Merge pull request 'dev' (#1) from dev into main
	
		
			
	
		
	
	
		
	
		
			All checks were successful
		
		
	
	
		
			
				
	
				Build Backend Application and Docker Image / build-docker (push) Successful in 10m53s
				
			
		
		
	
	
				
					
				
			
		
			All checks were successful
		
		
	
	Build Backend Application and Docker Image / build-docker (push) Successful in 10m53s
				
			Reviewed-on: #1
This commit is contained in:
		
						commit
						29b97ded2a
					
				
					 4 changed files with 845 additions and 104 deletions
				
			
		
							
								
								
									
										108
									
								
								app.py
									
										
									
									
									
								
							
							
						
						
									
										108
									
								
								app.py
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -35,6 +35,8 @@ session_ids: Dict[str, int] = {}
 | 
			
		|||
camera_streams: Dict[str, Dict[str, Any]] = {}
 | 
			
		||||
# Map subscriptions to their camera URL
 | 
			
		||||
subscription_to_camera: Dict[str, str] = {}
 | 
			
		||||
# Store latest frames for REST API access (separate from processing buffer)
 | 
			
		||||
latest_frames: Dict[str, Any] = {}
 | 
			
		||||
 | 
			
		||||
with open("config.json", "r") as f:
 | 
			
		||||
    config = json.load(f)
 | 
			
		||||
| 
						 | 
				
			
			@ -109,20 +111,60 @@ def download_mpta(url: str, dest_path: str) -> str:
 | 
			
		|||
# Add helper to fetch snapshot image from HTTP/HTTPS URL
 | 
			
		||||
def fetch_snapshot(url: str):
 | 
			
		||||
    try:
 | 
			
		||||
        response = requests.get(url, timeout=10)
 | 
			
		||||
        from requests.auth import HTTPBasicAuth, HTTPDigestAuth
 | 
			
		||||
        
 | 
			
		||||
        # Parse URL to extract credentials
 | 
			
		||||
        parsed = urlparse(url)
 | 
			
		||||
        
 | 
			
		||||
        # Prepare headers - some cameras require User-Agent
 | 
			
		||||
        headers = {
 | 
			
		||||
            'User-Agent': 'Mozilla/5.0 (compatible; DetectorWorker/1.0)'
 | 
			
		||||
        }
 | 
			
		||||
        
 | 
			
		||||
        # Reconstruct URL without credentials
 | 
			
		||||
        clean_url = f"{parsed.scheme}://{parsed.hostname}"
 | 
			
		||||
        if parsed.port:
 | 
			
		||||
            clean_url += f":{parsed.port}"
 | 
			
		||||
        clean_url += parsed.path
 | 
			
		||||
        if parsed.query:
 | 
			
		||||
            clean_url += f"?{parsed.query}"
 | 
			
		||||
        
 | 
			
		||||
        auth = None
 | 
			
		||||
        if parsed.username and parsed.password:
 | 
			
		||||
            # Try HTTP Digest authentication first (common for IP cameras)
 | 
			
		||||
            try:
 | 
			
		||||
                auth = HTTPDigestAuth(parsed.username, parsed.password)
 | 
			
		||||
                response = requests.get(clean_url, auth=auth, headers=headers, timeout=10)
 | 
			
		||||
                if response.status_code == 200:
 | 
			
		||||
                    logger.debug(f"Successfully authenticated using HTTP Digest for {clean_url}")
 | 
			
		||||
                elif response.status_code == 401:
 | 
			
		||||
                    # If Digest fails, try Basic auth
 | 
			
		||||
                    logger.debug(f"HTTP Digest failed, trying Basic auth for {clean_url}")
 | 
			
		||||
                    auth = HTTPBasicAuth(parsed.username, parsed.password)
 | 
			
		||||
                    response = requests.get(clean_url, auth=auth, headers=headers, timeout=10)
 | 
			
		||||
                    if response.status_code == 200:
 | 
			
		||||
                        logger.debug(f"Successfully authenticated using HTTP Basic for {clean_url}")
 | 
			
		||||
            except Exception as auth_error:
 | 
			
		||||
                logger.debug(f"Authentication setup error: {auth_error}")
 | 
			
		||||
                # Fallback to original URL with embedded credentials
 | 
			
		||||
                response = requests.get(url, headers=headers, timeout=10)
 | 
			
		||||
        else:
 | 
			
		||||
            # No credentials in URL, make request as-is
 | 
			
		||||
            response = requests.get(url, headers=headers, timeout=10)
 | 
			
		||||
        
 | 
			
		||||
        if response.status_code == 200:
 | 
			
		||||
            # Convert response content to numpy array
 | 
			
		||||
            nparr = np.frombuffer(response.content, np.uint8)
 | 
			
		||||
            # Decode image
 | 
			
		||||
            frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
 | 
			
		||||
            if frame is not None:
 | 
			
		||||
                logger.debug(f"Successfully fetched snapshot from {url}, shape: {frame.shape}")
 | 
			
		||||
                logger.debug(f"Successfully fetched snapshot from {clean_url}, shape: {frame.shape}")
 | 
			
		||||
                return frame
 | 
			
		||||
            else:
 | 
			
		||||
                logger.error(f"Failed to decode image from snapshot URL: {url}")
 | 
			
		||||
                logger.error(f"Failed to decode image from snapshot URL: {clean_url}")
 | 
			
		||||
                return None
 | 
			
		||||
        else:
 | 
			
		||||
            logger.error(f"Failed to fetch snapshot (status code {response.status_code}): {url}")
 | 
			
		||||
            logger.error(f"Failed to fetch snapshot (status code {response.status_code}): {clean_url}")
 | 
			
		||||
            return None
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logger.error(f"Exception fetching snapshot from {url}: {str(e)}")
 | 
			
		||||
| 
						 | 
				
			
			@ -146,26 +188,24 @@ async def get_camera_image(camera_id: str):
 | 
			
		|||
    Get the current frame from a camera as JPEG image
 | 
			
		||||
    """
 | 
			
		||||
    try:
 | 
			
		||||
        # URL decode the camera_id to handle encoded characters like %3B for semicolon
 | 
			
		||||
        from urllib.parse import unquote
 | 
			
		||||
        original_camera_id = camera_id
 | 
			
		||||
        camera_id = unquote(camera_id)
 | 
			
		||||
        logger.debug(f"REST API request: original='{original_camera_id}', decoded='{camera_id}'")
 | 
			
		||||
        
 | 
			
		||||
        with streams_lock:
 | 
			
		||||
            if camera_id not in streams:
 | 
			
		||||
                logger.warning(f"Camera ID '{camera_id}' not found in streams. Current streams: {list(streams.keys())}")
 | 
			
		||||
                raise HTTPException(status_code=404, detail=f"Camera {camera_id} not found or not active")
 | 
			
		||||
            
 | 
			
		||||
            stream = streams[camera_id]
 | 
			
		||||
            buffer = stream["buffer"]
 | 
			
		||||
            logger.debug(f"Camera '{camera_id}' buffer size: {buffer.qsize()}, buffer empty: {buffer.empty()}")
 | 
			
		||||
            logger.debug(f"Buffer queue contents: {getattr(buffer, 'queue', None)}")
 | 
			
		||||
            
 | 
			
		||||
            if buffer.empty():
 | 
			
		||||
                logger.warning(f"No frame available for camera '{camera_id}'. Buffer is empty.")
 | 
			
		||||
            # Check if we have a cached frame for this camera
 | 
			
		||||
            if camera_id not in latest_frames:
 | 
			
		||||
                logger.warning(f"No cached frame available for camera '{camera_id}'.")
 | 
			
		||||
                raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
 | 
			
		||||
            
 | 
			
		||||
            # Get the latest frame (non-blocking)
 | 
			
		||||
            try:
 | 
			
		||||
                frame = buffer.queue[-1]  # Get the most recent frame without removing it
 | 
			
		||||
            except IndexError:
 | 
			
		||||
                logger.warning(f"Buffer queue is empty for camera '{camera_id}' when trying to access last frame.")
 | 
			
		||||
                raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
 | 
			
		||||
            frame = latest_frames[camera_id]
 | 
			
		||||
            logger.debug(f"Retrieved cached frame for camera '{camera_id}', frame shape: {frame.shape}")
 | 
			
		||||
        # Encode frame as JPEG
 | 
			
		||||
        success, buffer_img = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 85])
 | 
			
		||||
        if not success:
 | 
			
		||||
| 
						 | 
				
			
			@ -199,7 +239,20 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
            
 | 
			
		||||
            logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}")
 | 
			
		||||
            start_time = time.time()
 | 
			
		||||
            detection_result = run_pipeline(cropped_frame, model_tree)
 | 
			
		||||
            
 | 
			
		||||
            # Extract display identifier for session ID lookup
 | 
			
		||||
            subscription_parts = stream["subscriptionIdentifier"].split(';')
 | 
			
		||||
            display_identifier = subscription_parts[0] if subscription_parts else None
 | 
			
		||||
            session_id = session_ids.get(display_identifier) if display_identifier else None
 | 
			
		||||
            
 | 
			
		||||
            # Create context for pipeline execution
 | 
			
		||||
            pipeline_context = {
 | 
			
		||||
                "camera_id": camera_id,
 | 
			
		||||
                "display_id": display_identifier,
 | 
			
		||||
                "session_id": session_id
 | 
			
		||||
            }
 | 
			
		||||
            
 | 
			
		||||
            detection_result = run_pipeline(cropped_frame, model_tree, context=pipeline_context)
 | 
			
		||||
            process_time = (time.time() - start_time) * 1000
 | 
			
		||||
            logger.debug(f"Detection for camera {camera_id} completed in {process_time:.2f}ms")
 | 
			
		||||
            
 | 
			
		||||
| 
						 | 
				
			
			@ -258,11 +311,6 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                    if key not in ["box", "id"]:  # Skip internal fields
 | 
			
		||||
                        detection_dict[key] = value
 | 
			
		||||
            
 | 
			
		||||
            # Extract display identifier for session ID lookup
 | 
			
		||||
            subscription_parts = stream["subscriptionIdentifier"].split(';')
 | 
			
		||||
            display_identifier = subscription_parts[0] if subscription_parts else None
 | 
			
		||||
            session_id = session_ids.get(display_identifier) if display_identifier else None
 | 
			
		||||
            
 | 
			
		||||
            detection_data = {
 | 
			
		||||
                "type": "imageDetection",
 | 
			
		||||
                "subscriptionIdentifier": stream["subscriptionIdentifier"],
 | 
			
		||||
| 
						 | 
				
			
			@ -282,9 +330,6 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {highest_confidence_detection['confidence']:.2f} using model {stream['modelName']}")
 | 
			
		||||
                
 | 
			
		||||
                # Log session ID if available
 | 
			
		||||
                subscription_parts = stream["subscriptionIdentifier"].split(';')
 | 
			
		||||
                display_identifier = subscription_parts[0] if subscription_parts else None
 | 
			
		||||
                session_id = session_ids.get(display_identifier) if display_identifier else None
 | 
			
		||||
                if session_id:
 | 
			
		||||
                    logger.debug(f"Detection associated with session ID: {session_id}")
 | 
			
		||||
            
 | 
			
		||||
| 
						 | 
				
			
			@ -476,6 +521,10 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                    logger.debug(f"Got frame from buffer for camera {camera_id}")
 | 
			
		||||
                    frame = buffer.get()
 | 
			
		||||
                    
 | 
			
		||||
                    # Cache the frame for REST API access
 | 
			
		||||
                    latest_frames[camera_id] = frame.copy()
 | 
			
		||||
                    logger.debug(f"Cached frame for REST API access for camera {camera_id}")
 | 
			
		||||
                    
 | 
			
		||||
                    with models_lock:
 | 
			
		||||
                        model_tree = models.get(camera_id, {}).get(stream["modelId"])
 | 
			
		||||
                        if not model_tree:
 | 
			
		||||
| 
						 | 
				
			
			@ -647,7 +696,7 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                                    
 | 
			
		||||
                                    if snapshot_url and snapshot_interval:
 | 
			
		||||
                                        logger.info(f"Creating new snapshot stream for camera {camera_id}: {snapshot_url}")
 | 
			
		||||
                                        thread = threading.Thread(target=snapshot_reader, args=(camera_identifier, snapshot_url, snapshot_interval, buffer, stop_event))
 | 
			
		||||
                                        thread = threading.Thread(target=snapshot_reader, args=(camera_id, snapshot_url, snapshot_interval, buffer, stop_event))
 | 
			
		||||
                                        thread.daemon = True
 | 
			
		||||
                                        thread.start()
 | 
			
		||||
                                        mode = "snapshot"
 | 
			
		||||
| 
						 | 
				
			
			@ -670,7 +719,7 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                                        if not cap.isOpened():
 | 
			
		||||
                                            logger.error(f"Failed to open RTSP stream for camera {camera_id}")
 | 
			
		||||
                                            continue
 | 
			
		||||
                                        thread = threading.Thread(target=frame_reader, args=(camera_identifier, cap, buffer, stop_event))
 | 
			
		||||
                                        thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
 | 
			
		||||
                                        thread.daemon = True
 | 
			
		||||
                                        thread.start()
 | 
			
		||||
                                        mode = "rtsp"
 | 
			
		||||
| 
						 | 
				
			
			@ -744,6 +793,8 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                                else:
 | 
			
		||||
                                    logger.info(f"Shared stream for {camera_url} still has {shared_stream['ref_count']} references")
 | 
			
		||||
                            
 | 
			
		||||
                            # Clean up cached frame
 | 
			
		||||
                            latest_frames.pop(camera_id, None)
 | 
			
		||||
                            logger.info(f"Unsubscribed from camera {camera_id}")
 | 
			
		||||
                            # Note: Keep models in memory for potential reuse
 | 
			
		||||
                elif msg_type == "requestState":
 | 
			
		||||
| 
						 | 
				
			
			@ -847,5 +898,6 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
            subscription_to_camera.clear()
 | 
			
		||||
        with models_lock:
 | 
			
		||||
            models.clear()
 | 
			
		||||
        latest_frames.clear()
 | 
			
		||||
        session_ids.clear()
 | 
			
		||||
        logger.info("WebSocket connection closed")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -6,4 +6,8 @@ ultralytics
 | 
			
		|||
opencv-python
 | 
			
		||||
websockets
 | 
			
		||||
fastapi[standard]
 | 
			
		||||
redis
 | 
			
		||||
redis
 | 
			
		||||
urllib3<2.0.0
 | 
			
		||||
psycopg2-binary
 | 
			
		||||
scipy
 | 
			
		||||
filterpy
 | 
			
		||||
							
								
								
									
										211
									
								
								siwatsystem/database.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										211
									
								
								siwatsystem/database.py
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,211 @@
 | 
			
		|||
import psycopg2
 | 
			
		||||
import psycopg2.extras
 | 
			
		||||
from typing import Optional, Dict, Any
 | 
			
		||||
import logging
 | 
			
		||||
import uuid
 | 
			
		||||
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
class DatabaseManager:
 | 
			
		||||
    def __init__(self, config: Dict[str, Any]):
 | 
			
		||||
        self.config = config
 | 
			
		||||
        self.connection: Optional[psycopg2.extensions.connection] = None
 | 
			
		||||
        
 | 
			
		||||
    def connect(self) -> bool:
 | 
			
		||||
        try:
 | 
			
		||||
            self.connection = psycopg2.connect(
 | 
			
		||||
                host=self.config['host'],
 | 
			
		||||
                port=self.config['port'],
 | 
			
		||||
                database=self.config['database'],
 | 
			
		||||
                user=self.config['username'],
 | 
			
		||||
                password=self.config['password']
 | 
			
		||||
            )
 | 
			
		||||
            logger.info("PostgreSQL connection established successfully")
 | 
			
		||||
            return True
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Failed to connect to PostgreSQL: {e}")
 | 
			
		||||
            return False
 | 
			
		||||
    
 | 
			
		||||
    def disconnect(self):
 | 
			
		||||
        if self.connection:
 | 
			
		||||
            self.connection.close()
 | 
			
		||||
            self.connection = None
 | 
			
		||||
            logger.info("PostgreSQL connection closed")
 | 
			
		||||
    
 | 
			
		||||
    def is_connected(self) -> bool:
 | 
			
		||||
        try:
 | 
			
		||||
            if self.connection and not self.connection.closed:
 | 
			
		||||
                cur = self.connection.cursor()
 | 
			
		||||
                cur.execute("SELECT 1")
 | 
			
		||||
                cur.fetchone()
 | 
			
		||||
                cur.close()
 | 
			
		||||
                return True
 | 
			
		||||
        except:
 | 
			
		||||
            pass
 | 
			
		||||
        return False
 | 
			
		||||
    
 | 
			
		||||
    def update_car_info(self, session_id: str, brand: str, model: str, body_type: str) -> bool:
 | 
			
		||||
        if not self.is_connected():
 | 
			
		||||
            if not self.connect():
 | 
			
		||||
                return False
 | 
			
		||||
        
 | 
			
		||||
        try:
 | 
			
		||||
            cur = self.connection.cursor()
 | 
			
		||||
            query = """
 | 
			
		||||
            INSERT INTO car_frontal_info (session_id, car_brand, car_model, car_body_type, updated_at)
 | 
			
		||||
            VALUES (%s, %s, %s, %s, NOW())
 | 
			
		||||
            ON CONFLICT (session_id) 
 | 
			
		||||
            DO UPDATE SET 
 | 
			
		||||
                car_brand = EXCLUDED.car_brand,
 | 
			
		||||
                car_model = EXCLUDED.car_model,
 | 
			
		||||
                car_body_type = EXCLUDED.car_body_type,
 | 
			
		||||
                updated_at = NOW()
 | 
			
		||||
            """
 | 
			
		||||
            cur.execute(query, (session_id, brand, model, body_type))
 | 
			
		||||
            self.connection.commit()
 | 
			
		||||
            cur.close()
 | 
			
		||||
            logger.info(f"Updated car info for session {session_id}: {brand} {model} ({body_type})")
 | 
			
		||||
            return True
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Failed to update car info: {e}")
 | 
			
		||||
            if self.connection:
 | 
			
		||||
                self.connection.rollback()
 | 
			
		||||
            return False
 | 
			
		||||
    
 | 
			
		||||
    def execute_update(self, table: str, key_field: str, key_value: str, fields: Dict[str, str]) -> bool:
 | 
			
		||||
        if not self.is_connected():
 | 
			
		||||
            if not self.connect():
 | 
			
		||||
                return False
 | 
			
		||||
        
 | 
			
		||||
        try:
 | 
			
		||||
            cur = self.connection.cursor()
 | 
			
		||||
            
 | 
			
		||||
            # Build the UPDATE query dynamically
 | 
			
		||||
            set_clauses = []
 | 
			
		||||
            values = []
 | 
			
		||||
            
 | 
			
		||||
            for field, value in fields.items():
 | 
			
		||||
                if value == "NOW()":
 | 
			
		||||
                    set_clauses.append(f"{field} = NOW()")
 | 
			
		||||
                else:
 | 
			
		||||
                    set_clauses.append(f"{field} = %s")
 | 
			
		||||
                    values.append(value)
 | 
			
		||||
            
 | 
			
		||||
            # Add schema prefix if table doesn't already have it
 | 
			
		||||
            full_table_name = table if '.' in table else f"gas_station_1.{table}"
 | 
			
		||||
            
 | 
			
		||||
            query = f"""
 | 
			
		||||
            INSERT INTO {full_table_name} ({key_field}, {', '.join(fields.keys())})
 | 
			
		||||
            VALUES (%s, {', '.join(['%s'] * len(fields))})
 | 
			
		||||
            ON CONFLICT ({key_field})
 | 
			
		||||
            DO UPDATE SET {', '.join(set_clauses)}
 | 
			
		||||
            """
 | 
			
		||||
            
 | 
			
		||||
            # Add key_value to the beginning of values list
 | 
			
		||||
            all_values = [key_value] + list(fields.values()) + values
 | 
			
		||||
            
 | 
			
		||||
            cur.execute(query, all_values)
 | 
			
		||||
            self.connection.commit()
 | 
			
		||||
            cur.close()
 | 
			
		||||
            logger.info(f"Updated {table} for {key_field}={key_value}")
 | 
			
		||||
            return True
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Failed to execute update on {table}: {e}")
 | 
			
		||||
            if self.connection:
 | 
			
		||||
                self.connection.rollback()
 | 
			
		||||
            return False
 | 
			
		||||
    
 | 
			
		||||
    def create_car_frontal_info_table(self) -> bool:
 | 
			
		||||
        """Create the car_frontal_info table in gas_station_1 schema if it doesn't exist."""
 | 
			
		||||
        if not self.is_connected():
 | 
			
		||||
            if not self.connect():
 | 
			
		||||
                return False
 | 
			
		||||
        
 | 
			
		||||
        try:
 | 
			
		||||
            cur = self.connection.cursor()
 | 
			
		||||
            
 | 
			
		||||
            # Create schema if it doesn't exist
 | 
			
		||||
            cur.execute("CREATE SCHEMA IF NOT EXISTS gas_station_1")
 | 
			
		||||
            
 | 
			
		||||
            # Create table if it doesn't exist
 | 
			
		||||
            create_table_query = """
 | 
			
		||||
            CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
 | 
			
		||||
                display_id VARCHAR(255),
 | 
			
		||||
                captured_timestamp VARCHAR(255),
 | 
			
		||||
                session_id VARCHAR(255) PRIMARY KEY,
 | 
			
		||||
                license_character VARCHAR(255) DEFAULT NULL,
 | 
			
		||||
                license_type VARCHAR(255) DEFAULT 'No model available',
 | 
			
		||||
                car_brand VARCHAR(255) DEFAULT NULL,
 | 
			
		||||
                car_model VARCHAR(255) DEFAULT NULL,
 | 
			
		||||
                car_body_type VARCHAR(255) DEFAULT NULL,
 | 
			
		||||
                updated_at TIMESTAMP DEFAULT NOW()
 | 
			
		||||
            )
 | 
			
		||||
            """
 | 
			
		||||
            
 | 
			
		||||
            cur.execute(create_table_query)
 | 
			
		||||
            
 | 
			
		||||
            # Add columns if they don't exist (for existing tables)
 | 
			
		||||
            alter_queries = [
 | 
			
		||||
                "ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_brand VARCHAR(255) DEFAULT NULL",
 | 
			
		||||
                "ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_model VARCHAR(255) DEFAULT NULL", 
 | 
			
		||||
                "ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_body_type VARCHAR(255) DEFAULT NULL",
 | 
			
		||||
                "ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS updated_at TIMESTAMP DEFAULT NOW()"
 | 
			
		||||
            ]
 | 
			
		||||
            
 | 
			
		||||
            for alter_query in alter_queries:
 | 
			
		||||
                try:
 | 
			
		||||
                    cur.execute(alter_query)
 | 
			
		||||
                    logger.debug(f"Executed: {alter_query}")
 | 
			
		||||
                except Exception as e:
 | 
			
		||||
                    # Ignore errors if column already exists (for older PostgreSQL versions)
 | 
			
		||||
                    if "already exists" in str(e).lower():
 | 
			
		||||
                        logger.debug(f"Column already exists, skipping: {alter_query}")
 | 
			
		||||
                    else:
 | 
			
		||||
                        logger.warning(f"Error in ALTER TABLE: {e}")
 | 
			
		||||
            
 | 
			
		||||
            self.connection.commit()
 | 
			
		||||
            cur.close()
 | 
			
		||||
            logger.info("Successfully created/verified car_frontal_info table with all required columns")
 | 
			
		||||
            return True
 | 
			
		||||
            
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Failed to create car_frontal_info table: {e}")
 | 
			
		||||
            if self.connection:
 | 
			
		||||
                self.connection.rollback()
 | 
			
		||||
            return False
 | 
			
		||||
    
 | 
			
		||||
    def insert_initial_detection(self, display_id: str, captured_timestamp: str, session_id: str = None) -> str:
 | 
			
		||||
        """Insert initial detection record and return the session_id."""
 | 
			
		||||
        if not self.is_connected():
 | 
			
		||||
            if not self.connect():
 | 
			
		||||
                return None
 | 
			
		||||
        
 | 
			
		||||
        # Generate session_id if not provided
 | 
			
		||||
        if not session_id:
 | 
			
		||||
            session_id = str(uuid.uuid4())
 | 
			
		||||
        
 | 
			
		||||
        try:
 | 
			
		||||
            # Ensure table exists
 | 
			
		||||
            if not self.create_car_frontal_info_table():
 | 
			
		||||
                logger.error("Failed to create/verify table before insertion")
 | 
			
		||||
                return None
 | 
			
		||||
            
 | 
			
		||||
            cur = self.connection.cursor()
 | 
			
		||||
            insert_query = """
 | 
			
		||||
            INSERT INTO gas_station_1.car_frontal_info 
 | 
			
		||||
            (display_id, captured_timestamp, session_id, license_character, license_type, car_brand, car_model, car_body_type)
 | 
			
		||||
            VALUES (%s, %s, %s, NULL, 'No model available', NULL, NULL, NULL)
 | 
			
		||||
            ON CONFLICT (session_id) DO NOTHING
 | 
			
		||||
            """
 | 
			
		||||
            
 | 
			
		||||
            cur.execute(insert_query, (display_id, captured_timestamp, session_id))
 | 
			
		||||
            self.connection.commit()
 | 
			
		||||
            cur.close()
 | 
			
		||||
            logger.info(f"Inserted initial detection record with session_id: {session_id}")
 | 
			
		||||
            return session_id
 | 
			
		||||
            
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Failed to insert initial detection record: {e}")
 | 
			
		||||
            if self.connection:
 | 
			
		||||
                self.connection.rollback()
 | 
			
		||||
            return None
 | 
			
		||||
| 
						 | 
				
			
			@ -3,20 +3,72 @@ import json
 | 
			
		|||
import logging
 | 
			
		||||
import torch
 | 
			
		||||
import cv2
 | 
			
		||||
import requests
 | 
			
		||||
import zipfile
 | 
			
		||||
import shutil
 | 
			
		||||
import traceback
 | 
			
		||||
import redis
 | 
			
		||||
import time
 | 
			
		||||
import uuid
 | 
			
		||||
import concurrent.futures
 | 
			
		||||
from ultralytics import YOLO
 | 
			
		||||
from urllib.parse import urlparse
 | 
			
		||||
from .database import DatabaseManager
 | 
			
		||||
 | 
			
		||||
# Create a logger specifically for this module
 | 
			
		||||
logger = logging.getLogger("detector_worker.pympta")
 | 
			
		||||
 | 
			
		||||
def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client) -> dict:
 | 
			
		||||
def validate_redis_config(redis_config: dict) -> bool:
 | 
			
		||||
    """Validate Redis configuration parameters."""
 | 
			
		||||
    required_fields = ["host", "port"]
 | 
			
		||||
    for field in required_fields:
 | 
			
		||||
        if field not in redis_config:
 | 
			
		||||
            logger.error(f"Missing required Redis config field: {field}")
 | 
			
		||||
            return False
 | 
			
		||||
    
 | 
			
		||||
    if not isinstance(redis_config["port"], int) or redis_config["port"] <= 0:
 | 
			
		||||
        logger.error(f"Invalid Redis port: {redis_config['port']}")
 | 
			
		||||
        return False
 | 
			
		||||
    
 | 
			
		||||
    return True
 | 
			
		||||
 | 
			
		||||
def validate_postgresql_config(pg_config: dict) -> bool:
 | 
			
		||||
    """Validate PostgreSQL configuration parameters."""
 | 
			
		||||
    required_fields = ["host", "port", "database", "username", "password"]
 | 
			
		||||
    for field in required_fields:
 | 
			
		||||
        if field not in pg_config:
 | 
			
		||||
            logger.error(f"Missing required PostgreSQL config field: {field}")
 | 
			
		||||
            return False
 | 
			
		||||
    
 | 
			
		||||
    if not isinstance(pg_config["port"], int) or pg_config["port"] <= 0:
 | 
			
		||||
        logger.error(f"Invalid PostgreSQL port: {pg_config['port']}")
 | 
			
		||||
        return False
 | 
			
		||||
    
 | 
			
		||||
    return True
 | 
			
		||||
 | 
			
		||||
def crop_region_by_class(frame, regions_dict, class_name):
 | 
			
		||||
    """Crop a specific region from frame based on detected class."""
 | 
			
		||||
    if class_name not in regions_dict:
 | 
			
		||||
        logger.warning(f"Class '{class_name}' not found in detected regions")
 | 
			
		||||
        return None
 | 
			
		||||
    
 | 
			
		||||
    bbox = regions_dict[class_name]['bbox']
 | 
			
		||||
    x1, y1, x2, y2 = bbox
 | 
			
		||||
    cropped = frame[y1:y2, x1:x2]
 | 
			
		||||
    
 | 
			
		||||
    if cropped.size == 0:
 | 
			
		||||
        logger.warning(f"Empty crop for class '{class_name}' with bbox {bbox}")
 | 
			
		||||
        return None
 | 
			
		||||
    
 | 
			
		||||
    return cropped
 | 
			
		||||
 | 
			
		||||
def format_action_context(base_context, additional_context=None):
 | 
			
		||||
    """Format action context with dynamic values."""
 | 
			
		||||
    context = {**base_context}
 | 
			
		||||
    if additional_context:
 | 
			
		||||
        context.update(additional_context)
 | 
			
		||||
    return context
 | 
			
		||||
 | 
			
		||||
def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client, db_manager=None) -> dict:
 | 
			
		||||
    # Recursively load a model node from configuration.
 | 
			
		||||
    model_path = os.path.join(mpta_dir, node_config["modelFile"])
 | 
			
		||||
    if not os.path.exists(model_path):
 | 
			
		||||
| 
						 | 
				
			
			@ -46,16 +98,22 @@ def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client) -> dict:
 | 
			
		|||
        "triggerClasses": trigger_classes,
 | 
			
		||||
        "triggerClassIndices": trigger_class_indices,
 | 
			
		||||
        "crop": node_config.get("crop", False),
 | 
			
		||||
        "cropClass": node_config.get("cropClass"),
 | 
			
		||||
        "minConfidence": node_config.get("minConfidence", None),
 | 
			
		||||
        "multiClass": node_config.get("multiClass", False),
 | 
			
		||||
        "expectedClasses": node_config.get("expectedClasses", []),
 | 
			
		||||
        "parallel": node_config.get("parallel", False),
 | 
			
		||||
        "actions": node_config.get("actions", []),
 | 
			
		||||
        "parallelActions": node_config.get("parallelActions", []),
 | 
			
		||||
        "model": model,
 | 
			
		||||
        "branches": [],
 | 
			
		||||
        "redis_client": redis_client
 | 
			
		||||
        "redis_client": redis_client,
 | 
			
		||||
        "db_manager": db_manager
 | 
			
		||||
    }
 | 
			
		||||
    logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
 | 
			
		||||
    for child in node_config.get("branches", []):
 | 
			
		||||
        logger.debug(f"Loading branch for parent node {node_config['modelId']}")
 | 
			
		||||
        node["branches"].append(load_pipeline_node(child, mpta_dir, redis_client))
 | 
			
		||||
        node["branches"].append(load_pipeline_node(child, mpta_dir, redis_client, db_manager))
 | 
			
		||||
    return node
 | 
			
		||||
 | 
			
		||||
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
 | 
			
		||||
| 
						 | 
				
			
			@ -168,21 +226,42 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
 | 
			
		|||
        redis_client = None
 | 
			
		||||
        if "redis" in pipeline_config:
 | 
			
		||||
            redis_config = pipeline_config["redis"]
 | 
			
		||||
            try:
 | 
			
		||||
                redis_client = redis.Redis(
 | 
			
		||||
                    host=redis_config["host"],
 | 
			
		||||
                    port=redis_config["port"],
 | 
			
		||||
                    password=redis_config.get("password"),
 | 
			
		||||
                    db=redis_config.get("db", 0),
 | 
			
		||||
                    decode_responses=True
 | 
			
		||||
                )
 | 
			
		||||
                redis_client.ping()
 | 
			
		||||
                logger.info(f"Successfully connected to Redis at {redis_config['host']}:{redis_config['port']}")
 | 
			
		||||
            except redis.exceptions.ConnectionError as e:
 | 
			
		||||
                logger.error(f"Failed to connect to Redis: {e}")
 | 
			
		||||
                redis_client = None
 | 
			
		||||
            if not validate_redis_config(redis_config):
 | 
			
		||||
                logger.error("Invalid Redis configuration, skipping Redis connection")
 | 
			
		||||
            else:
 | 
			
		||||
                try:
 | 
			
		||||
                    redis_client = redis.Redis(
 | 
			
		||||
                        host=redis_config["host"],
 | 
			
		||||
                        port=redis_config["port"],
 | 
			
		||||
                        password=redis_config.get("password"),
 | 
			
		||||
                        db=redis_config.get("db", 0),
 | 
			
		||||
                        decode_responses=True
 | 
			
		||||
                    )
 | 
			
		||||
                    redis_client.ping()
 | 
			
		||||
                    logger.info(f"Successfully connected to Redis at {redis_config['host']}:{redis_config['port']}")
 | 
			
		||||
                except redis.exceptions.ConnectionError as e:
 | 
			
		||||
                    logger.error(f"Failed to connect to Redis: {e}")
 | 
			
		||||
                    redis_client = None
 | 
			
		||||
        
 | 
			
		||||
        return load_pipeline_node(pipeline_config["pipeline"], mpta_dir, redis_client)
 | 
			
		||||
        # Establish PostgreSQL connection if configured
 | 
			
		||||
        db_manager = None
 | 
			
		||||
        if "postgresql" in pipeline_config:
 | 
			
		||||
            pg_config = pipeline_config["postgresql"]
 | 
			
		||||
            if not validate_postgresql_config(pg_config):
 | 
			
		||||
                logger.error("Invalid PostgreSQL configuration, skipping database connection")
 | 
			
		||||
            else:
 | 
			
		||||
                try:
 | 
			
		||||
                    db_manager = DatabaseManager(pg_config)
 | 
			
		||||
                    if db_manager.connect():
 | 
			
		||||
                        logger.info(f"Successfully connected to PostgreSQL at {pg_config['host']}:{pg_config['port']}")
 | 
			
		||||
                    else:
 | 
			
		||||
                        logger.error("Failed to connect to PostgreSQL")
 | 
			
		||||
                        db_manager = None
 | 
			
		||||
                except Exception as e:
 | 
			
		||||
                    logger.error(f"Error initializing PostgreSQL connection: {e}")
 | 
			
		||||
                    db_manager = None
 | 
			
		||||
        
 | 
			
		||||
        return load_pipeline_node(pipeline_config["pipeline"], mpta_dir, redis_client, db_manager)
 | 
			
		||||
    except json.JSONDecodeError as e:
 | 
			
		||||
        logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
 | 
			
		||||
        return None
 | 
			
		||||
| 
						 | 
				
			
			@ -193,22 +272,53 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
 | 
			
		|||
        logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
def execute_actions(node, frame, detection_result):
 | 
			
		||||
def execute_actions(node, frame, detection_result, regions_dict=None):
 | 
			
		||||
    if not node["redis_client"] or not node["actions"]:
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    # Create a dynamic context for this detection event
 | 
			
		||||
    from datetime import datetime
 | 
			
		||||
    action_context = {
 | 
			
		||||
        **detection_result,
 | 
			
		||||
        "timestamp_ms": int(time.time() * 1000),
 | 
			
		||||
        "uuid": str(uuid.uuid4()),
 | 
			
		||||
        "timestamp": datetime.now().strftime("%Y-%m-%dT%H-%M-%S"),
 | 
			
		||||
        "filename": f"{uuid.uuid4()}.jpg"
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for action in node["actions"]:
 | 
			
		||||
        try:
 | 
			
		||||
            if action["type"] == "redis_save_image":
 | 
			
		||||
                key = action["key"].format(**action_context)
 | 
			
		||||
                _, buffer = cv2.imencode('.jpg', frame)
 | 
			
		||||
                
 | 
			
		||||
                # Check if we need to crop a specific region
 | 
			
		||||
                region_name = action.get("region")
 | 
			
		||||
                image_to_save = frame
 | 
			
		||||
                
 | 
			
		||||
                if region_name and regions_dict:
 | 
			
		||||
                    cropped_image = crop_region_by_class(frame, regions_dict, region_name)
 | 
			
		||||
                    if cropped_image is not None:
 | 
			
		||||
                        image_to_save = cropped_image
 | 
			
		||||
                        logger.debug(f"Cropped region '{region_name}' for redis_save_image")
 | 
			
		||||
                    else:
 | 
			
		||||
                        logger.warning(f"Could not crop region '{region_name}', saving full frame instead")
 | 
			
		||||
                
 | 
			
		||||
                # Encode image with specified format and quality (default to JPEG)
 | 
			
		||||
                img_format = action.get("format", "jpeg").lower()
 | 
			
		||||
                quality = action.get("quality", 90)
 | 
			
		||||
                
 | 
			
		||||
                if img_format == "jpeg":
 | 
			
		||||
                    encode_params = [cv2.IMWRITE_JPEG_QUALITY, quality]
 | 
			
		||||
                    success, buffer = cv2.imencode('.jpg', image_to_save, encode_params)
 | 
			
		||||
                elif img_format == "png":
 | 
			
		||||
                    success, buffer = cv2.imencode('.png', image_to_save)
 | 
			
		||||
                else:
 | 
			
		||||
                    success, buffer = cv2.imencode('.jpg', image_to_save, [cv2.IMWRITE_JPEG_QUALITY, quality])
 | 
			
		||||
                
 | 
			
		||||
                if not success:
 | 
			
		||||
                    logger.error(f"Failed to encode image for redis_save_image")
 | 
			
		||||
                    continue
 | 
			
		||||
                
 | 
			
		||||
                expire_seconds = action.get("expire_seconds")
 | 
			
		||||
                if expire_seconds:
 | 
			
		||||
                    node["redis_client"].setex(key, expire_seconds, buffer.tobytes())
 | 
			
		||||
| 
						 | 
				
			
			@ -216,60 +326,244 @@ def execute_actions(node, frame, detection_result):
 | 
			
		|||
                else:
 | 
			
		||||
                    node["redis_client"].set(key, buffer.tobytes())
 | 
			
		||||
                    logger.info(f"Saved image to Redis with key: {key}")
 | 
			
		||||
                # Add the generated key to the context for subsequent actions
 | 
			
		||||
                action_context["image_key"] = key
 | 
			
		||||
            elif action["type"] == "redis_publish":
 | 
			
		||||
                channel = action["channel"]
 | 
			
		||||
                message = action["message"].format(**action_context)
 | 
			
		||||
                node["redis_client"].publish(channel, message)
 | 
			
		||||
                logger.info(f"Published message to Redis channel '{channel}': {message}")
 | 
			
		||||
                try:
 | 
			
		||||
                    # Handle JSON message format by creating it programmatically
 | 
			
		||||
                    message_template = action["message"]
 | 
			
		||||
                    
 | 
			
		||||
                    # Check if the message is JSON-like (starts and ends with braces)
 | 
			
		||||
                    if message_template.strip().startswith('{') and message_template.strip().endswith('}'):
 | 
			
		||||
                        # Create JSON data programmatically to avoid formatting issues
 | 
			
		||||
                        json_data = {}
 | 
			
		||||
                        
 | 
			
		||||
                        # Add common fields
 | 
			
		||||
                        json_data["event"] = "frontal_detected"
 | 
			
		||||
                        json_data["display_id"] = action_context.get("display_id", "unknown")
 | 
			
		||||
                        json_data["session_id"] = action_context.get("session_id")
 | 
			
		||||
                        json_data["timestamp"] = action_context.get("timestamp", "")
 | 
			
		||||
                        json_data["image_key"] = action_context.get("image_key", "")
 | 
			
		||||
                        
 | 
			
		||||
                        # Convert to JSON string
 | 
			
		||||
                        message = json.dumps(json_data)
 | 
			
		||||
                    else:
 | 
			
		||||
                        # Use regular string formatting for non-JSON messages
 | 
			
		||||
                        message = message_template.format(**action_context)
 | 
			
		||||
                    
 | 
			
		||||
                    # Publish to Redis
 | 
			
		||||
                    if not node["redis_client"]:
 | 
			
		||||
                        logger.error("Redis client is None, cannot publish message")
 | 
			
		||||
                        continue
 | 
			
		||||
                        
 | 
			
		||||
                    # Test Redis connection
 | 
			
		||||
                    try:
 | 
			
		||||
                        node["redis_client"].ping()
 | 
			
		||||
                        logger.debug("Redis connection is active")
 | 
			
		||||
                    except Exception as ping_error:
 | 
			
		||||
                        logger.error(f"Redis connection test failed: {ping_error}")
 | 
			
		||||
                        continue
 | 
			
		||||
                    
 | 
			
		||||
                    result = node["redis_client"].publish(channel, message)
 | 
			
		||||
                    logger.info(f"Published message to Redis channel '{channel}': {message}")
 | 
			
		||||
                    logger.info(f"Redis publish result (subscribers count): {result}")
 | 
			
		||||
                    
 | 
			
		||||
                    # Additional debug info
 | 
			
		||||
                    if result == 0:
 | 
			
		||||
                        logger.warning(f"No subscribers listening to channel '{channel}'")
 | 
			
		||||
                    else:
 | 
			
		||||
                        logger.info(f"Message delivered to {result} subscriber(s)")
 | 
			
		||||
                    
 | 
			
		||||
                except KeyError as e:
 | 
			
		||||
                    logger.error(f"Missing key in redis_publish message template: {e}")
 | 
			
		||||
                    logger.debug(f"Available context keys: {list(action_context.keys())}")
 | 
			
		||||
                except Exception as e:
 | 
			
		||||
                    logger.error(f"Error in redis_publish action: {e}")
 | 
			
		||||
                    logger.debug(f"Message template: {action['message']}")
 | 
			
		||||
                    logger.debug(f"Available context keys: {list(action_context.keys())}")
 | 
			
		||||
                    import traceback
 | 
			
		||||
                    logger.debug(f"Full traceback: {traceback.format_exc()}")
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Error executing action {action['type']}: {e}")
 | 
			
		||||
 | 
			
		||||
def run_pipeline(frame, node: dict, return_bbox: bool=False):
 | 
			
		||||
def execute_parallel_actions(node, frame, detection_result, regions_dict):
 | 
			
		||||
    """Execute parallel actions after all required branches have completed."""
 | 
			
		||||
    if not node.get("parallelActions"):
 | 
			
		||||
        return
 | 
			
		||||
    
 | 
			
		||||
    logger.debug("Executing parallel actions...")
 | 
			
		||||
    branch_results = detection_result.get("branch_results", {})
 | 
			
		||||
    
 | 
			
		||||
    for action in node["parallelActions"]:
 | 
			
		||||
        try:
 | 
			
		||||
            action_type = action.get("type")
 | 
			
		||||
            logger.debug(f"Processing parallel action: {action_type}")
 | 
			
		||||
            
 | 
			
		||||
            if action_type == "postgresql_update_combined":
 | 
			
		||||
                # Check if all required branches have completed
 | 
			
		||||
                wait_for_branches = action.get("waitForBranches", [])
 | 
			
		||||
                missing_branches = [branch for branch in wait_for_branches if branch not in branch_results]
 | 
			
		||||
                
 | 
			
		||||
                if missing_branches:
 | 
			
		||||
                    logger.warning(f"Cannot execute postgresql_update_combined: missing branch results for {missing_branches}")
 | 
			
		||||
                    continue
 | 
			
		||||
                
 | 
			
		||||
                logger.info(f"All required branches completed: {wait_for_branches}")
 | 
			
		||||
                
 | 
			
		||||
                # Execute the database update
 | 
			
		||||
                execute_postgresql_update_combined(node, action, detection_result, branch_results)
 | 
			
		||||
            else:
 | 
			
		||||
                logger.warning(f"Unknown parallel action type: {action_type}")
 | 
			
		||||
                
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Error executing parallel action {action.get('type', 'unknown')}: {e}")
 | 
			
		||||
            import traceback
 | 
			
		||||
            logger.debug(f"Full traceback: {traceback.format_exc()}")
 | 
			
		||||
 | 
			
		||||
def execute_postgresql_update_combined(node, action, detection_result, branch_results):
 | 
			
		||||
    """Execute a PostgreSQL update with combined branch results."""
 | 
			
		||||
    if not node.get("db_manager"):
 | 
			
		||||
        logger.error("No database manager available for postgresql_update_combined action")
 | 
			
		||||
        return
 | 
			
		||||
        
 | 
			
		||||
    try:
 | 
			
		||||
        table = action["table"]
 | 
			
		||||
        key_field = action["key_field"]
 | 
			
		||||
        key_value_template = action["key_value"]
 | 
			
		||||
        fields = action["fields"]
 | 
			
		||||
        
 | 
			
		||||
        # Create context for key value formatting
 | 
			
		||||
        action_context = {**detection_result}
 | 
			
		||||
        key_value = key_value_template.format(**action_context)
 | 
			
		||||
        
 | 
			
		||||
        logger.info(f"Executing database update: table={table}, {key_field}={key_value}")
 | 
			
		||||
        
 | 
			
		||||
        # Process field mappings
 | 
			
		||||
        mapped_fields = {}
 | 
			
		||||
        for db_field, value_template in fields.items():
 | 
			
		||||
            try:
 | 
			
		||||
                mapped_value = resolve_field_mapping(value_template, branch_results, action_context)
 | 
			
		||||
                if mapped_value is not None:
 | 
			
		||||
                    mapped_fields[db_field] = mapped_value
 | 
			
		||||
                    logger.debug(f"Mapped field: {db_field} = {mapped_value}")
 | 
			
		||||
                else:
 | 
			
		||||
                    logger.warning(f"Could not resolve field mapping for {db_field}: {value_template}")
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
                logger.error(f"Error mapping field {db_field} with template '{value_template}': {e}")
 | 
			
		||||
        
 | 
			
		||||
        if not mapped_fields:
 | 
			
		||||
            logger.warning("No fields mapped successfully, skipping database update")
 | 
			
		||||
            return
 | 
			
		||||
            
 | 
			
		||||
        # Execute the database update
 | 
			
		||||
        success = node["db_manager"].execute_update(table, key_field, key_value, mapped_fields)
 | 
			
		||||
        
 | 
			
		||||
        if success:
 | 
			
		||||
            logger.info(f"Successfully updated database: {table} with {len(mapped_fields)} fields")
 | 
			
		||||
        else:
 | 
			
		||||
            logger.error(f"Failed to update database: {table}")
 | 
			
		||||
            
 | 
			
		||||
    except KeyError as e:
 | 
			
		||||
        logger.error(f"Missing required field in postgresql_update_combined action: {e}")
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logger.error(f"Error in postgresql_update_combined action: {e}")
 | 
			
		||||
        import traceback
 | 
			
		||||
        logger.debug(f"Full traceback: {traceback.format_exc()}")
 | 
			
		||||
 | 
			
		||||
def resolve_field_mapping(value_template, branch_results, action_context):
 | 
			
		||||
    """Resolve field mapping templates like {car_brand_cls_v1.brand}."""
 | 
			
		||||
    try:
 | 
			
		||||
        # Handle simple context variables first (non-branch references)
 | 
			
		||||
        if not '.' in value_template:
 | 
			
		||||
            return value_template.format(**action_context)
 | 
			
		||||
        
 | 
			
		||||
        # Handle branch result references like {model_id.field}
 | 
			
		||||
        import re
 | 
			
		||||
        branch_refs = re.findall(r'\{([^}]+\.[^}]+)\}', value_template)
 | 
			
		||||
        
 | 
			
		||||
        resolved_template = value_template
 | 
			
		||||
        for ref in branch_refs:
 | 
			
		||||
            try:
 | 
			
		||||
                model_id, field_name = ref.split('.', 1)
 | 
			
		||||
                
 | 
			
		||||
                if model_id in branch_results:
 | 
			
		||||
                    branch_data = branch_results[model_id]
 | 
			
		||||
                    if field_name in branch_data:
 | 
			
		||||
                        field_value = branch_data[field_name]
 | 
			
		||||
                        resolved_template = resolved_template.replace(f'{{{ref}}}', str(field_value))
 | 
			
		||||
                        logger.debug(f"Resolved {ref} to {field_value}")
 | 
			
		||||
                    else:
 | 
			
		||||
                        logger.warning(f"Field '{field_name}' not found in branch '{model_id}' results. Available fields: {list(branch_data.keys())}")
 | 
			
		||||
                        return None
 | 
			
		||||
                else:
 | 
			
		||||
                    logger.warning(f"Branch '{model_id}' not found in results. Available branches: {list(branch_results.keys())}")
 | 
			
		||||
                    return None
 | 
			
		||||
            except ValueError as e:
 | 
			
		||||
                logger.error(f"Invalid branch reference format: {ref}")
 | 
			
		||||
                return None
 | 
			
		||||
        
 | 
			
		||||
        # Format any remaining simple variables
 | 
			
		||||
        try:
 | 
			
		||||
            final_value = resolved_template.format(**action_context)
 | 
			
		||||
            return final_value
 | 
			
		||||
        except KeyError as e:
 | 
			
		||||
            logger.warning(f"Could not resolve context variable in template: {e}")
 | 
			
		||||
            return resolved_template
 | 
			
		||||
            
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logger.error(f"Error resolving field mapping '{value_template}': {e}")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
def run_pipeline(frame, node: dict, return_bbox: bool=False, context=None):
 | 
			
		||||
    """
 | 
			
		||||
    - For detection nodes (task != 'classify'):
 | 
			
		||||
        • runs `track(..., classes=triggerClassIndices)`
 | 
			
		||||
        • picks top box ≥ minConfidence
 | 
			
		||||
        • optionally crops & resizes → recurse into child
 | 
			
		||||
        • else returns (det_dict, bbox)
 | 
			
		||||
    - For classify nodes:
 | 
			
		||||
        • runs `predict()`
 | 
			
		||||
        • returns top (class,confidence) and no bbox
 | 
			
		||||
    Enhanced pipeline that supports:
 | 
			
		||||
    - Multi-class detection (detecting multiple classes simultaneously)
 | 
			
		||||
    - Parallel branch processing
 | 
			
		||||
    - Region-based actions and cropping
 | 
			
		||||
    - Context passing for session/camera information
 | 
			
		||||
    """
 | 
			
		||||
    try:
 | 
			
		||||
        task = getattr(node["model"], "task", None)
 | 
			
		||||
 | 
			
		||||
        # ─── Classification stage ───────────────────────────────────
 | 
			
		||||
        if task == "classify":
 | 
			
		||||
            # run the classifier and grab its top-1 directly via the Probs API
 | 
			
		||||
            results = node["model"].predict(frame, stream=False)
 | 
			
		||||
            # nothing returned?
 | 
			
		||||
            if not results:
 | 
			
		||||
                return (None, None) if return_bbox else None
 | 
			
		||||
 | 
			
		||||
            # take the first result's probs object
 | 
			
		||||
            r     = results[0]
 | 
			
		||||
            r = results[0]
 | 
			
		||||
            probs = r.probs
 | 
			
		||||
            if probs is None:
 | 
			
		||||
                return (None, None) if return_bbox else None
 | 
			
		||||
 | 
			
		||||
            # get the top-1 class index and its confidence
 | 
			
		||||
            top1_idx  = int(probs.top1)
 | 
			
		||||
            top1_idx = int(probs.top1)
 | 
			
		||||
            top1_conf = float(probs.top1conf)
 | 
			
		||||
            class_name = node["model"].names[top1_idx]
 | 
			
		||||
 | 
			
		||||
            det = {
 | 
			
		||||
                "class": node["model"].names[top1_idx],
 | 
			
		||||
                "class": class_name,
 | 
			
		||||
                "confidence": top1_conf,
 | 
			
		||||
                "id": None
 | 
			
		||||
                "id": None,
 | 
			
		||||
                class_name: class_name  # Add class name as key for backward compatibility
 | 
			
		||||
            }
 | 
			
		||||
            
 | 
			
		||||
            # Add specific field mappings for database operations based on model type
 | 
			
		||||
            model_id = node.get("modelId", "").lower()
 | 
			
		||||
            if "brand" in model_id or "brand_cls" in model_id:
 | 
			
		||||
                det["brand"] = class_name
 | 
			
		||||
            elif "bodytype" in model_id or "body" in model_id:
 | 
			
		||||
                det["body_type"] = class_name
 | 
			
		||||
            elif "color" in model_id:
 | 
			
		||||
                det["color"] = class_name
 | 
			
		||||
            
 | 
			
		||||
            execute_actions(node, frame, det)
 | 
			
		||||
            return (det, None) if return_bbox else det
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        # ─── Detection stage ────────────────────────────────────────
 | 
			
		||||
        # only look for your triggerClasses
 | 
			
		||||
        # ─── Detection stage - Multi-class support ──────────────────
 | 
			
		||||
        tk = node["triggerClassIndices"]
 | 
			
		||||
        logger.debug(f"Running detection for node {node['modelId']} with trigger classes: {node.get('triggerClasses', [])} (indices: {tk})")
 | 
			
		||||
        logger.debug(f"Node configuration: minConfidence={node['minConfidence']}, multiClass={node.get('multiClass', False)}")
 | 
			
		||||
        
 | 
			
		||||
        res = node["model"].track(
 | 
			
		||||
            frame,
 | 
			
		||||
            stream=False,
 | 
			
		||||
| 
						 | 
				
			
			@ -277,48 +571,228 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False):
 | 
			
		|||
            **({"classes": tk} if tk else {})
 | 
			
		||||
        )[0]
 | 
			
		||||
 | 
			
		||||
        dets, boxes = [], []
 | 
			
		||||
        for box in res.boxes:
 | 
			
		||||
        # Collect all detections above confidence threshold
 | 
			
		||||
        all_detections = []
 | 
			
		||||
        all_boxes = []
 | 
			
		||||
        regions_dict = {}
 | 
			
		||||
        
 | 
			
		||||
        logger.debug(f"Raw detection results from model: {len(res.boxes) if res.boxes is not None else 0} detections")
 | 
			
		||||
        
 | 
			
		||||
        for i, box in enumerate(res.boxes):
 | 
			
		||||
            conf = float(box.cpu().conf[0])
 | 
			
		||||
            cid  = int(box.cpu().cls[0])
 | 
			
		||||
            cid = int(box.cpu().cls[0])
 | 
			
		||||
            name = node["model"].names[cid]
 | 
			
		||||
            
 | 
			
		||||
            logger.debug(f"Detection {i}: class='{name}' (id={cid}), confidence={conf:.3f}, threshold={node['minConfidence']}")
 | 
			
		||||
            
 | 
			
		||||
            if conf < node["minConfidence"]:
 | 
			
		||||
                logger.debug(f"  -> REJECTED: confidence {conf:.3f} < threshold {node['minConfidence']}")
 | 
			
		||||
                continue
 | 
			
		||||
                
 | 
			
		||||
            xy = box.cpu().xyxy[0]
 | 
			
		||||
            x1,y1,x2,y2 = map(int, xy)
 | 
			
		||||
            dets.append({"class": name, "confidence": conf,
 | 
			
		||||
                         "id": box.id.item() if hasattr(box, "id") else None})
 | 
			
		||||
            boxes.append((x1, y1, x2, y2))
 | 
			
		||||
            x1, y1, x2, y2 = map(int, xy)
 | 
			
		||||
            bbox = (x1, y1, x2, y2)
 | 
			
		||||
            
 | 
			
		||||
            detection = {
 | 
			
		||||
                "class": name,
 | 
			
		||||
                "confidence": conf,
 | 
			
		||||
                "id": box.id.item() if hasattr(box, "id") else None,
 | 
			
		||||
                "bbox": bbox
 | 
			
		||||
            }
 | 
			
		||||
            
 | 
			
		||||
            all_detections.append(detection)
 | 
			
		||||
            all_boxes.append(bbox)
 | 
			
		||||
            
 | 
			
		||||
            logger.debug(f"  -> ACCEPTED: {name} with confidence {conf:.3f}, bbox={bbox}")
 | 
			
		||||
            
 | 
			
		||||
            # Store highest confidence detection for each class
 | 
			
		||||
            if name not in regions_dict or conf > regions_dict[name]["confidence"]:
 | 
			
		||||
                regions_dict[name] = {
 | 
			
		||||
                    "bbox": bbox,
 | 
			
		||||
                    "confidence": conf,
 | 
			
		||||
                    "detection": detection
 | 
			
		||||
                }
 | 
			
		||||
                logger.debug(f"  -> Updated regions_dict['{name}'] with confidence {conf:.3f}")
 | 
			
		||||
 | 
			
		||||
        if not dets:
 | 
			
		||||
        logger.info(f"Detection summary: {len(all_detections)} accepted detections from {len(res.boxes) if res.boxes is not None else 0} total")
 | 
			
		||||
        logger.info(f"Detected classes: {list(regions_dict.keys())}")
 | 
			
		||||
 | 
			
		||||
        if not all_detections:
 | 
			
		||||
            logger.warning("No detections above confidence threshold - returning null")
 | 
			
		||||
            return (None, None) if return_bbox else None
 | 
			
		||||
 | 
			
		||||
        # take highest‐confidence
 | 
			
		||||
        best_idx = max(range(len(dets)), key=lambda i: dets[i]["confidence"])
 | 
			
		||||
        best_det = dets[best_idx]
 | 
			
		||||
        best_box = boxes[best_idx]
 | 
			
		||||
        # ─── Multi-class validation ─────────────────────────────────
 | 
			
		||||
        if node.get("multiClass", False) and node.get("expectedClasses"):
 | 
			
		||||
            expected_classes = node["expectedClasses"]
 | 
			
		||||
            detected_classes = list(regions_dict.keys())
 | 
			
		||||
            
 | 
			
		||||
            logger.info(f"Multi-class validation: expected={expected_classes}, detected={detected_classes}")
 | 
			
		||||
            
 | 
			
		||||
            # Check if at least one expected class is detected (flexible mode)
 | 
			
		||||
            matching_classes = [cls for cls in expected_classes if cls in detected_classes]
 | 
			
		||||
            missing_classes = [cls for cls in expected_classes if cls not in detected_classes]
 | 
			
		||||
            
 | 
			
		||||
            logger.debug(f"Matching classes: {matching_classes}, Missing classes: {missing_classes}")
 | 
			
		||||
            
 | 
			
		||||
            if not matching_classes:
 | 
			
		||||
                # No expected classes found at all
 | 
			
		||||
                logger.warning(f"PIPELINE REJECTED: No expected classes detected. Expected: {expected_classes}, Detected: {detected_classes}")
 | 
			
		||||
                return (None, None) if return_bbox else None
 | 
			
		||||
            
 | 
			
		||||
            if missing_classes:
 | 
			
		||||
                logger.info(f"Partial multi-class detection: {matching_classes} found, {missing_classes} missing")
 | 
			
		||||
            else:
 | 
			
		||||
                logger.info(f"Complete multi-class detection success: {detected_classes}")
 | 
			
		||||
        else:
 | 
			
		||||
            logger.debug("No multi-class validation - proceeding with all detections")
 | 
			
		||||
 | 
			
		||||
        # ─── Branch (classification) ───────────────────────────────
 | 
			
		||||
        for br in node["branches"]:
 | 
			
		||||
            if (best_det["class"] in br["triggerClasses"]
 | 
			
		||||
                    and best_det["confidence"] >= br["minConfidence"]):
 | 
			
		||||
                # crop if requested
 | 
			
		||||
                sub = frame
 | 
			
		||||
                if br["crop"]:
 | 
			
		||||
                    x1,y1,x2,y2 = best_box
 | 
			
		||||
                    sub = frame[y1:y2, x1:x2]
 | 
			
		||||
                    sub = cv2.resize(sub, (224, 224))
 | 
			
		||||
        # ─── Execute actions with region information ────────────────
 | 
			
		||||
        detection_result = {
 | 
			
		||||
            "detections": all_detections,
 | 
			
		||||
            "regions": regions_dict,
 | 
			
		||||
            **(context or {})
 | 
			
		||||
        }
 | 
			
		||||
        
 | 
			
		||||
        # ─── Create initial database record when Car+Frontal detected ────
 | 
			
		||||
        if node.get("db_manager") and node.get("multiClass", False):
 | 
			
		||||
            # Only create database record if we have both Car and Frontal
 | 
			
		||||
            has_car = "Car" in regions_dict
 | 
			
		||||
            has_frontal = "Frontal" in regions_dict
 | 
			
		||||
            
 | 
			
		||||
            if has_car and has_frontal:
 | 
			
		||||
                # Generate UUID session_id since client session is None for now
 | 
			
		||||
                import uuid as uuid_lib
 | 
			
		||||
                from datetime import datetime
 | 
			
		||||
                generated_session_id = str(uuid_lib.uuid4())
 | 
			
		||||
                
 | 
			
		||||
                # Insert initial detection record
 | 
			
		||||
                display_id = detection_result.get("display_id", "unknown")
 | 
			
		||||
                timestamp = datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
 | 
			
		||||
                
 | 
			
		||||
                inserted_session_id = node["db_manager"].insert_initial_detection(
 | 
			
		||||
                    display_id=display_id,
 | 
			
		||||
                    captured_timestamp=timestamp,
 | 
			
		||||
                    session_id=generated_session_id
 | 
			
		||||
                )
 | 
			
		||||
                
 | 
			
		||||
                if inserted_session_id:
 | 
			
		||||
                    # Update detection_result with the generated session_id for actions and branches
 | 
			
		||||
                    detection_result["session_id"] = inserted_session_id
 | 
			
		||||
                    detection_result["timestamp"] = timestamp  # Update with proper timestamp
 | 
			
		||||
                    logger.info(f"Created initial database record with session_id: {inserted_session_id}")
 | 
			
		||||
            else:
 | 
			
		||||
                logger.debug(f"Database record not created - missing required classes. Has Car: {has_car}, Has Frontal: {has_frontal}")
 | 
			
		||||
        
 | 
			
		||||
        execute_actions(node, frame, detection_result, regions_dict)
 | 
			
		||||
 | 
			
		||||
                det2, _ = run_pipeline(sub, br, return_bbox=True)
 | 
			
		||||
                if det2:
 | 
			
		||||
                    # return classification result + original bbox
 | 
			
		||||
                    execute_actions(br, sub, det2)
 | 
			
		||||
                    return (det2, best_box) if return_bbox else det2
 | 
			
		||||
        # ─── Parallel branch processing ─────────────────────────────
 | 
			
		||||
        if node["branches"]:
 | 
			
		||||
            branch_results = {}
 | 
			
		||||
            
 | 
			
		||||
            # Filter branches that should be triggered
 | 
			
		||||
            active_branches = []
 | 
			
		||||
            for br in node["branches"]:
 | 
			
		||||
                trigger_classes = br.get("triggerClasses", [])
 | 
			
		||||
                min_conf = br.get("minConfidence", 0)
 | 
			
		||||
                
 | 
			
		||||
                logger.debug(f"Evaluating branch {br['modelId']}: trigger_classes={trigger_classes}, min_conf={min_conf}")
 | 
			
		||||
                
 | 
			
		||||
                # Check if any detected class matches branch trigger
 | 
			
		||||
                branch_triggered = False
 | 
			
		||||
                for det_class in regions_dict:
 | 
			
		||||
                    det_confidence = regions_dict[det_class]["confidence"]
 | 
			
		||||
                    logger.debug(f"  Checking detected class '{det_class}' (confidence={det_confidence:.3f}) against triggers {trigger_classes}")
 | 
			
		||||
                    
 | 
			
		||||
                    if (det_class in trigger_classes and det_confidence >= min_conf):
 | 
			
		||||
                        active_branches.append(br)
 | 
			
		||||
                        branch_triggered = True
 | 
			
		||||
                        logger.info(f"Branch {br['modelId']} activated by class '{det_class}' (conf={det_confidence:.3f} >= {min_conf})")
 | 
			
		||||
                        break
 | 
			
		||||
                
 | 
			
		||||
                if not branch_triggered:
 | 
			
		||||
                    logger.debug(f"Branch {br['modelId']} not triggered - no matching classes or insufficient confidence")
 | 
			
		||||
            
 | 
			
		||||
            if active_branches:
 | 
			
		||||
                if node.get("parallel", False) or any(br.get("parallel", False) for br in active_branches):
 | 
			
		||||
                    # Run branches in parallel
 | 
			
		||||
                    with concurrent.futures.ThreadPoolExecutor(max_workers=len(active_branches)) as executor:
 | 
			
		||||
                        futures = {}
 | 
			
		||||
                        
 | 
			
		||||
                        for br in active_branches:
 | 
			
		||||
                            crop_class = br.get("cropClass", br.get("triggerClasses", [])[0] if br.get("triggerClasses") else None)
 | 
			
		||||
                            sub_frame = frame
 | 
			
		||||
                            
 | 
			
		||||
                            logger.info(f"Starting parallel branch: {br['modelId']}, crop_class: {crop_class}")
 | 
			
		||||
                            
 | 
			
		||||
                            if br.get("crop", False) and crop_class:
 | 
			
		||||
                                cropped = crop_region_by_class(frame, regions_dict, crop_class)
 | 
			
		||||
                                if cropped is not None:
 | 
			
		||||
                                    sub_frame = cv2.resize(cropped, (224, 224))
 | 
			
		||||
                                    logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']}")
 | 
			
		||||
                                else:
 | 
			
		||||
                                    logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
 | 
			
		||||
                                    continue
 | 
			
		||||
                            
 | 
			
		||||
                            future = executor.submit(run_pipeline, sub_frame, br, True, context)
 | 
			
		||||
                            futures[future] = br
 | 
			
		||||
                        
 | 
			
		||||
                        # Collect results
 | 
			
		||||
                        for future in concurrent.futures.as_completed(futures):
 | 
			
		||||
                            br = futures[future]
 | 
			
		||||
                            try:
 | 
			
		||||
                                result, _ = future.result()
 | 
			
		||||
                                if result:
 | 
			
		||||
                                    branch_results[br["modelId"]] = result
 | 
			
		||||
                                    logger.info(f"Branch {br['modelId']} completed: {result}")
 | 
			
		||||
                            except Exception as e:
 | 
			
		||||
                                logger.error(f"Branch {br['modelId']} failed: {e}")
 | 
			
		||||
                else:
 | 
			
		||||
                    # Run branches sequentially  
 | 
			
		||||
                    for br in active_branches:
 | 
			
		||||
                        crop_class = br.get("cropClass", br.get("triggerClasses", [])[0] if br.get("triggerClasses") else None)
 | 
			
		||||
                        sub_frame = frame
 | 
			
		||||
                        
 | 
			
		||||
                        logger.info(f"Starting sequential branch: {br['modelId']}, crop_class: {crop_class}")
 | 
			
		||||
                        
 | 
			
		||||
                        if br.get("crop", False) and crop_class:
 | 
			
		||||
                            cropped = crop_region_by_class(frame, regions_dict, crop_class)
 | 
			
		||||
                            if cropped is not None:
 | 
			
		||||
                                sub_frame = cv2.resize(cropped, (224, 224))
 | 
			
		||||
                                logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']}")
 | 
			
		||||
                            else:
 | 
			
		||||
                                logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
 | 
			
		||||
                                continue
 | 
			
		||||
                        
 | 
			
		||||
                        try:
 | 
			
		||||
                            result, _ = run_pipeline(sub_frame, br, True, context)
 | 
			
		||||
                            if result:
 | 
			
		||||
                                branch_results[br["modelId"]] = result
 | 
			
		||||
                                logger.info(f"Branch {br['modelId']} completed: {result}")
 | 
			
		||||
                            else:
 | 
			
		||||
                                logger.warning(f"Branch {br['modelId']} returned no result")
 | 
			
		||||
                        except Exception as e:
 | 
			
		||||
                            logger.error(f"Error in sequential branch {br['modelId']}: {e}")
 | 
			
		||||
                            import traceback
 | 
			
		||||
                            logger.debug(f"Branch error traceback: {traceback.format_exc()}")
 | 
			
		||||
 | 
			
		||||
        # ─── No branch matched → return this detection ─────────────
 | 
			
		||||
        execute_actions(node, frame, best_det)
 | 
			
		||||
        return (best_det, best_box) if return_bbox else best_det
 | 
			
		||||
            # Store branch results in detection_result for parallel actions
 | 
			
		||||
            detection_result["branch_results"] = branch_results
 | 
			
		||||
 | 
			
		||||
        # ─── Execute Parallel Actions ───────────────────────────────
 | 
			
		||||
        if node.get("parallelActions") and "branch_results" in detection_result:
 | 
			
		||||
            execute_parallel_actions(node, frame, detection_result, regions_dict)
 | 
			
		||||
 | 
			
		||||
        # ─── Return detection result ────────────────────────────────
 | 
			
		||||
        primary_detection = max(all_detections, key=lambda x: x["confidence"])
 | 
			
		||||
        primary_bbox = primary_detection["bbox"]
 | 
			
		||||
        
 | 
			
		||||
        # Add branch results to primary detection for compatibility
 | 
			
		||||
        if "branch_results" in detection_result:
 | 
			
		||||
            primary_detection["branch_results"] = detection_result["branch_results"]
 | 
			
		||||
        
 | 
			
		||||
        return (primary_detection, primary_bbox) if return_bbox else primary_detection
 | 
			
		||||
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Error in node {node.get('modelId')}: {e}")
 | 
			
		||||
        logger.error(f"Error in node {node.get('modelId')}: {e}")
 | 
			
		||||
        traceback.print_exc()
 | 
			
		||||
        return (None, None) if return_bbox else None
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue