Vehicle images are stored in Redis with keys containing the session_id.
|
||||||
|
3. **Parallel Classification**: Brand and body type classification run concurrently.
|
||||||
|
4. **Database Update**: After all branches complete, the database record is updated with classification results.
|
||||||
|
|
||||||
|
## Usage Example
|
||||||
|
|
||||||
|
This snippet shows how to use `pympta` with the enhanced features:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import cv2
|
||||||
|
from siwatsystem.pympta import load_pipeline_from_zip, run_pipeline
|
||||||
|
|
||||||
|
# 1. Define paths
|
||||||
|
MPTA_FILE = "path/to/your/pipeline.mpta"
|
||||||
|
CACHE_DIR = ".mptacache"
|
||||||
|
|
||||||
|
# 2. Load the pipeline from the .mpta file
|
||||||
|
# This reads pipeline.json and loads the YOLO models into memory.
|
||||||
|
model_tree = load_pipeline_from_zip(MPTA_FILE, CACHE_DIR)
|
||||||
|
|
||||||
|
if not model_tree:
|
||||||
|
print("Failed to load pipeline.")
|
||||||
|
exit()
|
||||||
|
|
||||||
|
# 3. Open a video source
|
||||||
|
cap = cv2.VideoCapture(0)
|
||||||
|
|
||||||
|
while True:
|
||||||
|
ret, frame = cap.read()
|
||||||
|
if not ret:
|
||||||
|
break
|
||||||
|
|
||||||
|
# 4. Run the pipeline on the current frame with context
|
||||||
|
context = {
|
||||||
|
"camera_id": "display-001;cam-001",
|
||||||
|
"display_id": "display-001",
|
||||||
|
"session_id": None # Will be generated automatically
|
||||||
|
}
|
||||||
|
|
||||||
|
detection_result, bounding_box = run_pipeline(frame, model_tree, return_bbox=True, context=context)
|
||||||
|
|
||||||
|
# 5. Display the results
|
||||||
|
if detection_result:
|
||||||
|
print(f"Detected: {detection_result['class']} with confidence {detection_result['confidence']:.2f}")
|
||||||
|
if bounding_box:
|
||||||
|
x1, y1, x2, y2 = bounding_box
|
||||||
|
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||||
|
cv2.putText(frame, detection_result['class'], (x1, y1 - 10),
|
||||||
|
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
|
||||||
|
|
||||||
|
cv2.imshow("Pipeline Output", frame)
|
||||||
|
|
||||||
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||||
|
break
|
||||||
|
|
||||||
|
cap.release()
|
||||||
|
cv2.destroyAllWindows()
|
||||||
|
```
|
7
requirements.base.txt
Normal file
7
requirements.base.txt
Normal file
|
@ -0,0 +1,7 @@
|
||||||
|
torch
|
||||||
|
torchvision
|
||||||
|
ultralytics
|
||||||
|
opencv-python
|
||||||
|
scipy
|
||||||
|
filterpy
|
||||||
|
psycopg2-binary
|
|
@ -1,8 +1,6 @@
|
||||||
fastapi
|
fastapi
|
||||||
uvicorn
|
uvicorn
|
||||||
torch
|
|
||||||
torchvision
|
|
||||||
ultralytics
|
|
||||||
opencv-python
|
|
||||||
websockets
|
websockets
|
||||||
fastapi[standard]
|
fastapi[standard]
|
||||||
|
redis
|
||||||
|
urllib3<2.0.0
|
211
siwatsystem/database.py
Normal file
211
siwatsystem/database.py
Normal file
|
@ -0,0 +1,211 @@
|
||||||
|
import psycopg2
|
||||||
|
import psycopg2.extras
|
||||||
|
from typing import Optional, Dict, Any
|
||||||
|
import logging
|
||||||
|
import uuid
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
class DatabaseManager:
|
||||||
|
def __init__(self, config: Dict[str, Any]):
|
||||||
|
self.config = config
|
||||||
|
self.connection: Optional[psycopg2.extensions.connection] = None
|
||||||
|
|
||||||
|
def connect(self) -> bool:
|
||||||
|
try:
|
||||||
|
self.connection = psycopg2.connect(
|
||||||
|
host=self.config['host'],
|
||||||
|
port=self.config['port'],
|
||||||
|
database=self.config['database'],
|
||||||
|
user=self.config['username'],
|
||||||
|
password=self.config['password']
|
||||||
|
)
|
||||||
|
logger.info("PostgreSQL connection established successfully")
|
||||||
|
return True
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to connect to PostgreSQL: {e}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
def disconnect(self):
|
||||||
|
if self.connection:
|
||||||
|
self.connection.close()
|
||||||
|
self.connection = None
|
||||||
|
logger.info("PostgreSQL connection closed")
|
||||||
|
|
||||||
|
def is_connected(self) -> bool:
|
||||||
|
try:
|
||||||
|
if self.connection and not self.connection.closed:
|
||||||
|
cur = self.connection.cursor()
|
||||||
|
cur.execute("SELECT 1")
|
||||||
|
cur.fetchone()
|
||||||
|
cur.close()
|
||||||
|
return True
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return False
|
||||||
|
|
||||||
|
def update_car_info(self, session_id: str, brand: str, model: str, body_type: str) -> bool:
|
||||||
|
if not self.is_connected():
|
||||||
|
if not self.connect():
|
||||||
|
return False
|
||||||
|
|
||||||
|
try:
|
||||||
|
cur = self.connection.cursor()
|
||||||
|
query = """
|
||||||
|
INSERT INTO car_frontal_info (session_id, car_brand, car_model, car_body_type, updated_at)
|
||||||
|
VALUES (%s, %s, %s, %s, NOW())
|
||||||
|
ON CONFLICT (session_id)
|
||||||
|
DO UPDATE SET
|
||||||
|
car_brand = EXCLUDED.car_brand,
|
||||||
|
car_model = EXCLUDED.car_model,
|
||||||
|
car_body_type = EXCLUDED.car_body_type,
|
||||||
|
updated_at = NOW()
|
||||||
|
"""
|
||||||
|
cur.execute(query, (session_id, brand, model, body_type))
|
||||||
|
self.connection.commit()
|
||||||
|
cur.close()
|
||||||
|
logger.info(f"Updated car info for session {session_id}: {brand} {model} ({body_type})")
|
||||||
|
return True
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to update car info: {e}")
|
||||||
|
if self.connection:
|
||||||
|
self.connection.rollback()
|
||||||
|
return False
|
||||||
|
|
||||||
|
def execute_update(self, table: str, key_field: str, key_value: str, fields: Dict[str, str]) -> bool:
|
||||||
|
if not self.is_connected():
|
||||||
|
if not self.connect():
|
||||||
|
return False
|
||||||
|
|
||||||
|
try:
|
||||||
|
cur = self.connection.cursor()
|
||||||
|
|
||||||
|
# Build the UPDATE query dynamically
|
||||||
|
set_clauses = []
|
||||||
|
values = []
|
||||||
|
|
||||||
|
for field, value in fields.items():
|
||||||
|
if value == "NOW()":
|
||||||
|
set_clauses.append(f"{field} = NOW()")
|
||||||
|
else:
|
||||||
|
set_clauses.append(f"{field} = %s")
|
||||||
|
values.append(value)
|
||||||
|
|
||||||
|
# Add schema prefix if table doesn't already have it
|
||||||
|
full_table_name = table if '.' in table else f"gas_station_1.{table}"
|
||||||
|
|
||||||
|
query = f"""
|
||||||
|
INSERT INTO {full_table_name} ({key_field}, {', '.join(fields.keys())})
|
||||||
|
VALUES (%s, {', '.join(['%s'] * len(fields))})
|
||||||
|
ON CONFLICT ({key_field})
|
||||||
|
DO UPDATE SET {', '.join(set_clauses)}
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Add key_value to the beginning of values list
|
||||||
|
all_values = [key_value] + list(fields.values()) + values
|
||||||
|
|
||||||
|
cur.execute(query, all_values)
|
||||||
|
self.connection.commit()
|
||||||
|
cur.close()
|
||||||
|
logger.info(f"Updated {table} for {key_field}={key_value}")
|
||||||
|
return True
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to execute update on {table}: {e}")
|
||||||
|
if self.connection:
|
||||||
|
self.connection.rollback()
|
||||||
|
return False
|
||||||
|
|
||||||
|
def create_car_frontal_info_table(self) -> bool:
|
||||||
|
"""Create the car_frontal_info table in gas_station_1 schema if it doesn't exist."""
|
||||||
|
if not self.is_connected():
|
||||||
|
if not self.connect():
|
||||||
|
return False
|
||||||
|
|
||||||
|
try:
|
||||||
|
cur = self.connection.cursor()
|
||||||
|
|
||||||
|
# Create schema if it doesn't exist
|
||||||
|
cur.execute("CREATE SCHEMA IF NOT EXISTS gas_station_1")
|
||||||
|
|
||||||
|
# Create table if it doesn't exist
|
||||||
|
create_table_query = """
|
||||||
|
CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
|
||||||
|
display_id VARCHAR(255),
|
||||||
|
captured_timestamp VARCHAR(255),
|
||||||
|
session_id VARCHAR(255) PRIMARY KEY,
|
||||||
|
license_character VARCHAR(255) DEFAULT NULL,
|
||||||
|
license_type VARCHAR(255) DEFAULT 'No model available',
|
||||||
|
car_brand VARCHAR(255) DEFAULT NULL,
|
||||||
|
car_model VARCHAR(255) DEFAULT NULL,
|
||||||
|
car_body_type VARCHAR(255) DEFAULT NULL,
|
||||||
|
updated_at TIMESTAMP DEFAULT NOW()
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
|
||||||
|
cur.execute(create_table_query)
|
||||||
|
|
||||||
|
# Add columns if they don't exist (for existing tables)
|
||||||
|
alter_queries = [
|
||||||
|
"ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_brand VARCHAR(255) DEFAULT NULL",
|
||||||
|
"ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_model VARCHAR(255) DEFAULT NULL",
|
||||||
|
"ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_body_type VARCHAR(255) DEFAULT NULL",
|
||||||
|
"ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS updated_at TIMESTAMP DEFAULT NOW()"
|
||||||
|
]
|
||||||
|
|
||||||
|
for alter_query in alter_queries:
|
||||||
|
try:
|
||||||
|
cur.execute(alter_query)
|
||||||
|
logger.debug(f"Executed: {alter_query}")
|
||||||
|
except Exception as e:
|
||||||
|
# Ignore errors if column already exists (for older PostgreSQL versions)
|
||||||
|
if "already exists" in str(e).lower():
|
||||||
|
logger.debug(f"Column already exists, skipping: {alter_query}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"Error in ALTER TABLE: {e}")
|
||||||
|
|
||||||
|
self.connection.commit()
|
||||||
|
cur.close()
|
||||||
|
logger.info("Successfully created/verified car_frontal_info table with all required columns")
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to create car_frontal_info table: {e}")
|
||||||
|
if self.connection:
|
||||||
|
self.connection.rollback()
|
||||||
|
return False
|
||||||
|
|
||||||
|
def insert_initial_detection(self, display_id: str, captured_timestamp: str, session_id: str = None) -> str:
|
||||||
|
"""Insert initial detection record and return the session_id."""
|
||||||
|
if not self.is_connected():
|
||||||
|
if not self.connect():
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Generate session_id if not provided
|
||||||
|
if not session_id:
|
||||||
|
session_id = str(uuid.uuid4())
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Ensure table exists
|
||||||
|
if not self.create_car_frontal_info_table():
|
||||||
|
logger.error("Failed to create/verify table before insertion")
|
||||||
|
return None
|
||||||
|
|
||||||
|
cur = self.connection.cursor()
|
||||||
|
insert_query = """
|
||||||
|
INSERT INTO gas_station_1.car_frontal_info
|
||||||
|
(display_id, captured_timestamp, session_id, license_character, license_type, car_brand, car_model, car_body_type)
|
||||||
|
VALUES (%s, %s, %s, NULL, 'No model available', NULL, NULL, NULL)
|
||||||
|
ON CONFLICT (session_id) DO NOTHING
|
||||||
|
"""
|
||||||
|
|
||||||
|
cur.execute(insert_query, (display_id, captured_timestamp, session_id))
|
||||||
|
self.connection.commit()
|
||||||
|
cur.close()
|
||||||
|
logger.info(f"Inserted initial detection record with session_id: {session_id}")
|
||||||
|
return session_id
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to insert initial detection record: {e}")
|
||||||
|
if self.connection:
|
||||||
|
self.connection.rollback()
|
||||||
|
return None
|
|
@ -3,17 +3,72 @@ import json
|
||||||
import logging
|
import logging
|
||||||
import torch
|
import torch
|
||||||
import cv2
|
import cv2
|
||||||
import requests
|
|
||||||
import zipfile
|
import zipfile
|
||||||
import shutil
|
import shutil
|
||||||
import traceback
|
import traceback
|
||||||
|
import redis
|
||||||
|
import time
|
||||||
|
import uuid
|
||||||
|
import concurrent.futures
|
||||||
from ultralytics import YOLO
|
from ultralytics import YOLO
|
||||||
from urllib.parse import urlparse
|
from urllib.parse import urlparse
|
||||||
|
from .database import DatabaseManager
|
||||||
|
|
||||||
# Create a logger specifically for this module
|
# Create a logger specifically for this module
|
||||||
logger = logging.getLogger("detector_worker.pympta")
|
logger = logging.getLogger("detector_worker.pympta")
|
||||||
|
|
||||||
def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
|
def validate_redis_config(redis_config: dict) -> bool:
|
||||||
|
"""Validate Redis configuration parameters."""
|
||||||
|
required_fields = ["host", "port"]
|
||||||
|
for field in required_fields:
|
||||||
|
if field not in redis_config:
|
||||||
|
logger.error(f"Missing required Redis config field: {field}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
if not isinstance(redis_config["port"], int) or redis_config["port"] <= 0:
|
||||||
|
logger.error(f"Invalid Redis port: {redis_config['port']}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
def validate_postgresql_config(pg_config: dict) -> bool:
|
||||||
|
"""Validate PostgreSQL configuration parameters."""
|
||||||
|
required_fields = ["host", "port", "database", "username", "password"]
|
||||||
|
for field in required_fields:
|
||||||
|
if field not in pg_config:
|
||||||
|
logger.error(f"Missing required PostgreSQL config field: {field}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
if not isinstance(pg_config["port"], int) or pg_config["port"] <= 0:
|
||||||
|
logger.error(f"Invalid PostgreSQL port: {pg_config['port']}")
|
||||||
|
return False
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
def crop_region_by_class(frame, regions_dict, class_name):
|
||||||
|
"""Crop a specific region from frame based on detected class."""
|
||||||
|
if class_name not in regions_dict:
|
||||||
|
logger.warning(f"Class '{class_name}' not found in detected regions")
|
||||||
|
return None
|
||||||
|
|
||||||
|
bbox = regions_dict[class_name]['bbox']
|
||||||
|
x1, y1, x2, y2 = bbox
|
||||||
|
cropped = frame[y1:y2, x1:x2]
|
||||||
|
|
||||||
|
if cropped.size == 0:
|
||||||
|
logger.warning(f"Empty crop for class '{class_name}' with bbox {bbox}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
return cropped
|
||||||
|
|
||||||
|
def format_action_context(base_context, additional_context=None):
|
||||||
|
"""Format action context with dynamic values."""
|
||||||
|
context = {**base_context}
|
||||||
|
if additional_context:
|
||||||
|
context.update(additional_context)
|
||||||
|
return context
|
||||||
|
|
||||||
|
def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client, db_manager=None) -> dict:
|
||||||
# Recursively load a model node from configuration.
|
# Recursively load a model node from configuration.
|
||||||
model_path = os.path.join(mpta_dir, node_config["modelFile"])
|
model_path = os.path.join(mpta_dir, node_config["modelFile"])
|
||||||
if not os.path.exists(model_path):
|
if not os.path.exists(model_path):
|
||||||
|
@ -43,14 +98,22 @@ def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
|
||||||
"triggerClasses": trigger_classes,
|
"triggerClasses": trigger_classes,
|
||||||
"triggerClassIndices": trigger_class_indices,
|
"triggerClassIndices": trigger_class_indices,
|
||||||
"crop": node_config.get("crop", False),
|
"crop": node_config.get("crop", False),
|
||||||
|
"cropClass": node_config.get("cropClass"),
|
||||||
"minConfidence": node_config.get("minConfidence", None),
|
"minConfidence": node_config.get("minConfidence", None),
|
||||||
|
"multiClass": node_config.get("multiClass", False),
|
||||||
|
"expectedClasses": node_config.get("expectedClasses", []),
|
||||||
|
"parallel": node_config.get("parallel", False),
|
||||||
|
"actions": node_config.get("actions", []),
|
||||||
|
"parallelActions": node_config.get("parallelActions", []),
|
||||||
"model": model,
|
"model": model,
|
||||||
"branches": []
|
"branches": [],
|
||||||
|
"redis_client": redis_client,
|
||||||
|
"db_manager": db_manager
|
||||||
}
|
}
|
||||||
logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
|
logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
|
||||||
for child in node_config.get("branches", []):
|
for child in node_config.get("branches", []):
|
||||||
logger.debug(f"Loading branch for parent node {node_config['modelId']}")
|
logger.debug(f"Loading branch for parent node {node_config['modelId']}")
|
||||||
node["branches"].append(load_pipeline_node(child, mpta_dir))
|
node["branches"].append(load_pipeline_node(child, mpta_dir, redis_client, db_manager))
|
||||||
return node
|
return node
|
||||||
|
|
||||||
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
||||||
|
@ -158,7 +221,47 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
||||||
pipeline_config = json.load(f)
|
pipeline_config = json.load(f)
|
||||||
logger.info(f"Successfully loaded pipeline configuration from {pipeline_json_path}")
|
logger.info(f"Successfully loaded pipeline configuration from {pipeline_json_path}")
|
||||||
logger.debug(f"Pipeline config: {json.dumps(pipeline_config, indent=2)}")
|
logger.debug(f"Pipeline config: {json.dumps(pipeline_config, indent=2)}")
|
||||||
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir)
|
|
||||||
|
# Establish Redis connection if configured
|
||||||
|
redis_client = None
|
||||||
|
if "redis" in pipeline_config:
|
||||||
|
redis_config = pipeline_config["redis"]
|
||||||
|
if not validate_redis_config(redis_config):
|
||||||
|
logger.error("Invalid Redis configuration, skipping Redis connection")
|
||||||
|
else:
|
||||||
|
try:
|
||||||
|
redis_client = redis.Redis(
|
||||||
|
host=redis_config["host"],
|
||||||
|
port=redis_config["port"],
|
||||||
|
password=redis_config.get("password"),
|
||||||
|
db=redis_config.get("db", 0),
|
||||||
|
decode_responses=True
|
||||||
|
)
|
||||||
|
redis_client.ping()
|
||||||
|
logger.info(f"Successfully connected to Redis at {redis_config['host']}:{redis_config['port']}")
|
||||||
|
except redis.exceptions.ConnectionError as e:
|
||||||
|
logger.error(f"Failed to connect to Redis: {e}")
|
||||||
|
redis_client = None
|
||||||
|
|
||||||
|
# Establish PostgreSQL connection if configured
|
||||||
|
db_manager = None
|
||||||
|
if "postgresql" in pipeline_config:
|
||||||
|
pg_config = pipeline_config["postgresql"]
|
||||||
|
if not validate_postgresql_config(pg_config):
|
||||||
|
logger.error("Invalid PostgreSQL configuration, skipping database connection")
|
||||||
|
else:
|
||||||
|
try:
|
||||||
|
db_manager = DatabaseManager(pg_config)
|
||||||
|
if db_manager.connect():
|
||||||
|
logger.info(f"Successfully connected to PostgreSQL at {pg_config['host']}:{pg_config['port']}")
|
||||||
|
else:
|
||||||
|
logger.error("Failed to connect to PostgreSQL")
|
||||||
|
db_manager = None
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error initializing PostgreSQL connection: {e}")
|
||||||
|
db_manager = None
|
||||||
|
|
||||||
|
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir, redis_client, db_manager)
|
||||||
except json.JSONDecodeError as e:
|
except json.JSONDecodeError as e:
|
||||||
logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
|
logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
|
||||||
return None
|
return None
|
||||||
|
@ -169,49 +272,357 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
||||||
logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
|
logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def run_pipeline(frame, node: dict, return_bbox: bool=False):
|
def execute_actions(node, frame, detection_result, regions_dict=None):
|
||||||
|
if not node["redis_client"] or not node["actions"]:
|
||||||
|
return
|
||||||
|
|
||||||
|
# Create a dynamic context for this detection event
|
||||||
|
from datetime import datetime
|
||||||
|
action_context = {
|
||||||
|
**detection_result,
|
||||||
|
"timestamp_ms": int(time.time() * 1000),
|
||||||
|
"uuid": str(uuid.uuid4()),
|
||||||
|
"timestamp": datetime.now().strftime("%Y-%m-%dT%H-%M-%S"),
|
||||||
|
"filename": f"{uuid.uuid4()}.jpg"
|
||||||
|
}
|
||||||
|
|
||||||
|
for action in node["actions"]:
|
||||||
|
try:
|
||||||
|
if action["type"] == "redis_save_image":
|
||||||
|
key = action["key"].format(**action_context)
|
||||||
|
|
||||||
|
# Check if we need to crop a specific region
|
||||||
|
region_name = action.get("region")
|
||||||
|
image_to_save = frame
|
||||||
|
|
||||||
|
if region_name and regions_dict:
|
||||||
|
cropped_image = crop_region_by_class(frame, regions_dict, region_name)
|
||||||
|
if cropped_image is not None:
|
||||||
|
image_to_save = cropped_image
|
||||||
|
logger.debug(f"Cropped region '{region_name}' for redis_save_image")
|
||||||
|
else:
|
||||||
|
logger.warning(f"Could not crop region '{region_name}', saving full frame instead")
|
||||||
|
|
||||||
|
# Encode image with specified format and quality (default to JPEG)
|
||||||
|
img_format = action.get("format", "jpeg").lower()
|
||||||
|
quality = action.get("quality", 90)
|
||||||
|
|
||||||
|
if img_format == "jpeg":
|
||||||
|
encode_params = [cv2.IMWRITE_JPEG_QUALITY, quality]
|
||||||
|
success, buffer = cv2.imencode('.jpg', image_to_save, encode_params)
|
||||||
|
elif img_format == "png":
|
||||||
|
success, buffer = cv2.imencode('.png', image_to_save)
|
||||||
|
else:
|
||||||
|
success, buffer = cv2.imencode('.jpg', image_to_save, [cv2.IMWRITE_JPEG_QUALITY, quality])
|
||||||
|
|
||||||
|
if not success:
|
||||||
|
logger.error(f"Failed to encode image for redis_save_image")
|
||||||
|
continue
|
||||||
|
|
||||||
|
expire_seconds = action.get("expire_seconds")
|
||||||
|
if expire_seconds:
|
||||||
|
node["redis_client"].setex(key, expire_seconds, buffer.tobytes())
|
||||||
|
logger.info(f"Saved image to Redis with key: {key} (expires in {expire_seconds}s)")
|
||||||
|
else:
|
||||||
|
node["redis_client"].set(key, buffer.tobytes())
|
||||||
|
logger.info(f"Saved image to Redis with key: {key}")
|
||||||
|
action_context["image_key"] = key
|
||||||
|
elif action["type"] == "redis_publish":
|
||||||
|
channel = action["channel"]
|
||||||
|
try:
|
||||||
|
# Handle JSON message format by creating it programmatically
|
||||||
|
message_template = action["message"]
|
||||||
|
|
||||||
|
# Check if the message is JSON-like (starts and ends with braces)
|
||||||
|
if message_template.strip().startswith('{') and message_template.strip().endswith('}'):
|
||||||
|
# Create JSON data programmatically to avoid formatting issues
|
||||||
|
json_data = {}
|
||||||
|
|
||||||
|
# Add common fields
|
||||||
|
json_data["event"] = "frontal_detected"
|
||||||
|
json_data["display_id"] = action_context.get("display_id", "unknown")
|
||||||
|
json_data["session_id"] = action_context.get("session_id")
|
||||||
|
json_data["timestamp"] = action_context.get("timestamp", "")
|
||||||
|
json_data["image_key"] = action_context.get("image_key", "")
|
||||||
|
|
||||||
|
# Convert to JSON string
|
||||||
|
message = json.dumps(json_data)
|
||||||
|
else:
|
||||||
|
# Use regular string formatting for non-JSON messages
|
||||||
|
message = message_template.format(**action_context)
|
||||||
|
|
||||||
|
# Publish to Redis
|
||||||
|
if not node["redis_client"]:
|
||||||
|
logger.error("Redis client is None, cannot publish message")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Test Redis connection
|
||||||
|
try:
|
||||||
|
node["redis_client"].ping()
|
||||||
|
logger.debug("Redis connection is active")
|
||||||
|
except Exception as ping_error:
|
||||||
|
logger.error(f"Redis connection test failed: {ping_error}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
result = node["redis_client"].publish(channel, message)
|
||||||
|
logger.info(f"Published message to Redis channel '{channel}': {message}")
|
||||||
|
logger.info(f"Redis publish result (subscribers count): {result}")
|
||||||
|
|
||||||
|
# Additional debug info
|
||||||
|
if result == 0:
|
||||||
|
logger.warning(f"No subscribers listening to channel '{channel}'")
|
||||||
|
else:
|
||||||
|
logger.info(f"Message delivered to {result} subscriber(s)")
|
||||||
|
|
||||||
|
except KeyError as e:
|
||||||
|
logger.error(f"Missing key in redis_publish message template: {e}")
|
||||||
|
logger.debug(f"Available context keys: {list(action_context.keys())}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in redis_publish action: {e}")
|
||||||
|
logger.debug(f"Message template: {action['message']}")
|
||||||
|
logger.debug(f"Available context keys: {list(action_context.keys())}")
|
||||||
|
import traceback
|
||||||
|
logger.debug(f"Full traceback: {traceback.format_exc()}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error executing action {action['type']}: {e}")
|
||||||
|
|
||||||
|
def execute_parallel_actions(node, frame, detection_result, regions_dict):
|
||||||
|
"""Execute parallel actions after all required branches have completed."""
|
||||||
|
if not node.get("parallelActions"):
|
||||||
|
return
|
||||||
|
|
||||||
|
logger.debug("Executing parallel actions...")
|
||||||
|
branch_results = detection_result.get("branch_results", {})
|
||||||
|
|
||||||
|
for action in node["parallelActions"]:
|
||||||
|
try:
|
||||||
|
action_type = action.get("type")
|
||||||
|
logger.debug(f"Processing parallel action: {action_type}")
|
||||||
|
|
||||||
|
if action_type == "postgresql_update_combined":
|
||||||
|
# Check if all required branches have completed
|
||||||
|
wait_for_branches = action.get("waitForBranches", [])
|
||||||
|
missing_branches = [branch for branch in wait_for_branches if branch not in branch_results]
|
||||||
|
|
||||||
|
if missing_branches:
|
||||||
|
logger.warning(f"Cannot execute postgresql_update_combined: missing branch results for {missing_branches}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
logger.info(f"All required branches completed: {wait_for_branches}")
|
||||||
|
|
||||||
|
# Execute the database update
|
||||||
|
execute_postgresql_update_combined(node, action, detection_result, branch_results)
|
||||||
|
else:
|
||||||
|
logger.warning(f"Unknown parallel action type: {action_type}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error executing parallel action {action.get('type', 'unknown')}: {e}")
|
||||||
|
import traceback
|
||||||
|
logger.debug(f"Full traceback: {traceback.format_exc()}")
|
||||||
|
|
||||||
|
def execute_postgresql_update_combined(node, action, detection_result, branch_results):
|
||||||
|
"""Execute a PostgreSQL update with combined branch results."""
|
||||||
|
if not node.get("db_manager"):
|
||||||
|
logger.error("No database manager available for postgresql_update_combined action")
|
||||||
|
return
|
||||||
|
|
||||||
|
try:
|
||||||
|
table = action["table"]
|
||||||
|
key_field = action["key_field"]
|
||||||
|
key_value_template = action["key_value"]
|
||||||
|
fields = action["fields"]
|
||||||
|
|
||||||
|
# Create context for key value formatting
|
||||||
|
action_context = {**detection_result}
|
||||||
|
key_value = key_value_template.format(**action_context)
|
||||||
|
|
||||||
|
logger.info(f"Executing database update: table={table}, {key_field}={key_value}")
|
||||||
|
|
||||||
|
# Process field mappings
|
||||||
|
mapped_fields = {}
|
||||||
|
for db_field, value_template in fields.items():
|
||||||
|
try:
|
||||||
|
mapped_value = resolve_field_mapping(value_template, branch_results, action_context)
|
||||||
|
if mapped_value is not None:
|
||||||
|
mapped_fields[db_field] = mapped_value
|
||||||
|
logger.debug(f"Mapped field: {db_field} = {mapped_value}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"Could not resolve field mapping for {db_field}: {value_template}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error mapping field {db_field} with template '{value_template}': {e}")
|
||||||
|
|
||||||
|
if not mapped_fields:
|
||||||
|
logger.warning("No fields mapped successfully, skipping database update")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Execute the database update
|
||||||
|
success = node["db_manager"].execute_update(table, key_field, key_value, mapped_fields)
|
||||||
|
|
||||||
|
if success:
|
||||||
|
logger.info(f"Successfully updated database: {table} with {len(mapped_fields)} fields")
|
||||||
|
else:
|
||||||
|
logger.error(f"Failed to update database: {table}")
|
||||||
|
|
||||||
|
except KeyError as e:
|
||||||
|
logger.error(f"Missing required field in postgresql_update_combined action: {e}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in postgresql_update_combined action: {e}")
|
||||||
|
import traceback
|
||||||
|
logger.debug(f"Full traceback: {traceback.format_exc()}")
|
||||||
|
|
||||||
|
def resolve_field_mapping(value_template, branch_results, action_context):
|
||||||
|
"""Resolve field mapping templates like {car_brand_cls_v1.brand}."""
|
||||||
|
try:
|
||||||
|
# Handle simple context variables first (non-branch references)
|
||||||
|
if not '.' in value_template:
|
||||||
|
return value_template.format(**action_context)
|
||||||
|
|
||||||
|
# Handle branch result references like {model_id.field}
|
||||||
|
import re
|
||||||
|
branch_refs = re.findall(r'\{([^}]+\.[^}]+)\}', value_template)
|
||||||
|
|
||||||
|
resolved_template = value_template
|
||||||
|
for ref in branch_refs:
|
||||||
|
try:
|
||||||
|
model_id, field_name = ref.split('.', 1)
|
||||||
|
|
||||||
|
if model_id in branch_results:
|
||||||
|
branch_data = branch_results[model_id]
|
||||||
|
if field_name in branch_data:
|
||||||
|
field_value = branch_data[field_name]
|
||||||
|
resolved_template = resolved_template.replace(f'{{{ref}}}', str(field_value))
|
||||||
|
logger.debug(f"Resolved {ref} to {field_value}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"Field '{field_name}' not found in branch '{model_id}' results. Available fields: {list(branch_data.keys())}")
|
||||||
|
return None
|
||||||
|
else:
|
||||||
|
logger.warning(f"Branch '{model_id}' not found in results. Available branches: {list(branch_results.keys())}")
|
||||||
|
return None
|
||||||
|
except ValueError as e:
|
||||||
|
logger.error(f"Invalid branch reference format: {ref}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Format any remaining simple variables
|
||||||
|
try:
|
||||||
|
final_value = resolved_template.format(**action_context)
|
||||||
|
return final_value
|
||||||
|
except KeyError as e:
|
||||||
|
logger.warning(f"Could not resolve context variable in template: {e}")
|
||||||
|
return resolved_template
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error resolving field mapping '{value_template}': {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
def validate_pipeline_execution(node, regions_dict):
|
||||||
"""
|
"""
|
||||||
- For detection nodes (task != 'classify'):
|
Pre-validate that all required branches will execute successfully before
|
||||||
• runs `track(..., classes=triggerClassIndices)`
|
committing to Redis actions and database records.
|
||||||
• picks top box ≥ minConfidence
|
|
||||||
• optionally crops & resizes → recurse into child
|
Returns:
|
||||||
• else returns (det_dict, bbox)
|
- (True, []) if pipeline can execute completely
|
||||||
- For classify nodes:
|
- (False, missing_branches) if some required branches won't execute
|
||||||
• runs `predict()`
|
"""
|
||||||
• returns top (class,confidence) and no bbox
|
# Get all branches that parallel actions are waiting for
|
||||||
|
required_branches = set()
|
||||||
|
|
||||||
|
for action in node.get("parallelActions", []):
|
||||||
|
if action.get("type") == "postgresql_update_combined":
|
||||||
|
wait_for_branches = action.get("waitForBranches", [])
|
||||||
|
required_branches.update(wait_for_branches)
|
||||||
|
|
||||||
|
if not required_branches:
|
||||||
|
# No parallel actions requiring specific branches
|
||||||
|
logger.debug("No parallel actions with waitForBranches - validation passes")
|
||||||
|
return True, []
|
||||||
|
|
||||||
|
logger.debug(f"Pre-validation: checking if required branches {list(required_branches)} will execute")
|
||||||
|
|
||||||
|
# Check each required branch
|
||||||
|
missing_branches = []
|
||||||
|
|
||||||
|
for branch in node.get("branches", []):
|
||||||
|
branch_id = branch["modelId"]
|
||||||
|
|
||||||
|
if branch_id not in required_branches:
|
||||||
|
continue # This branch is not required by parallel actions
|
||||||
|
|
||||||
|
# Check if this branch would be triggered
|
||||||
|
trigger_classes = branch.get("triggerClasses", [])
|
||||||
|
min_conf = branch.get("minConfidence", 0)
|
||||||
|
|
||||||
|
branch_triggered = False
|
||||||
|
for det_class in regions_dict:
|
||||||
|
det_confidence = regions_dict[det_class]["confidence"]
|
||||||
|
|
||||||
|
if (det_class in trigger_classes and det_confidence >= min_conf):
|
||||||
|
branch_triggered = True
|
||||||
|
logger.debug(f"Pre-validation: branch {branch_id} WILL be triggered by {det_class} (conf={det_confidence:.3f} >= {min_conf})")
|
||||||
|
break
|
||||||
|
|
||||||
|
if not branch_triggered:
|
||||||
|
missing_branches.append(branch_id)
|
||||||
|
logger.warning(f"Pre-validation: branch {branch_id} will NOT be triggered - no matching classes or insufficient confidence")
|
||||||
|
logger.debug(f" Required: {trigger_classes} with min_conf={min_conf}")
|
||||||
|
logger.debug(f" Available: {[(cls, regions_dict[cls]['confidence']) for cls in regions_dict]}")
|
||||||
|
|
||||||
|
if missing_branches:
|
||||||
|
logger.error(f"Pipeline pre-validation FAILED: required branches {missing_branches} will not execute")
|
||||||
|
return False, missing_branches
|
||||||
|
else:
|
||||||
|
logger.info(f"Pipeline pre-validation PASSED: all required branches {list(required_branches)} will execute")
|
||||||
|
return True, []
|
||||||
|
|
||||||
|
def run_pipeline(frame, node: dict, return_bbox: bool=False, context=None):
|
||||||
|
"""
|
||||||
|
Enhanced pipeline that supports:
|
||||||
|
- Multi-class detection (detecting multiple classes simultaneously)
|
||||||
|
- Parallel branch processing
|
||||||
|
- Region-based actions and cropping
|
||||||
|
- Context passing for session/camera information
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
task = getattr(node["model"], "task", None)
|
task = getattr(node["model"], "task", None)
|
||||||
|
|
||||||
# ─── Classification stage ───────────────────────────────────
|
# ─── Classification stage ───────────────────────────────────
|
||||||
if task == "classify":
|
if task == "classify":
|
||||||
# run the classifier and grab its top-1 directly via the Probs API
|
|
||||||
results = node["model"].predict(frame, stream=False)
|
results = node["model"].predict(frame, stream=False)
|
||||||
# nothing returned?
|
|
||||||
if not results:
|
if not results:
|
||||||
return (None, None) if return_bbox else None
|
return (None, None) if return_bbox else None
|
||||||
|
|
||||||
# take the first result's probs object
|
|
||||||
r = results[0]
|
r = results[0]
|
||||||
probs = r.probs
|
probs = r.probs
|
||||||
if probs is None:
|
if probs is None:
|
||||||
return (None, None) if return_bbox else None
|
return (None, None) if return_bbox else None
|
||||||
|
|
||||||
# get the top-1 class index and its confidence
|
|
||||||
top1_idx = int(probs.top1)
|
top1_idx = int(probs.top1)
|
||||||
top1_conf = float(probs.top1conf)
|
top1_conf = float(probs.top1conf)
|
||||||
|
class_name = node["model"].names[top1_idx]
|
||||||
|
|
||||||
det = {
|
det = {
|
||||||
"class": node["model"].names[top1_idx],
|
"class": class_name,
|
||||||
"confidence": top1_conf,
|
"confidence": top1_conf,
|
||||||
"id": None
|
"id": None,
|
||||||
|
class_name: class_name # Add class name as key for backward compatibility
|
||||||
}
|
}
|
||||||
|
|
||||||
|
# Add specific field mappings for database operations based on model type
|
||||||
|
model_id = node.get("modelId", "").lower()
|
||||||
|
if "brand" in model_id or "brand_cls" in model_id:
|
||||||
|
det["brand"] = class_name
|
||||||
|
elif "bodytype" in model_id or "body" in model_id:
|
||||||
|
det["body_type"] = class_name
|
||||||
|
elif "color" in model_id:
|
||||||
|
det["color"] = class_name
|
||||||
|
|
||||||
|
execute_actions(node, frame, det)
|
||||||
return (det, None) if return_bbox else det
|
return (det, None) if return_bbox else det
|
||||||
|
|
||||||
|
# ─── Detection stage - Multi-class support ──────────────────
|
||||||
# ─── Detection stage ────────────────────────────────────────
|
|
||||||
# only look for your triggerClasses
|
|
||||||
tk = node["triggerClassIndices"]
|
tk = node["triggerClassIndices"]
|
||||||
|
logger.debug(f"Running detection for node {node['modelId']} with trigger classes: {node.get('triggerClasses', [])} (indices: {tk})")
|
||||||
|
logger.debug(f"Node configuration: minConfidence={node['minConfidence']}, multiClass={node.get('multiClass', False)}")
|
||||||
|
|
||||||
res = node["model"].track(
|
res = node["model"].track(
|
||||||
frame,
|
frame,
|
||||||
stream=False,
|
stream=False,
|
||||||
|
@ -219,46 +630,238 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False):
|
||||||
**({"classes": tk} if tk else {})
|
**({"classes": tk} if tk else {})
|
||||||
)[0]
|
)[0]
|
||||||
|
|
||||||
dets, boxes = [], []
|
# Collect all detections above confidence threshold
|
||||||
for box in res.boxes:
|
all_detections = []
|
||||||
|
all_boxes = []
|
||||||
|
regions_dict = {}
|
||||||
|
|
||||||
|
logger.debug(f"Raw detection results from model: {len(res.boxes) if res.boxes is not None else 0} detections")
|
||||||
|
|
||||||
|
for i, box in enumerate(res.boxes):
|
||||||
conf = float(box.cpu().conf[0])
|
conf = float(box.cpu().conf[0])
|
||||||
cid = int(box.cpu().cls[0])
|
cid = int(box.cpu().cls[0])
|
||||||
name = node["model"].names[cid]
|
name = node["model"].names[cid]
|
||||||
if conf < node["minConfidence"]:
|
|
||||||
continue
|
|
||||||
xy = box.cpu().xyxy[0]
|
|
||||||
x1,y1,x2,y2 = map(int, xy)
|
|
||||||
dets.append({"class": name, "confidence": conf,
|
|
||||||
"id": box.id.item() if hasattr(box, "id") else None})
|
|
||||||
boxes.append((x1, y1, x2, y2))
|
|
||||||
|
|
||||||
if not dets:
|
logger.debug(f"Detection {i}: class='{name}' (id={cid}), confidence={conf:.3f}, threshold={node['minConfidence']}")
|
||||||
|
|
||||||
|
if conf < node["minConfidence"]:
|
||||||
|
logger.debug(f" -> REJECTED: confidence {conf:.3f} < threshold {node['minConfidence']}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
xy = box.cpu().xyxy[0]
|
||||||
|
x1, y1, x2, y2 = map(int, xy)
|
||||||
|
bbox = (x1, y1, x2, y2)
|
||||||
|
|
||||||
|
detection = {
|
||||||
|
"class": name,
|
||||||
|
"confidence": conf,
|
||||||
|
"id": box.id.item() if hasattr(box, "id") else None,
|
||||||
|
"bbox": bbox
|
||||||
|
}
|
||||||
|
|
||||||
|
all_detections.append(detection)
|
||||||
|
all_boxes.append(bbox)
|
||||||
|
|
||||||
|
logger.debug(f" -> ACCEPTED: {name} with confidence {conf:.3f}, bbox={bbox}")
|
||||||
|
|
||||||
|
# Store highest confidence detection for each class
|
||||||
|
if name not in regions_dict or conf > regions_dict[name]["confidence"]:
|
||||||
|
regions_dict[name] = {
|
||||||
|
"bbox": bbox,
|
||||||
|
"confidence": conf,
|
||||||
|
"detection": detection
|
||||||
|
}
|
||||||
|
logger.debug(f" -> Updated regions_dict['{name}'] with confidence {conf:.3f}")
|
||||||
|
|
||||||
|
logger.info(f"Detection summary: {len(all_detections)} accepted detections from {len(res.boxes) if res.boxes is not None else 0} total")
|
||||||
|
logger.info(f"Detected classes: {list(regions_dict.keys())}")
|
||||||
|
|
||||||
|
if not all_detections:
|
||||||
|
logger.warning("No detections above confidence threshold - returning null")
|
||||||
return (None, None) if return_bbox else None
|
return (None, None) if return_bbox else None
|
||||||
|
|
||||||
# take highest‐confidence
|
# ─── Multi-class validation ─────────────────────────────────
|
||||||
best_idx = max(range(len(dets)), key=lambda i: dets[i]["confidence"])
|
if node.get("multiClass", False) and node.get("expectedClasses"):
|
||||||
best_det = dets[best_idx]
|
expected_classes = node["expectedClasses"]
|
||||||
best_box = boxes[best_idx]
|
detected_classes = list(regions_dict.keys())
|
||||||
|
|
||||||
# ─── Branch (classification) ───────────────────────────────
|
logger.info(f"Multi-class validation: expected={expected_classes}, detected={detected_classes}")
|
||||||
|
|
||||||
|
# Check if at least one expected class is detected (flexible mode)
|
||||||
|
matching_classes = [cls for cls in expected_classes if cls in detected_classes]
|
||||||
|
missing_classes = [cls for cls in expected_classes if cls not in detected_classes]
|
||||||
|
|
||||||
|
logger.debug(f"Matching classes: {matching_classes}, Missing classes: {missing_classes}")
|
||||||
|
|
||||||
|
if not matching_classes:
|
||||||
|
# No expected classes found at all
|
||||||
|
logger.warning(f"PIPELINE REJECTED: No expected classes detected. Expected: {expected_classes}, Detected: {detected_classes}")
|
||||||
|
return (None, None) if return_bbox else None
|
||||||
|
|
||||||
|
if missing_classes:
|
||||||
|
logger.info(f"Partial multi-class detection: {matching_classes} found, {missing_classes} missing")
|
||||||
|
else:
|
||||||
|
logger.info(f"Complete multi-class detection success: {detected_classes}")
|
||||||
|
else:
|
||||||
|
logger.debug("No multi-class validation - proceeding with all detections")
|
||||||
|
|
||||||
|
# ─── Pre-validate pipeline execution ────────────────────────
|
||||||
|
pipeline_valid, missing_branches = validate_pipeline_execution(node, regions_dict)
|
||||||
|
|
||||||
|
if not pipeline_valid:
|
||||||
|
logger.error(f"Pipeline execution validation FAILED - required branches {missing_branches} cannot execute")
|
||||||
|
logger.error("Aborting pipeline: no Redis actions or database records will be created")
|
||||||
|
return (None, None) if return_bbox else None
|
||||||
|
|
||||||
|
# ─── Execute actions with region information ────────────────
|
||||||
|
detection_result = {
|
||||||
|
"detections": all_detections,
|
||||||
|
"regions": regions_dict,
|
||||||
|
**(context or {})
|
||||||
|
}
|
||||||
|
|
||||||
|
# ─── Create initial database record when Car+Frontal detected ────
|
||||||
|
if node.get("db_manager") and node.get("multiClass", False):
|
||||||
|
# Only create database record if we have both Car and Frontal
|
||||||
|
has_car = "Car" in regions_dict
|
||||||
|
has_frontal = "Frontal" in regions_dict
|
||||||
|
|
||||||
|
if has_car and has_frontal:
|
||||||
|
# Generate UUID session_id since client session is None for now
|
||||||
|
import uuid as uuid_lib
|
||||||
|
from datetime import datetime
|
||||||
|
generated_session_id = str(uuid_lib.uuid4())
|
||||||
|
|
||||||
|
# Insert initial detection record
|
||||||
|
display_id = detection_result.get("display_id", "unknown")
|
||||||
|
timestamp = datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
||||||
|
|
||||||
|
inserted_session_id = node["db_manager"].insert_initial_detection(
|
||||||
|
display_id=display_id,
|
||||||
|
captured_timestamp=timestamp,
|
||||||
|
session_id=generated_session_id
|
||||||
|
)
|
||||||
|
|
||||||
|
if inserted_session_id:
|
||||||
|
# Update detection_result with the generated session_id for actions and branches
|
||||||
|
detection_result["session_id"] = inserted_session_id
|
||||||
|
detection_result["timestamp"] = timestamp # Update with proper timestamp
|
||||||
|
logger.info(f"Created initial database record with session_id: {inserted_session_id}")
|
||||||
|
else:
|
||||||
|
logger.debug(f"Database record not created - missing required classes. Has Car: {has_car}, Has Frontal: {has_frontal}")
|
||||||
|
|
||||||
|
execute_actions(node, frame, detection_result, regions_dict)
|
||||||
|
|
||||||
|
# ─── Parallel branch processing ─────────────────────────────
|
||||||
|
if node["branches"]:
|
||||||
|
branch_results = {}
|
||||||
|
|
||||||
|
# Filter branches that should be triggered
|
||||||
|
active_branches = []
|
||||||
for br in node["branches"]:
|
for br in node["branches"]:
|
||||||
if (best_det["class"] in br["triggerClasses"]
|
trigger_classes = br.get("triggerClasses", [])
|
||||||
and best_det["confidence"] >= br["minConfidence"]):
|
min_conf = br.get("minConfidence", 0)
|
||||||
# crop if requested
|
|
||||||
sub = frame
|
|
||||||
if br["crop"]:
|
|
||||||
x1,y1,x2,y2 = best_box
|
|
||||||
sub = frame[y1:y2, x1:x2]
|
|
||||||
sub = cv2.resize(sub, (224, 224))
|
|
||||||
|
|
||||||
det2, _ = run_pipeline(sub, br, return_bbox=True)
|
logger.debug(f"Evaluating branch {br['modelId']}: trigger_classes={trigger_classes}, min_conf={min_conf}")
|
||||||
if det2:
|
|
||||||
# return classification result + original bbox
|
|
||||||
return (det2, best_box) if return_bbox else det2
|
|
||||||
|
|
||||||
# ─── No branch matched → return this detection ─────────────
|
# Check if any detected class matches branch trigger
|
||||||
return (best_det, best_box) if return_bbox else best_det
|
branch_triggered = False
|
||||||
|
for det_class in regions_dict:
|
||||||
|
det_confidence = regions_dict[det_class]["confidence"]
|
||||||
|
logger.debug(f" Checking detected class '{det_class}' (confidence={det_confidence:.3f}) against triggers {trigger_classes}")
|
||||||
|
|
||||||
|
if (det_class in trigger_classes and det_confidence >= min_conf):
|
||||||
|
active_branches.append(br)
|
||||||
|
branch_triggered = True
|
||||||
|
logger.info(f"Branch {br['modelId']} activated by class '{det_class}' (conf={det_confidence:.3f} >= {min_conf})")
|
||||||
|
break
|
||||||
|
|
||||||
|
if not branch_triggered:
|
||||||
|
logger.debug(f"Branch {br['modelId']} not triggered - no matching classes or insufficient confidence")
|
||||||
|
|
||||||
|
if active_branches:
|
||||||
|
if node.get("parallel", False) or any(br.get("parallel", False) for br in active_branches):
|
||||||
|
# Run branches in parallel
|
||||||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=len(active_branches)) as executor:
|
||||||
|
futures = {}
|
||||||
|
|
||||||
|
for br in active_branches:
|
||||||
|
crop_class = br.get("cropClass", br.get("triggerClasses", [])[0] if br.get("triggerClasses") else None)
|
||||||
|
sub_frame = frame
|
||||||
|
|
||||||
|
logger.info(f"Starting parallel branch: {br['modelId']}, crop_class: {crop_class}")
|
||||||
|
|
||||||
|
if br.get("crop", False) and crop_class:
|
||||||
|
cropped = crop_region_by_class(frame, regions_dict, crop_class)
|
||||||
|
if cropped is not None:
|
||||||
|
sub_frame = cv2.resize(cropped, (224, 224))
|
||||||
|
logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
|
||||||
|
continue
|
||||||
|
|
||||||
|
future = executor.submit(run_pipeline, sub_frame, br, True, context)
|
||||||
|
futures[future] = br
|
||||||
|
|
||||||
|
# Collect results
|
||||||
|
for future in concurrent.futures.as_completed(futures):
|
||||||
|
br = futures[future]
|
||||||
|
try:
|
||||||
|
result, _ = future.result()
|
||||||
|
if result:
|
||||||
|
branch_results[br["modelId"]] = result
|
||||||
|
logger.info(f"Branch {br['modelId']} completed: {result}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Branch {br['modelId']} failed: {e}")
|
||||||
|
else:
|
||||||
|
# Run branches sequentially
|
||||||
|
for br in active_branches:
|
||||||
|
crop_class = br.get("cropClass", br.get("triggerClasses", [])[0] if br.get("triggerClasses") else None)
|
||||||
|
sub_frame = frame
|
||||||
|
|
||||||
|
logger.info(f"Starting sequential branch: {br['modelId']}, crop_class: {crop_class}")
|
||||||
|
|
||||||
|
if br.get("crop", False) and crop_class:
|
||||||
|
cropped = crop_region_by_class(frame, regions_dict, crop_class)
|
||||||
|
if cropped is not None:
|
||||||
|
sub_frame = cv2.resize(cropped, (224, 224))
|
||||||
|
logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
|
||||||
|
continue
|
||||||
|
|
||||||
|
try:
|
||||||
|
result, _ = run_pipeline(sub_frame, br, True, context)
|
||||||
|
if result:
|
||||||
|
branch_results[br["modelId"]] = result
|
||||||
|
logger.info(f"Branch {br['modelId']} completed: {result}")
|
||||||
|
else:
|
||||||
|
logger.warning(f"Branch {br['modelId']} returned no result")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in sequential branch {br['modelId']}: {e}")
|
||||||
|
import traceback
|
||||||
|
logger.debug(f"Branch error traceback: {traceback.format_exc()}")
|
||||||
|
|
||||||
|
# Store branch results in detection_result for parallel actions
|
||||||
|
detection_result["branch_results"] = branch_results
|
||||||
|
|
||||||
|
# ─── Execute Parallel Actions ───────────────────────────────
|
||||||
|
if node.get("parallelActions") and "branch_results" in detection_result:
|
||||||
|
execute_parallel_actions(node, frame, detection_result, regions_dict)
|
||||||
|
|
||||||
|
# ─── Return detection result ────────────────────────────────
|
||||||
|
primary_detection = max(all_detections, key=lambda x: x["confidence"])
|
||||||
|
primary_bbox = primary_detection["bbox"]
|
||||||
|
|
||||||
|
# Add branch results and session_id to primary detection for compatibility
|
||||||
|
if "branch_results" in detection_result:
|
||||||
|
primary_detection["branch_results"] = detection_result["branch_results"]
|
||||||
|
if "session_id" in detection_result:
|
||||||
|
primary_detection["session_id"] = detection_result["session_id"]
|
||||||
|
|
||||||
|
return (primary_detection, primary_bbox) if return_bbox else primary_detection
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logging.error(f"Error in node {node.get('modelId')}: {e}")
|
logger.error(f"Error in node {node.get('modelId')}: {e}")
|
||||||
|
traceback.print_exc()
|
||||||
return (None, None) if return_bbox else None
|
return (None, None) if return_bbox else None
|
||||||
|
|
125
test_protocol.py
Normal file
125
test_protocol.py
Normal file
|
@ -0,0 +1,125 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Test script to verify the worker implementation follows the protocol
|
||||||
|
"""
|
||||||
|
import json
|
||||||
|
import asyncio
|
||||||
|
import websockets
|
||||||
|
import time
|
||||||
|
|
||||||
|
async def test_protocol():
|
||||||
|
"""Test the worker protocol implementation"""
|
||||||
|
uri = "ws://localhost:8000"
|
||||||
|
|
||||||
|
try:
|
||||||
|
async with websockets.connect(uri) as websocket:
|
||||||
|
print("✓ Connected to worker")
|
||||||
|
|
||||||
|
# Test 1: Check if we receive heartbeat (stateReport)
|
||||||
|
print("\n1. Testing heartbeat...")
|
||||||
|
try:
|
||||||
|
message = await asyncio.wait_for(websocket.recv(), timeout=5)
|
||||||
|
data = json.loads(message)
|
||||||
|
if data.get("type") == "stateReport":
|
||||||
|
print("✓ Received stateReport heartbeat")
|
||||||
|
print(f" - CPU Usage: {data.get('cpuUsage', 'N/A')}%")
|
||||||
|
print(f" - Memory Usage: {data.get('memoryUsage', 'N/A')}%")
|
||||||
|
print(f" - Camera Connections: {len(data.get('cameraConnections', []))}")
|
||||||
|
else:
|
||||||
|
print(f"✗ Expected stateReport, got {data.get('type')}")
|
||||||
|
except asyncio.TimeoutError:
|
||||||
|
print("✗ No heartbeat received within 5 seconds")
|
||||||
|
|
||||||
|
# Test 2: Request state
|
||||||
|
print("\n2. Testing requestState...")
|
||||||
|
await websocket.send(json.dumps({"type": "requestState"}))
|
||||||
|
try:
|
||||||
|
message = await asyncio.wait_for(websocket.recv(), timeout=5)
|
||||||
|
data = json.loads(message)
|
||||||
|
if data.get("type") == "stateReport":
|
||||||
|
print("✓ Received stateReport response")
|
||||||
|
else:
|
||||||
|
print(f"✗ Expected stateReport, got {data.get('type')}")
|
||||||
|
except asyncio.TimeoutError:
|
||||||
|
print("✗ No response to requestState within 5 seconds")
|
||||||
|
|
||||||
|
# Test 3: Set session ID
|
||||||
|
print("\n3. Testing setSessionId...")
|
||||||
|
session_message = {
|
||||||
|
"type": "setSessionId",
|
||||||
|
"payload": {
|
||||||
|
"displayIdentifier": "display-001",
|
||||||
|
"sessionId": 12345
|
||||||
|
}
|
||||||
|
}
|
||||||
|
await websocket.send(json.dumps(session_message))
|
||||||
|
print("✓ Sent setSessionId message")
|
||||||
|
|
||||||
|
# Test 4: Test patchSession
|
||||||
|
print("\n4. Testing patchSession...")
|
||||||
|
patch_message = {
|
||||||
|
"type": "patchSession",
|
||||||
|
"sessionId": 12345,
|
||||||
|
"data": {
|
||||||
|
"currentCar": {
|
||||||
|
"carModel": "Civic",
|
||||||
|
"carBrand": "Honda"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
await websocket.send(json.dumps(patch_message))
|
||||||
|
|
||||||
|
# Wait for patchSessionResult
|
||||||
|
try:
|
||||||
|
message = await asyncio.wait_for(websocket.recv(), timeout=5)
|
||||||
|
data = json.loads(message)
|
||||||
|
if data.get("type") == "patchSessionResult":
|
||||||
|
print("✓ Received patchSessionResult")
|
||||||
|
print(f" - Success: {data.get('payload', {}).get('success')}")
|
||||||
|
print(f" - Message: {data.get('payload', {}).get('message')}")
|
||||||
|
else:
|
||||||
|
print(f"✗ Expected patchSessionResult, got {data.get('type')}")
|
||||||
|
except asyncio.TimeoutError:
|
||||||
|
print("✗ No patchSessionResult received within 5 seconds")
|
||||||
|
|
||||||
|
# Test 5: Test subscribe message format (without actual camera)
|
||||||
|
print("\n5. Testing subscribe message format...")
|
||||||
|
subscribe_message = {
|
||||||
|
"type": "subscribe",
|
||||||
|
"payload": {
|
||||||
|
"subscriptionIdentifier": "display-001;cam-001",
|
||||||
|
"snapshotUrl": "http://example.com/snapshot.jpg",
|
||||||
|
"snapshotInterval": 5000,
|
||||||
|
"modelUrl": "http://example.com/model.mpta",
|
||||||
|
"modelName": "Test Model",
|
||||||
|
"modelId": 101,
|
||||||
|
"cropX1": 100,
|
||||||
|
"cropY1": 200,
|
||||||
|
"cropX2": 300,
|
||||||
|
"cropY2": 400
|
||||||
|
}
|
||||||
|
}
|
||||||
|
await websocket.send(json.dumps(subscribe_message))
|
||||||
|
print("✓ Sent subscribe message (will fail without actual camera/model)")
|
||||||
|
|
||||||
|
# Listen for a few more messages to catch any errors
|
||||||
|
print("\n6. Listening for additional messages...")
|
||||||
|
for i in range(3):
|
||||||
|
try:
|
||||||
|
message = await asyncio.wait_for(websocket.recv(), timeout=2)
|
||||||
|
data = json.loads(message)
|
||||||
|
msg_type = data.get("type")
|
||||||
|
print(f" - Received {msg_type}")
|
||||||
|
if msg_type == "error":
|
||||||
|
print(f" Error: {data.get('error')}")
|
||||||
|
except asyncio.TimeoutError:
|
||||||
|
break
|
||||||
|
|
||||||
|
print("\n✓ Protocol test completed successfully!")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"✗ Connection failed: {e}")
|
||||||
|
print("Make sure the worker is running on localhost:8000")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(test_protocol())
|
495
worker.md
Normal file
495
worker.md
Normal file
|
@ -0,0 +1,495 @@
|
||||||
|
# Worker Communication Protocol
|
||||||
|
|
||||||
|
This document outlines the WebSocket-based communication protocol between the CMS backend and a detector worker. As a worker developer, your primary responsibility is to implement a WebSocket server that adheres to this protocol.
|
||||||
|
|
||||||
|
## 1. Connection
|
||||||
|
|
||||||
|
The worker must run a WebSocket server, preferably on port `8000`. The backend system, which is managed by a container orchestration service, will automatically discover and establish a WebSocket connection to your worker.
|
||||||
|
|
||||||
|
Upon a successful connection from the backend, you should begin sending `stateReport` messages as heartbeats.
|
||||||
|
|
||||||
|
## 2. Communication Overview
|
||||||
|
|
||||||
|
Communication is bidirectional and asynchronous. All messages are JSON objects with a `type` field that indicates the message's purpose, and an optional `payload` field containing the data.
|
||||||
|
|
||||||
|
- **Worker -> Backend:** You will send messages to the backend to report status, forward detection events, or request changes to session data.
|
||||||
|
- **Backend -> Worker:** The backend will send commands to you to manage camera subscriptions.
|
||||||
|
|
||||||
|
## 3. Dynamic Configuration via MPTA File
|
||||||
|
|
||||||
|
To enable modularity and dynamic configuration, the backend will send you a URL to a `.mpta` file when it issues a `subscribe` command. This file is a renamed `.zip` archive that contains everything your worker needs to perform its task.
|
||||||
|
|
||||||
|
**Your worker is responsible for:**
|
||||||
|
|
||||||
|
1. Fetching this file from the provided URL.
|
||||||
|
2. Extracting its contents.
|
||||||
|
3. Interpreting the contents to configure its internal pipeline.
|
||||||
|
|
||||||
|
**The contents of the `.mpta` file are entirely up to the user who configures the model in the CMS.** This allows for maximum flexibility. For example, the archive could contain:
|
||||||
|
|
||||||
|
- AI/ML Models: Pre-trained models for libraries like TensorFlow, PyTorch, or ONNX.
|
||||||
|
- Configuration Files: A `config.json` or `pipeline.yaml` that defines a sequence of operations, specifies model paths, or sets detection thresholds.
|
||||||
|
- Scripts: Custom Python scripts for pre-processing or post-processing.
|
||||||
|
- API Integration Details: A JSON file with endpoint information and credentials for interacting with third-party detection services.
|
||||||
|
|
||||||
|
Essentially, the `.mpta` file is a self-contained package that tells your worker _how_ to process the video stream for a given subscription.
|
||||||
|
|
||||||
|
## 4. Messages from Worker to Backend
|
||||||
|
|
||||||
|
These are the messages your worker is expected to send to the backend.
|
||||||
|
|
||||||
|
### 4.1. State Report (Heartbeat)
|
||||||
|
|
||||||
|
This message is crucial for the backend to monitor your worker's health and status, including GPU usage.
|
||||||
|
|
||||||
|
- **Type:** `stateReport`
|
||||||
|
- **When to Send:** Periodically (e.g., every 2 seconds) after a connection is established.
|
||||||
|
|
||||||
|
**Payload:**
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "stateReport",
|
||||||
|
"cpuUsage": 75.5,
|
||||||
|
"memoryUsage": 40.2,
|
||||||
|
"gpuUsage": 60.0,
|
||||||
|
"gpuMemoryUsage": 25.1,
|
||||||
|
"cameraConnections": [
|
||||||
|
{
|
||||||
|
"subscriptionIdentifier": "display-001;cam-001",
|
||||||
|
"modelId": 101,
|
||||||
|
"modelName": "General Object Detection",
|
||||||
|
"online": true,
|
||||||
|
"cropX1": 100,
|
||||||
|
"cropY1": 200,
|
||||||
|
"cropX2": 300,
|
||||||
|
"cropY2": 400
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
> **Note:**
|
||||||
|
>
|
||||||
|
> - `cropX1`, `cropY1`, `cropX2`, `cropY2` (optional, integer) should be included in each camera connection to indicate the crop coordinates for that subscription.
|
||||||
|
|
||||||
|
### 4.2. Image Detection
|
||||||
|
|
||||||
|
Sent when the worker detects a relevant object. The `detection` object should be flat and contain key-value pairs corresponding to the detected attributes.
|
||||||
|
|
||||||
|
- **Type:** `imageDetection`
|
||||||
|
|
||||||
|
**Payload Example:**
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "imageDetection",
|
||||||
|
"subscriptionIdentifier": "display-001;cam-001",
|
||||||
|
"timestamp": "2025-07-14T12:34:56.789Z",
|
||||||
|
"data": {
|
||||||
|
"detection": {
|
||||||
|
"carModel": "Civic",
|
||||||
|
"carBrand": "Honda",
|
||||||
|
"carYear": 2023,
|
||||||
|
"bodyType": "Sedan",
|
||||||
|
"licensePlateText": "ABCD1234",
|
||||||
|
"licensePlateConfidence": 0.95
|
||||||
|
},
|
||||||
|
"modelId": 101,
|
||||||
|
"modelName": "US-LPR-and-Vehicle-ID"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### 4.3. Patch Session
|
||||||
|
|
||||||
|
> **Note:** Patch messages are only used when the worker can't keep up and needs to retroactively send detections. Normally, detections should be sent in real-time using `imageDetection` messages. Use `patchSession` only to update session data after the fact.
|
||||||
|
|
||||||
|
Allows the worker to request a modification to an active session's data. The `data` payload must be a partial object of the `DisplayPersistentData` structure.
|
||||||
|
|
||||||
|
- **Type:** `patchSession`
|
||||||
|
|
||||||
|
**Payload Example:**
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "patchSession",
|
||||||
|
"sessionId": 12345,
|
||||||
|
"data": {
|
||||||
|
"currentCar": {
|
||||||
|
"carModel": "Civic",
|
||||||
|
"carBrand": "Honda",
|
||||||
|
"licensePlateText": "ABCD1234"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
The backend will respond with a `patchSessionResult` command.
|
||||||
|
|
||||||
|
#### `DisplayPersistentData` Structure
|
||||||
|
|
||||||
|
The `data` object in the `patchSession` message is merged with the existing `DisplayPersistentData` on the backend. Here is its structure:
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
interface DisplayPersistentData {
|
||||||
|
progressionStage:
|
||||||
|
| 'welcome'
|
||||||
|
| 'car_fueling'
|
||||||
|
| 'car_waitpayment'
|
||||||
|
| 'car_postpayment'
|
||||||
|
| null;
|
||||||
|
qrCode: string | null;
|
||||||
|
adsPlayback: {
|
||||||
|
playlistSlotOrder: number; // The 'order' of the current slot
|
||||||
|
adsId: number | null;
|
||||||
|
adsUrl: string | null;
|
||||||
|
} | null;
|
||||||
|
currentCar: {
|
||||||
|
carModel?: string;
|
||||||
|
carBrand?: string;
|
||||||
|
carYear?: number;
|
||||||
|
bodyType?: string;
|
||||||
|
licensePlateText?: string;
|
||||||
|
licensePlateType?: string;
|
||||||
|
} | null;
|
||||||
|
fuelPump: {
|
||||||
|
/* FuelPumpData structure */
|
||||||
|
} | null;
|
||||||
|
weatherData: {
|
||||||
|
/* WeatherResponse structure */
|
||||||
|
} | null;
|
||||||
|
sessionId: number | null;
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Patching Behavior
|
||||||
|
|
||||||
|
- The patch is a **deep merge**.
|
||||||
|
- **`undefined`** values are ignored.
|
||||||
|
- **`null`** values will set the corresponding field to `null`.
|
||||||
|
- Nested objects are merged recursively.
|
||||||
|
|
||||||
|
## 5. Commands from Backend to Worker
|
||||||
|
|
||||||
|
These are the commands your worker will receive from the backend.
|
||||||
|
|
||||||
|
### 5.1. Subscribe to Camera
|
||||||
|
|
||||||
|
Instructs the worker to process a camera's RTSP stream using the configuration from the specified `.mpta` file.
|
||||||
|
|
||||||
|
- **Type:** `subscribe`
|
||||||
|
|
||||||
|
**Payload:**
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "subscribe",
|
||||||
|
"payload": {
|
||||||
|
"subscriptionIdentifier": "display-001;cam-002",
|
||||||
|
"rtspUrl": "rtsp://user:pass@host:port/stream",
|
||||||
|
"snapshotUrl": "http://go2rtc/snapshot/1",
|
||||||
|
"snapshotInterval": 5000,
|
||||||
|
"modelUrl": "http://storage/models/us-lpr.mpta",
|
||||||
|
"modelName": "US-LPR-and-Vehicle-ID",
|
||||||
|
"modelId": 102,
|
||||||
|
"cropX1": 100,
|
||||||
|
"cropY1": 200,
|
||||||
|
"cropX2": 300,
|
||||||
|
"cropY2": 400
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
> **Note:**
|
||||||
|
>
|
||||||
|
> - `cropX1`, `cropY1`, `cropX2`, `cropY2` (optional, integer) specify the crop coordinates for the camera stream. These values are configured per display and passed in the subscription payload. If not provided, the worker should process the full frame.
|
||||||
|
>
|
||||||
|
> **Important:**
|
||||||
|
> If multiple displays are bound to the same camera, your worker must ensure that only **one stream** is opened per camera. When you receive multiple subscriptions for the same camera (with different `subscriptionIdentifier` values), you should:
|
||||||
|
>
|
||||||
|
> - Open the RTSP stream **once** for that camera if using RTSP.
|
||||||
|
> - Capture each snapshot only once per cycle, and reuse it for all display subscriptions sharing that camera.
|
||||||
|
> - Capture each frame/image only once per cycle.
|
||||||
|
> - Reuse the same captured image and snapshot for all display subscriptions that share the camera, processing and routing detection results separately for each display as needed.
|
||||||
|
> This avoids unnecessary load and bandwidth usage, and ensures consistent detection results and snapshots across all displays sharing the same camera.
|
||||||
|
|
||||||
|
### 5.2. Unsubscribe from Camera
|
||||||
|
|
||||||
|
Instructs the worker to stop processing a camera's stream.
|
||||||
|
|
||||||
|
- **Type:** `unsubscribe`
|
||||||
|
|
||||||
|
**Payload:**
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "unsubscribe",
|
||||||
|
"payload": {
|
||||||
|
"subscriptionIdentifier": "display-001;cam-002"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### 5.3. Request State
|
||||||
|
|
||||||
|
Direct request for the worker's current state. Respond with a `stateReport` message.
|
||||||
|
|
||||||
|
- **Type:** `requestState`
|
||||||
|
|
||||||
|
**Payload:**
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "requestState"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### 5.4. Patch Session Result
|
||||||
|
|
||||||
|
Backend's response to a `patchSession` message.
|
||||||
|
|
||||||
|
- **Type:** `patchSessionResult`
|
||||||
|
|
||||||
|
**Payload:**
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "patchSessionResult",
|
||||||
|
"payload": {
|
||||||
|
"sessionId": 12345,
|
||||||
|
"success": true,
|
||||||
|
"message": "Session updated successfully."
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### 5.5. Set Session ID
|
||||||
|
|
||||||
|
Allows the backend to instruct the worker to associate a session ID with a subscription. This is useful for linking detection events to a specific session. The session ID can be `null` to indicate no active session.
|
||||||
|
|
||||||
|
- **Type:** `setSessionId`
|
||||||
|
|
||||||
|
**Payload:**
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "setSessionId",
|
||||||
|
"payload": {
|
||||||
|
"displayIdentifier": "display-001",
|
||||||
|
"sessionId": 12345
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Or to clear the session:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "setSessionId",
|
||||||
|
"payload": {
|
||||||
|
"displayIdentifier": "display-001",
|
||||||
|
"sessionId": null
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
> **Note:**
|
||||||
|
>
|
||||||
|
> - The worker should store the session ID for the given subscription and use it in subsequent detection or patch messages as appropriate. If `sessionId` is `null`, the worker should treat the subscription as having no active session.
|
||||||
|
|
||||||
|
## Subscription Identifier Format
|
||||||
|
|
||||||
|
The `subscriptionIdentifier` used in all messages is constructed as:
|
||||||
|
|
||||||
|
```
|
||||||
|
displayIdentifier;cameraIdentifier
|
||||||
|
```
|
||||||
|
|
||||||
|
This uniquely identifies a camera subscription for a specific display.
|
||||||
|
|
||||||
|
### Session ID Association
|
||||||
|
|
||||||
|
When the backend sends a `setSessionId` command, it will only provide the `displayIdentifier` (not the full `subscriptionIdentifier`).
|
||||||
|
|
||||||
|
**Worker Responsibility:**
|
||||||
|
|
||||||
|
- The worker must match the `displayIdentifier` to all active subscriptions for that display (i.e., all `subscriptionIdentifier` values that start with `displayIdentifier;`).
|
||||||
|
- The worker should set or clear the session ID for all matching subscriptions.
|
||||||
|
|
||||||
|
## 6. Example Communication Log
|
||||||
|
|
||||||
|
This section shows a typical sequence of messages between the backend and the worker. Patch messages are not included, as they are only used when the worker cannot keep up.
|
||||||
|
|
||||||
|
> **Note:** Unsubscribe is triggered when a user removes a camera or when the node is too heavily loaded and needs rebalancing.
|
||||||
|
|
||||||
|
1. **Connection Established** & **Heartbeat**
|
||||||
|
- **Worker -> Backend**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "stateReport",
|
||||||
|
"cpuUsage": 70.2,
|
||||||
|
"memoryUsage": 38.1,
|
||||||
|
"gpuUsage": 55.0,
|
||||||
|
"gpuMemoryUsage": 20.0,
|
||||||
|
"cameraConnections": []
|
||||||
|
}
|
||||||
|
```
|
||||||
|
2. **Backend Subscribes Camera**
|
||||||
|
- **Backend -> Worker**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "subscribe",
|
||||||
|
"payload": {
|
||||||
|
"subscriptionIdentifier": "display-001;entry-cam-01",
|
||||||
|
"rtspUrl": "rtsp://192.168.1.100/stream1",
|
||||||
|
"modelUrl": "http://storage/models/vehicle-id.mpta",
|
||||||
|
"modelName": "Vehicle Identification",
|
||||||
|
"modelId": 201
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
3. **Worker Acknowledges in Heartbeat**
|
||||||
|
- **Worker -> Backend**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "stateReport",
|
||||||
|
"cpuUsage": 72.5,
|
||||||
|
"memoryUsage": 39.0,
|
||||||
|
"gpuUsage": 57.0,
|
||||||
|
"gpuMemoryUsage": 21.0,
|
||||||
|
"cameraConnections": [
|
||||||
|
{
|
||||||
|
"subscriptionIdentifier": "display-001;entry-cam-01",
|
||||||
|
"modelId": 201,
|
||||||
|
"modelName": "Vehicle Identification",
|
||||||
|
"online": true
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
4. **Worker Detects a Car**
|
||||||
|
- **Worker -> Backend**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "imageDetection",
|
||||||
|
"subscriptionIdentifier": "display-001;entry-cam-01",
|
||||||
|
"timestamp": "2025-07-15T10:00:00.000Z",
|
||||||
|
"data": {
|
||||||
|
"detection": {
|
||||||
|
"carBrand": "Honda",
|
||||||
|
"carModel": "CR-V",
|
||||||
|
"bodyType": "SUV",
|
||||||
|
"licensePlateText": "GEMINI-AI",
|
||||||
|
"licensePlateConfidence": 0.98
|
||||||
|
},
|
||||||
|
"modelId": 201,
|
||||||
|
"modelName": "Vehicle Identification"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
- **Worker -> Backend**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "imageDetection",
|
||||||
|
"subscriptionIdentifier": "display-001;entry-cam-01",
|
||||||
|
"timestamp": "2025-07-15T10:00:01.000Z",
|
||||||
|
"data": {
|
||||||
|
"detection": {
|
||||||
|
"carBrand": "Toyota",
|
||||||
|
"carModel": "Corolla",
|
||||||
|
"bodyType": "Sedan",
|
||||||
|
"licensePlateText": "CMS-1234",
|
||||||
|
"licensePlateConfidence": 0.97
|
||||||
|
},
|
||||||
|
"modelId": 201,
|
||||||
|
"modelName": "Vehicle Identification"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
- **Worker -> Backend**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "imageDetection",
|
||||||
|
"subscriptionIdentifier": "display-001;entry-cam-01",
|
||||||
|
"timestamp": "2025-07-15T10:00:02.000Z",
|
||||||
|
"data": {
|
||||||
|
"detection": {
|
||||||
|
"carBrand": "Ford",
|
||||||
|
"carModel": "Focus",
|
||||||
|
"bodyType": "Hatchback",
|
||||||
|
"licensePlateText": "CMS-5678",
|
||||||
|
"licensePlateConfidence": 0.96
|
||||||
|
},
|
||||||
|
"modelId": 201,
|
||||||
|
"modelName": "Vehicle Identification"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
5. **Backend Unsubscribes Camera**
|
||||||
|
- **Backend -> Worker**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "unsubscribe",
|
||||||
|
"payload": {
|
||||||
|
"subscriptionIdentifier": "display-001;entry-cam-01"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
6. **Worker Acknowledges Unsubscription**
|
||||||
|
- **Worker -> Backend**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"type": "stateReport",
|
||||||
|
"cpuUsage": 68.0,
|
||||||
|
"memoryUsage": 37.0,
|
||||||
|
"gpuUsage": 50.0,
|
||||||
|
"gpuMemoryUsage": 18.0,
|
||||||
|
"cameraConnections": []
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## 7. HTTP API: Image Retrieval
|
||||||
|
|
||||||
|
In addition to the WebSocket protocol, the worker exposes an HTTP endpoint for retrieving the latest image frame from a camera.
|
||||||
|
|
||||||
|
### Endpoint
|
||||||
|
|
||||||
|
```
|
||||||
|
GET /camera/{camera_id}/image
|
||||||
|
```
|
||||||
|
|
||||||
|
- **`camera_id`**: The full `subscriptionIdentifier` (e.g., `display-001;cam-001`).
|
||||||
|
|
||||||
|
### Response
|
||||||
|
|
||||||
|
- **Success (200):** Returns the latest JPEG image from the camera stream.
|
||||||
|
|
||||||
|
- `Content-Type: image/jpeg`
|
||||||
|
- Binary JPEG data.
|
||||||
|
|
||||||
|
- **Error (404):** If the camera is not found or no frame is available.
|
||||||
|
|
||||||
|
- JSON error response.
|
||||||
|
|
||||||
|
- **Error (500):** Internal server error.
|
||||||
|
|
||||||
|
### Example Request
|
||||||
|
|
||||||
|
```
|
||||||
|
GET /camera/display-001;cam-001/image
|
||||||
|
```
|
||||||
|
|
||||||
|
### Example Response
|
||||||
|
|
||||||
|
- **Headers:**
|
||||||
|
```
|
||||||
|
Content-Type: image/jpeg
|
||||||
|
```
|
||||||
|
- **Body:** Binary JPEG image.
|
||||||
|
|
||||||
|
### Notes
|
||||||
|
|
||||||
|
- The endpoint returns the most recent frame available for the specified camera subscription.
|
||||||
|
- If multiple displays share the same camera, each subscription has its own buffer; the endpoint uses the buffer for the given `camera_id`.
|
||||||
|
- This API is useful for debugging, monitoring, or integrating with external systems that require direct image access.
|
Loading…
Add table
Add a link
Reference in a new issue