Merge pull request 'dev' (#1) from dev into main
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 10m53s
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 10m53s
Reviewed-on: #1
This commit is contained in:
commit
29b97ded2a
4 changed files with 845 additions and 104 deletions
108
app.py
108
app.py
|
@ -35,6 +35,8 @@ session_ids: Dict[str, int] = {}
|
|||
camera_streams: Dict[str, Dict[str, Any]] = {}
|
||||
# Map subscriptions to their camera URL
|
||||
subscription_to_camera: Dict[str, str] = {}
|
||||
# Store latest frames for REST API access (separate from processing buffer)
|
||||
latest_frames: Dict[str, Any] = {}
|
||||
|
||||
with open("config.json", "r") as f:
|
||||
config = json.load(f)
|
||||
|
@ -109,20 +111,60 @@ def download_mpta(url: str, dest_path: str) -> str:
|
|||
# Add helper to fetch snapshot image from HTTP/HTTPS URL
|
||||
def fetch_snapshot(url: str):
|
||||
try:
|
||||
response = requests.get(url, timeout=10)
|
||||
from requests.auth import HTTPBasicAuth, HTTPDigestAuth
|
||||
|
||||
# Parse URL to extract credentials
|
||||
parsed = urlparse(url)
|
||||
|
||||
# Prepare headers - some cameras require User-Agent
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (compatible; DetectorWorker/1.0)'
|
||||
}
|
||||
|
||||
# Reconstruct URL without credentials
|
||||
clean_url = f"{parsed.scheme}://{parsed.hostname}"
|
||||
if parsed.port:
|
||||
clean_url += f":{parsed.port}"
|
||||
clean_url += parsed.path
|
||||
if parsed.query:
|
||||
clean_url += f"?{parsed.query}"
|
||||
|
||||
auth = None
|
||||
if parsed.username and parsed.password:
|
||||
# Try HTTP Digest authentication first (common for IP cameras)
|
||||
try:
|
||||
auth = HTTPDigestAuth(parsed.username, parsed.password)
|
||||
response = requests.get(clean_url, auth=auth, headers=headers, timeout=10)
|
||||
if response.status_code == 200:
|
||||
logger.debug(f"Successfully authenticated using HTTP Digest for {clean_url}")
|
||||
elif response.status_code == 401:
|
||||
# If Digest fails, try Basic auth
|
||||
logger.debug(f"HTTP Digest failed, trying Basic auth for {clean_url}")
|
||||
auth = HTTPBasicAuth(parsed.username, parsed.password)
|
||||
response = requests.get(clean_url, auth=auth, headers=headers, timeout=10)
|
||||
if response.status_code == 200:
|
||||
logger.debug(f"Successfully authenticated using HTTP Basic for {clean_url}")
|
||||
except Exception as auth_error:
|
||||
logger.debug(f"Authentication setup error: {auth_error}")
|
||||
# Fallback to original URL with embedded credentials
|
||||
response = requests.get(url, headers=headers, timeout=10)
|
||||
else:
|
||||
# No credentials in URL, make request as-is
|
||||
response = requests.get(url, headers=headers, timeout=10)
|
||||
|
||||
if response.status_code == 200:
|
||||
# Convert response content to numpy array
|
||||
nparr = np.frombuffer(response.content, np.uint8)
|
||||
# Decode image
|
||||
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
if frame is not None:
|
||||
logger.debug(f"Successfully fetched snapshot from {url}, shape: {frame.shape}")
|
||||
logger.debug(f"Successfully fetched snapshot from {clean_url}, shape: {frame.shape}")
|
||||
return frame
|
||||
else:
|
||||
logger.error(f"Failed to decode image from snapshot URL: {url}")
|
||||
logger.error(f"Failed to decode image from snapshot URL: {clean_url}")
|
||||
return None
|
||||
else:
|
||||
logger.error(f"Failed to fetch snapshot (status code {response.status_code}): {url}")
|
||||
logger.error(f"Failed to fetch snapshot (status code {response.status_code}): {clean_url}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Exception fetching snapshot from {url}: {str(e)}")
|
||||
|
@ -146,26 +188,24 @@ async def get_camera_image(camera_id: str):
|
|||
Get the current frame from a camera as JPEG image
|
||||
"""
|
||||
try:
|
||||
# URL decode the camera_id to handle encoded characters like %3B for semicolon
|
||||
from urllib.parse import unquote
|
||||
original_camera_id = camera_id
|
||||
camera_id = unquote(camera_id)
|
||||
logger.debug(f"REST API request: original='{original_camera_id}', decoded='{camera_id}'")
|
||||
|
||||
with streams_lock:
|
||||
if camera_id not in streams:
|
||||
logger.warning(f"Camera ID '{camera_id}' not found in streams. Current streams: {list(streams.keys())}")
|
||||
raise HTTPException(status_code=404, detail=f"Camera {camera_id} not found or not active")
|
||||
|
||||
stream = streams[camera_id]
|
||||
buffer = stream["buffer"]
|
||||
logger.debug(f"Camera '{camera_id}' buffer size: {buffer.qsize()}, buffer empty: {buffer.empty()}")
|
||||
logger.debug(f"Buffer queue contents: {getattr(buffer, 'queue', None)}")
|
||||
|
||||
if buffer.empty():
|
||||
logger.warning(f"No frame available for camera '{camera_id}'. Buffer is empty.")
|
||||
# Check if we have a cached frame for this camera
|
||||
if camera_id not in latest_frames:
|
||||
logger.warning(f"No cached frame available for camera '{camera_id}'.")
|
||||
raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
|
||||
|
||||
# Get the latest frame (non-blocking)
|
||||
try:
|
||||
frame = buffer.queue[-1] # Get the most recent frame without removing it
|
||||
except IndexError:
|
||||
logger.warning(f"Buffer queue is empty for camera '{camera_id}' when trying to access last frame.")
|
||||
raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
|
||||
frame = latest_frames[camera_id]
|
||||
logger.debug(f"Retrieved cached frame for camera '{camera_id}', frame shape: {frame.shape}")
|
||||
# Encode frame as JPEG
|
||||
success, buffer_img = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 85])
|
||||
if not success:
|
||||
|
@ -199,7 +239,20 @@ async def detect(websocket: WebSocket):
|
|||
|
||||
logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}")
|
||||
start_time = time.time()
|
||||
detection_result = run_pipeline(cropped_frame, model_tree)
|
||||
|
||||
# Extract display identifier for session ID lookup
|
||||
subscription_parts = stream["subscriptionIdentifier"].split(';')
|
||||
display_identifier = subscription_parts[0] if subscription_parts else None
|
||||
session_id = session_ids.get(display_identifier) if display_identifier else None
|
||||
|
||||
# Create context for pipeline execution
|
||||
pipeline_context = {
|
||||
"camera_id": camera_id,
|
||||
"display_id": display_identifier,
|
||||
"session_id": session_id
|
||||
}
|
||||
|
||||
detection_result = run_pipeline(cropped_frame, model_tree, context=pipeline_context)
|
||||
process_time = (time.time() - start_time) * 1000
|
||||
logger.debug(f"Detection for camera {camera_id} completed in {process_time:.2f}ms")
|
||||
|
||||
|
@ -258,11 +311,6 @@ async def detect(websocket: WebSocket):
|
|||
if key not in ["box", "id"]: # Skip internal fields
|
||||
detection_dict[key] = value
|
||||
|
||||
# Extract display identifier for session ID lookup
|
||||
subscription_parts = stream["subscriptionIdentifier"].split(';')
|
||||
display_identifier = subscription_parts[0] if subscription_parts else None
|
||||
session_id = session_ids.get(display_identifier) if display_identifier else None
|
||||
|
||||
detection_data = {
|
||||
"type": "imageDetection",
|
||||
"subscriptionIdentifier": stream["subscriptionIdentifier"],
|
||||
|
@ -282,9 +330,6 @@ async def detect(websocket: WebSocket):
|
|||
logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {highest_confidence_detection['confidence']:.2f} using model {stream['modelName']}")
|
||||
|
||||
# Log session ID if available
|
||||
subscription_parts = stream["subscriptionIdentifier"].split(';')
|
||||
display_identifier = subscription_parts[0] if subscription_parts else None
|
||||
session_id = session_ids.get(display_identifier) if display_identifier else None
|
||||
if session_id:
|
||||
logger.debug(f"Detection associated with session ID: {session_id}")
|
||||
|
||||
|
@ -476,6 +521,10 @@ async def detect(websocket: WebSocket):
|
|||
logger.debug(f"Got frame from buffer for camera {camera_id}")
|
||||
frame = buffer.get()
|
||||
|
||||
# Cache the frame for REST API access
|
||||
latest_frames[camera_id] = frame.copy()
|
||||
logger.debug(f"Cached frame for REST API access for camera {camera_id}")
|
||||
|
||||
with models_lock:
|
||||
model_tree = models.get(camera_id, {}).get(stream["modelId"])
|
||||
if not model_tree:
|
||||
|
@ -647,7 +696,7 @@ async def detect(websocket: WebSocket):
|
|||
|
||||
if snapshot_url and snapshot_interval:
|
||||
logger.info(f"Creating new snapshot stream for camera {camera_id}: {snapshot_url}")
|
||||
thread = threading.Thread(target=snapshot_reader, args=(camera_identifier, snapshot_url, snapshot_interval, buffer, stop_event))
|
||||
thread = threading.Thread(target=snapshot_reader, args=(camera_id, snapshot_url, snapshot_interval, buffer, stop_event))
|
||||
thread.daemon = True
|
||||
thread.start()
|
||||
mode = "snapshot"
|
||||
|
@ -670,7 +719,7 @@ async def detect(websocket: WebSocket):
|
|||
if not cap.isOpened():
|
||||
logger.error(f"Failed to open RTSP stream for camera {camera_id}")
|
||||
continue
|
||||
thread = threading.Thread(target=frame_reader, args=(camera_identifier, cap, buffer, stop_event))
|
||||
thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
|
||||
thread.daemon = True
|
||||
thread.start()
|
||||
mode = "rtsp"
|
||||
|
@ -744,6 +793,8 @@ async def detect(websocket: WebSocket):
|
|||
else:
|
||||
logger.info(f"Shared stream for {camera_url} still has {shared_stream['ref_count']} references")
|
||||
|
||||
# Clean up cached frame
|
||||
latest_frames.pop(camera_id, None)
|
||||
logger.info(f"Unsubscribed from camera {camera_id}")
|
||||
# Note: Keep models in memory for potential reuse
|
||||
elif msg_type == "requestState":
|
||||
|
@ -847,5 +898,6 @@ async def detect(websocket: WebSocket):
|
|||
subscription_to_camera.clear()
|
||||
with models_lock:
|
||||
models.clear()
|
||||
latest_frames.clear()
|
||||
session_ids.clear()
|
||||
logger.info("WebSocket connection closed")
|
||||
|
|
|
@ -6,4 +6,8 @@ ultralytics
|
|||
opencv-python
|
||||
websockets
|
||||
fastapi[standard]
|
||||
redis
|
||||
redis
|
||||
urllib3<2.0.0
|
||||
psycopg2-binary
|
||||
scipy
|
||||
filterpy
|
211
siwatsystem/database.py
Normal file
211
siwatsystem/database.py
Normal file
|
@ -0,0 +1,211 @@
|
|||
import psycopg2
|
||||
import psycopg2.extras
|
||||
from typing import Optional, Dict, Any
|
||||
import logging
|
||||
import uuid
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class DatabaseManager:
|
||||
def __init__(self, config: Dict[str, Any]):
|
||||
self.config = config
|
||||
self.connection: Optional[psycopg2.extensions.connection] = None
|
||||
|
||||
def connect(self) -> bool:
|
||||
try:
|
||||
self.connection = psycopg2.connect(
|
||||
host=self.config['host'],
|
||||
port=self.config['port'],
|
||||
database=self.config['database'],
|
||||
user=self.config['username'],
|
||||
password=self.config['password']
|
||||
)
|
||||
logger.info("PostgreSQL connection established successfully")
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to connect to PostgreSQL: {e}")
|
||||
return False
|
||||
|
||||
def disconnect(self):
|
||||
if self.connection:
|
||||
self.connection.close()
|
||||
self.connection = None
|
||||
logger.info("PostgreSQL connection closed")
|
||||
|
||||
def is_connected(self) -> bool:
|
||||
try:
|
||||
if self.connection and not self.connection.closed:
|
||||
cur = self.connection.cursor()
|
||||
cur.execute("SELECT 1")
|
||||
cur.fetchone()
|
||||
cur.close()
|
||||
return True
|
||||
except:
|
||||
pass
|
||||
return False
|
||||
|
||||
def update_car_info(self, session_id: str, brand: str, model: str, body_type: str) -> bool:
|
||||
if not self.is_connected():
|
||||
if not self.connect():
|
||||
return False
|
||||
|
||||
try:
|
||||
cur = self.connection.cursor()
|
||||
query = """
|
||||
INSERT INTO car_frontal_info (session_id, car_brand, car_model, car_body_type, updated_at)
|
||||
VALUES (%s, %s, %s, %s, NOW())
|
||||
ON CONFLICT (session_id)
|
||||
DO UPDATE SET
|
||||
car_brand = EXCLUDED.car_brand,
|
||||
car_model = EXCLUDED.car_model,
|
||||
car_body_type = EXCLUDED.car_body_type,
|
||||
updated_at = NOW()
|
||||
"""
|
||||
cur.execute(query, (session_id, brand, model, body_type))
|
||||
self.connection.commit()
|
||||
cur.close()
|
||||
logger.info(f"Updated car info for session {session_id}: {brand} {model} ({body_type})")
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to update car info: {e}")
|
||||
if self.connection:
|
||||
self.connection.rollback()
|
||||
return False
|
||||
|
||||
def execute_update(self, table: str, key_field: str, key_value: str, fields: Dict[str, str]) -> bool:
|
||||
if not self.is_connected():
|
||||
if not self.connect():
|
||||
return False
|
||||
|
||||
try:
|
||||
cur = self.connection.cursor()
|
||||
|
||||
# Build the UPDATE query dynamically
|
||||
set_clauses = []
|
||||
values = []
|
||||
|
||||
for field, value in fields.items():
|
||||
if value == "NOW()":
|
||||
set_clauses.append(f"{field} = NOW()")
|
||||
else:
|
||||
set_clauses.append(f"{field} = %s")
|
||||
values.append(value)
|
||||
|
||||
# Add schema prefix if table doesn't already have it
|
||||
full_table_name = table if '.' in table else f"gas_station_1.{table}"
|
||||
|
||||
query = f"""
|
||||
INSERT INTO {full_table_name} ({key_field}, {', '.join(fields.keys())})
|
||||
VALUES (%s, {', '.join(['%s'] * len(fields))})
|
||||
ON CONFLICT ({key_field})
|
||||
DO UPDATE SET {', '.join(set_clauses)}
|
||||
"""
|
||||
|
||||
# Add key_value to the beginning of values list
|
||||
all_values = [key_value] + list(fields.values()) + values
|
||||
|
||||
cur.execute(query, all_values)
|
||||
self.connection.commit()
|
||||
cur.close()
|
||||
logger.info(f"Updated {table} for {key_field}={key_value}")
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to execute update on {table}: {e}")
|
||||
if self.connection:
|
||||
self.connection.rollback()
|
||||
return False
|
||||
|
||||
def create_car_frontal_info_table(self) -> bool:
|
||||
"""Create the car_frontal_info table in gas_station_1 schema if it doesn't exist."""
|
||||
if not self.is_connected():
|
||||
if not self.connect():
|
||||
return False
|
||||
|
||||
try:
|
||||
cur = self.connection.cursor()
|
||||
|
||||
# Create schema if it doesn't exist
|
||||
cur.execute("CREATE SCHEMA IF NOT EXISTS gas_station_1")
|
||||
|
||||
# Create table if it doesn't exist
|
||||
create_table_query = """
|
||||
CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
|
||||
display_id VARCHAR(255),
|
||||
captured_timestamp VARCHAR(255),
|
||||
session_id VARCHAR(255) PRIMARY KEY,
|
||||
license_character VARCHAR(255) DEFAULT NULL,
|
||||
license_type VARCHAR(255) DEFAULT 'No model available',
|
||||
car_brand VARCHAR(255) DEFAULT NULL,
|
||||
car_model VARCHAR(255) DEFAULT NULL,
|
||||
car_body_type VARCHAR(255) DEFAULT NULL,
|
||||
updated_at TIMESTAMP DEFAULT NOW()
|
||||
)
|
||||
"""
|
||||
|
||||
cur.execute(create_table_query)
|
||||
|
||||
# Add columns if they don't exist (for existing tables)
|
||||
alter_queries = [
|
||||
"ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_brand VARCHAR(255) DEFAULT NULL",
|
||||
"ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_model VARCHAR(255) DEFAULT NULL",
|
||||
"ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_body_type VARCHAR(255) DEFAULT NULL",
|
||||
"ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS updated_at TIMESTAMP DEFAULT NOW()"
|
||||
]
|
||||
|
||||
for alter_query in alter_queries:
|
||||
try:
|
||||
cur.execute(alter_query)
|
||||
logger.debug(f"Executed: {alter_query}")
|
||||
except Exception as e:
|
||||
# Ignore errors if column already exists (for older PostgreSQL versions)
|
||||
if "already exists" in str(e).lower():
|
||||
logger.debug(f"Column already exists, skipping: {alter_query}")
|
||||
else:
|
||||
logger.warning(f"Error in ALTER TABLE: {e}")
|
||||
|
||||
self.connection.commit()
|
||||
cur.close()
|
||||
logger.info("Successfully created/verified car_frontal_info table with all required columns")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to create car_frontal_info table: {e}")
|
||||
if self.connection:
|
||||
self.connection.rollback()
|
||||
return False
|
||||
|
||||
def insert_initial_detection(self, display_id: str, captured_timestamp: str, session_id: str = None) -> str:
|
||||
"""Insert initial detection record and return the session_id."""
|
||||
if not self.is_connected():
|
||||
if not self.connect():
|
||||
return None
|
||||
|
||||
# Generate session_id if not provided
|
||||
if not session_id:
|
||||
session_id = str(uuid.uuid4())
|
||||
|
||||
try:
|
||||
# Ensure table exists
|
||||
if not self.create_car_frontal_info_table():
|
||||
logger.error("Failed to create/verify table before insertion")
|
||||
return None
|
||||
|
||||
cur = self.connection.cursor()
|
||||
insert_query = """
|
||||
INSERT INTO gas_station_1.car_frontal_info
|
||||
(display_id, captured_timestamp, session_id, license_character, license_type, car_brand, car_model, car_body_type)
|
||||
VALUES (%s, %s, %s, NULL, 'No model available', NULL, NULL, NULL)
|
||||
ON CONFLICT (session_id) DO NOTHING
|
||||
"""
|
||||
|
||||
cur.execute(insert_query, (display_id, captured_timestamp, session_id))
|
||||
self.connection.commit()
|
||||
cur.close()
|
||||
logger.info(f"Inserted initial detection record with session_id: {session_id}")
|
||||
return session_id
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to insert initial detection record: {e}")
|
||||
if self.connection:
|
||||
self.connection.rollback()
|
||||
return None
|
|
@ -3,20 +3,72 @@ import json
|
|||
import logging
|
||||
import torch
|
||||
import cv2
|
||||
import requests
|
||||
import zipfile
|
||||
import shutil
|
||||
import traceback
|
||||
import redis
|
||||
import time
|
||||
import uuid
|
||||
import concurrent.futures
|
||||
from ultralytics import YOLO
|
||||
from urllib.parse import urlparse
|
||||
from .database import DatabaseManager
|
||||
|
||||
# Create a logger specifically for this module
|
||||
logger = logging.getLogger("detector_worker.pympta")
|
||||
|
||||
def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client) -> dict:
|
||||
def validate_redis_config(redis_config: dict) -> bool:
|
||||
"""Validate Redis configuration parameters."""
|
||||
required_fields = ["host", "port"]
|
||||
for field in required_fields:
|
||||
if field not in redis_config:
|
||||
logger.error(f"Missing required Redis config field: {field}")
|
||||
return False
|
||||
|
||||
if not isinstance(redis_config["port"], int) or redis_config["port"] <= 0:
|
||||
logger.error(f"Invalid Redis port: {redis_config['port']}")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def validate_postgresql_config(pg_config: dict) -> bool:
|
||||
"""Validate PostgreSQL configuration parameters."""
|
||||
required_fields = ["host", "port", "database", "username", "password"]
|
||||
for field in required_fields:
|
||||
if field not in pg_config:
|
||||
logger.error(f"Missing required PostgreSQL config field: {field}")
|
||||
return False
|
||||
|
||||
if not isinstance(pg_config["port"], int) or pg_config["port"] <= 0:
|
||||
logger.error(f"Invalid PostgreSQL port: {pg_config['port']}")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def crop_region_by_class(frame, regions_dict, class_name):
|
||||
"""Crop a specific region from frame based on detected class."""
|
||||
if class_name not in regions_dict:
|
||||
logger.warning(f"Class '{class_name}' not found in detected regions")
|
||||
return None
|
||||
|
||||
bbox = regions_dict[class_name]['bbox']
|
||||
x1, y1, x2, y2 = bbox
|
||||
cropped = frame[y1:y2, x1:x2]
|
||||
|
||||
if cropped.size == 0:
|
||||
logger.warning(f"Empty crop for class '{class_name}' with bbox {bbox}")
|
||||
return None
|
||||
|
||||
return cropped
|
||||
|
||||
def format_action_context(base_context, additional_context=None):
|
||||
"""Format action context with dynamic values."""
|
||||
context = {**base_context}
|
||||
if additional_context:
|
||||
context.update(additional_context)
|
||||
return context
|
||||
|
||||
def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client, db_manager=None) -> dict:
|
||||
# Recursively load a model node from configuration.
|
||||
model_path = os.path.join(mpta_dir, node_config["modelFile"])
|
||||
if not os.path.exists(model_path):
|
||||
|
@ -46,16 +98,22 @@ def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client) -> dict:
|
|||
"triggerClasses": trigger_classes,
|
||||
"triggerClassIndices": trigger_class_indices,
|
||||
"crop": node_config.get("crop", False),
|
||||
"cropClass": node_config.get("cropClass"),
|
||||
"minConfidence": node_config.get("minConfidence", None),
|
||||
"multiClass": node_config.get("multiClass", False),
|
||||
"expectedClasses": node_config.get("expectedClasses", []),
|
||||
"parallel": node_config.get("parallel", False),
|
||||
"actions": node_config.get("actions", []),
|
||||
"parallelActions": node_config.get("parallelActions", []),
|
||||
"model": model,
|
||||
"branches": [],
|
||||
"redis_client": redis_client
|
||||
"redis_client": redis_client,
|
||||
"db_manager": db_manager
|
||||
}
|
||||
logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
|
||||
for child in node_config.get("branches", []):
|
||||
logger.debug(f"Loading branch for parent node {node_config['modelId']}")
|
||||
node["branches"].append(load_pipeline_node(child, mpta_dir, redis_client))
|
||||
node["branches"].append(load_pipeline_node(child, mpta_dir, redis_client, db_manager))
|
||||
return node
|
||||
|
||||
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
||||
|
@ -168,21 +226,42 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
|||
redis_client = None
|
||||
if "redis" in pipeline_config:
|
||||
redis_config = pipeline_config["redis"]
|
||||
try:
|
||||
redis_client = redis.Redis(
|
||||
host=redis_config["host"],
|
||||
port=redis_config["port"],
|
||||
password=redis_config.get("password"),
|
||||
db=redis_config.get("db", 0),
|
||||
decode_responses=True
|
||||
)
|
||||
redis_client.ping()
|
||||
logger.info(f"Successfully connected to Redis at {redis_config['host']}:{redis_config['port']}")
|
||||
except redis.exceptions.ConnectionError as e:
|
||||
logger.error(f"Failed to connect to Redis: {e}")
|
||||
redis_client = None
|
||||
if not validate_redis_config(redis_config):
|
||||
logger.error("Invalid Redis configuration, skipping Redis connection")
|
||||
else:
|
||||
try:
|
||||
redis_client = redis.Redis(
|
||||
host=redis_config["host"],
|
||||
port=redis_config["port"],
|
||||
password=redis_config.get("password"),
|
||||
db=redis_config.get("db", 0),
|
||||
decode_responses=True
|
||||
)
|
||||
redis_client.ping()
|
||||
logger.info(f"Successfully connected to Redis at {redis_config['host']}:{redis_config['port']}")
|
||||
except redis.exceptions.ConnectionError as e:
|
||||
logger.error(f"Failed to connect to Redis: {e}")
|
||||
redis_client = None
|
||||
|
||||
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir, redis_client)
|
||||
# Establish PostgreSQL connection if configured
|
||||
db_manager = None
|
||||
if "postgresql" in pipeline_config:
|
||||
pg_config = pipeline_config["postgresql"]
|
||||
if not validate_postgresql_config(pg_config):
|
||||
logger.error("Invalid PostgreSQL configuration, skipping database connection")
|
||||
else:
|
||||
try:
|
||||
db_manager = DatabaseManager(pg_config)
|
||||
if db_manager.connect():
|
||||
logger.info(f"Successfully connected to PostgreSQL at {pg_config['host']}:{pg_config['port']}")
|
||||
else:
|
||||
logger.error("Failed to connect to PostgreSQL")
|
||||
db_manager = None
|
||||
except Exception as e:
|
||||
logger.error(f"Error initializing PostgreSQL connection: {e}")
|
||||
db_manager = None
|
||||
|
||||
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir, redis_client, db_manager)
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
|
||||
return None
|
||||
|
@ -193,22 +272,53 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
|||
logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
|
||||
return None
|
||||
|
||||
def execute_actions(node, frame, detection_result):
|
||||
def execute_actions(node, frame, detection_result, regions_dict=None):
|
||||
if not node["redis_client"] or not node["actions"]:
|
||||
return
|
||||
|
||||
# Create a dynamic context for this detection event
|
||||
from datetime import datetime
|
||||
action_context = {
|
||||
**detection_result,
|
||||
"timestamp_ms": int(time.time() * 1000),
|
||||
"uuid": str(uuid.uuid4()),
|
||||
"timestamp": datetime.now().strftime("%Y-%m-%dT%H-%M-%S"),
|
||||
"filename": f"{uuid.uuid4()}.jpg"
|
||||
}
|
||||
|
||||
for action in node["actions"]:
|
||||
try:
|
||||
if action["type"] == "redis_save_image":
|
||||
key = action["key"].format(**action_context)
|
||||
_, buffer = cv2.imencode('.jpg', frame)
|
||||
|
||||
# Check if we need to crop a specific region
|
||||
region_name = action.get("region")
|
||||
image_to_save = frame
|
||||
|
||||
if region_name and regions_dict:
|
||||
cropped_image = crop_region_by_class(frame, regions_dict, region_name)
|
||||
if cropped_image is not None:
|
||||
image_to_save = cropped_image
|
||||
logger.debug(f"Cropped region '{region_name}' for redis_save_image")
|
||||
else:
|
||||
logger.warning(f"Could not crop region '{region_name}', saving full frame instead")
|
||||
|
||||
# Encode image with specified format and quality (default to JPEG)
|
||||
img_format = action.get("format", "jpeg").lower()
|
||||
quality = action.get("quality", 90)
|
||||
|
||||
if img_format == "jpeg":
|
||||
encode_params = [cv2.IMWRITE_JPEG_QUALITY, quality]
|
||||
success, buffer = cv2.imencode('.jpg', image_to_save, encode_params)
|
||||
elif img_format == "png":
|
||||
success, buffer = cv2.imencode('.png', image_to_save)
|
||||
else:
|
||||
success, buffer = cv2.imencode('.jpg', image_to_save, [cv2.IMWRITE_JPEG_QUALITY, quality])
|
||||
|
||||
if not success:
|
||||
logger.error(f"Failed to encode image for redis_save_image")
|
||||
continue
|
||||
|
||||
expire_seconds = action.get("expire_seconds")
|
||||
if expire_seconds:
|
||||
node["redis_client"].setex(key, expire_seconds, buffer.tobytes())
|
||||
|
@ -216,60 +326,244 @@ def execute_actions(node, frame, detection_result):
|
|||
else:
|
||||
node["redis_client"].set(key, buffer.tobytes())
|
||||
logger.info(f"Saved image to Redis with key: {key}")
|
||||
# Add the generated key to the context for subsequent actions
|
||||
action_context["image_key"] = key
|
||||
elif action["type"] == "redis_publish":
|
||||
channel = action["channel"]
|
||||
message = action["message"].format(**action_context)
|
||||
node["redis_client"].publish(channel, message)
|
||||
logger.info(f"Published message to Redis channel '{channel}': {message}")
|
||||
try:
|
||||
# Handle JSON message format by creating it programmatically
|
||||
message_template = action["message"]
|
||||
|
||||
# Check if the message is JSON-like (starts and ends with braces)
|
||||
if message_template.strip().startswith('{') and message_template.strip().endswith('}'):
|
||||
# Create JSON data programmatically to avoid formatting issues
|
||||
json_data = {}
|
||||
|
||||
# Add common fields
|
||||
json_data["event"] = "frontal_detected"
|
||||
json_data["display_id"] = action_context.get("display_id", "unknown")
|
||||
json_data["session_id"] = action_context.get("session_id")
|
||||
json_data["timestamp"] = action_context.get("timestamp", "")
|
||||
json_data["image_key"] = action_context.get("image_key", "")
|
||||
|
||||
# Convert to JSON string
|
||||
message = json.dumps(json_data)
|
||||
else:
|
||||
# Use regular string formatting for non-JSON messages
|
||||
message = message_template.format(**action_context)
|
||||
|
||||
# Publish to Redis
|
||||
if not node["redis_client"]:
|
||||
logger.error("Redis client is None, cannot publish message")
|
||||
continue
|
||||
|
||||
# Test Redis connection
|
||||
try:
|
||||
node["redis_client"].ping()
|
||||
logger.debug("Redis connection is active")
|
||||
except Exception as ping_error:
|
||||
logger.error(f"Redis connection test failed: {ping_error}")
|
||||
continue
|
||||
|
||||
result = node["redis_client"].publish(channel, message)
|
||||
logger.info(f"Published message to Redis channel '{channel}': {message}")
|
||||
logger.info(f"Redis publish result (subscribers count): {result}")
|
||||
|
||||
# Additional debug info
|
||||
if result == 0:
|
||||
logger.warning(f"No subscribers listening to channel '{channel}'")
|
||||
else:
|
||||
logger.info(f"Message delivered to {result} subscriber(s)")
|
||||
|
||||
except KeyError as e:
|
||||
logger.error(f"Missing key in redis_publish message template: {e}")
|
||||
logger.debug(f"Available context keys: {list(action_context.keys())}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error in redis_publish action: {e}")
|
||||
logger.debug(f"Message template: {action['message']}")
|
||||
logger.debug(f"Available context keys: {list(action_context.keys())}")
|
||||
import traceback
|
||||
logger.debug(f"Full traceback: {traceback.format_exc()}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error executing action {action['type']}: {e}")
|
||||
|
||||
def run_pipeline(frame, node: dict, return_bbox: bool=False):
|
||||
def execute_parallel_actions(node, frame, detection_result, regions_dict):
|
||||
"""Execute parallel actions after all required branches have completed."""
|
||||
if not node.get("parallelActions"):
|
||||
return
|
||||
|
||||
logger.debug("Executing parallel actions...")
|
||||
branch_results = detection_result.get("branch_results", {})
|
||||
|
||||
for action in node["parallelActions"]:
|
||||
try:
|
||||
action_type = action.get("type")
|
||||
logger.debug(f"Processing parallel action: {action_type}")
|
||||
|
||||
if action_type == "postgresql_update_combined":
|
||||
# Check if all required branches have completed
|
||||
wait_for_branches = action.get("waitForBranches", [])
|
||||
missing_branches = [branch for branch in wait_for_branches if branch not in branch_results]
|
||||
|
||||
if missing_branches:
|
||||
logger.warning(f"Cannot execute postgresql_update_combined: missing branch results for {missing_branches}")
|
||||
continue
|
||||
|
||||
logger.info(f"All required branches completed: {wait_for_branches}")
|
||||
|
||||
# Execute the database update
|
||||
execute_postgresql_update_combined(node, action, detection_result, branch_results)
|
||||
else:
|
||||
logger.warning(f"Unknown parallel action type: {action_type}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error executing parallel action {action.get('type', 'unknown')}: {e}")
|
||||
import traceback
|
||||
logger.debug(f"Full traceback: {traceback.format_exc()}")
|
||||
|
||||
def execute_postgresql_update_combined(node, action, detection_result, branch_results):
|
||||
"""Execute a PostgreSQL update with combined branch results."""
|
||||
if not node.get("db_manager"):
|
||||
logger.error("No database manager available for postgresql_update_combined action")
|
||||
return
|
||||
|
||||
try:
|
||||
table = action["table"]
|
||||
key_field = action["key_field"]
|
||||
key_value_template = action["key_value"]
|
||||
fields = action["fields"]
|
||||
|
||||
# Create context for key value formatting
|
||||
action_context = {**detection_result}
|
||||
key_value = key_value_template.format(**action_context)
|
||||
|
||||
logger.info(f"Executing database update: table={table}, {key_field}={key_value}")
|
||||
|
||||
# Process field mappings
|
||||
mapped_fields = {}
|
||||
for db_field, value_template in fields.items():
|
||||
try:
|
||||
mapped_value = resolve_field_mapping(value_template, branch_results, action_context)
|
||||
if mapped_value is not None:
|
||||
mapped_fields[db_field] = mapped_value
|
||||
logger.debug(f"Mapped field: {db_field} = {mapped_value}")
|
||||
else:
|
||||
logger.warning(f"Could not resolve field mapping for {db_field}: {value_template}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error mapping field {db_field} with template '{value_template}': {e}")
|
||||
|
||||
if not mapped_fields:
|
||||
logger.warning("No fields mapped successfully, skipping database update")
|
||||
return
|
||||
|
||||
# Execute the database update
|
||||
success = node["db_manager"].execute_update(table, key_field, key_value, mapped_fields)
|
||||
|
||||
if success:
|
||||
logger.info(f"Successfully updated database: {table} with {len(mapped_fields)} fields")
|
||||
else:
|
||||
logger.error(f"Failed to update database: {table}")
|
||||
|
||||
except KeyError as e:
|
||||
logger.error(f"Missing required field in postgresql_update_combined action: {e}")
|
||||
except Exception as e:
|
||||
logger.error(f"Error in postgresql_update_combined action: {e}")
|
||||
import traceback
|
||||
logger.debug(f"Full traceback: {traceback.format_exc()}")
|
||||
|
||||
def resolve_field_mapping(value_template, branch_results, action_context):
|
||||
"""Resolve field mapping templates like {car_brand_cls_v1.brand}."""
|
||||
try:
|
||||
# Handle simple context variables first (non-branch references)
|
||||
if not '.' in value_template:
|
||||
return value_template.format(**action_context)
|
||||
|
||||
# Handle branch result references like {model_id.field}
|
||||
import re
|
||||
branch_refs = re.findall(r'\{([^}]+\.[^}]+)\}', value_template)
|
||||
|
||||
resolved_template = value_template
|
||||
for ref in branch_refs:
|
||||
try:
|
||||
model_id, field_name = ref.split('.', 1)
|
||||
|
||||
if model_id in branch_results:
|
||||
branch_data = branch_results[model_id]
|
||||
if field_name in branch_data:
|
||||
field_value = branch_data[field_name]
|
||||
resolved_template = resolved_template.replace(f'{{{ref}}}', str(field_value))
|
||||
logger.debug(f"Resolved {ref} to {field_value}")
|
||||
else:
|
||||
logger.warning(f"Field '{field_name}' not found in branch '{model_id}' results. Available fields: {list(branch_data.keys())}")
|
||||
return None
|
||||
else:
|
||||
logger.warning(f"Branch '{model_id}' not found in results. Available branches: {list(branch_results.keys())}")
|
||||
return None
|
||||
except ValueError as e:
|
||||
logger.error(f"Invalid branch reference format: {ref}")
|
||||
return None
|
||||
|
||||
# Format any remaining simple variables
|
||||
try:
|
||||
final_value = resolved_template.format(**action_context)
|
||||
return final_value
|
||||
except KeyError as e:
|
||||
logger.warning(f"Could not resolve context variable in template: {e}")
|
||||
return resolved_template
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error resolving field mapping '{value_template}': {e}")
|
||||
return None
|
||||
|
||||
def run_pipeline(frame, node: dict, return_bbox: bool=False, context=None):
|
||||
"""
|
||||
- For detection nodes (task != 'classify'):
|
||||
• runs `track(..., classes=triggerClassIndices)`
|
||||
• picks top box ≥ minConfidence
|
||||
• optionally crops & resizes → recurse into child
|
||||
• else returns (det_dict, bbox)
|
||||
- For classify nodes:
|
||||
• runs `predict()`
|
||||
• returns top (class,confidence) and no bbox
|
||||
Enhanced pipeline that supports:
|
||||
- Multi-class detection (detecting multiple classes simultaneously)
|
||||
- Parallel branch processing
|
||||
- Region-based actions and cropping
|
||||
- Context passing for session/camera information
|
||||
"""
|
||||
try:
|
||||
task = getattr(node["model"], "task", None)
|
||||
|
||||
# ─── Classification stage ───────────────────────────────────
|
||||
if task == "classify":
|
||||
# run the classifier and grab its top-1 directly via the Probs API
|
||||
results = node["model"].predict(frame, stream=False)
|
||||
# nothing returned?
|
||||
if not results:
|
||||
return (None, None) if return_bbox else None
|
||||
|
||||
# take the first result's probs object
|
||||
r = results[0]
|
||||
r = results[0]
|
||||
probs = r.probs
|
||||
if probs is None:
|
||||
return (None, None) if return_bbox else None
|
||||
|
||||
# get the top-1 class index and its confidence
|
||||
top1_idx = int(probs.top1)
|
||||
top1_idx = int(probs.top1)
|
||||
top1_conf = float(probs.top1conf)
|
||||
class_name = node["model"].names[top1_idx]
|
||||
|
||||
det = {
|
||||
"class": node["model"].names[top1_idx],
|
||||
"class": class_name,
|
||||
"confidence": top1_conf,
|
||||
"id": None
|
||||
"id": None,
|
||||
class_name: class_name # Add class name as key for backward compatibility
|
||||
}
|
||||
|
||||
# Add specific field mappings for database operations based on model type
|
||||
model_id = node.get("modelId", "").lower()
|
||||
if "brand" in model_id or "brand_cls" in model_id:
|
||||
det["brand"] = class_name
|
||||
elif "bodytype" in model_id or "body" in model_id:
|
||||
det["body_type"] = class_name
|
||||
elif "color" in model_id:
|
||||
det["color"] = class_name
|
||||
|
||||
execute_actions(node, frame, det)
|
||||
return (det, None) if return_bbox else det
|
||||
|
||||
|
||||
# ─── Detection stage ────────────────────────────────────────
|
||||
# only look for your triggerClasses
|
||||
# ─── Detection stage - Multi-class support ──────────────────
|
||||
tk = node["triggerClassIndices"]
|
||||
logger.debug(f"Running detection for node {node['modelId']} with trigger classes: {node.get('triggerClasses', [])} (indices: {tk})")
|
||||
logger.debug(f"Node configuration: minConfidence={node['minConfidence']}, multiClass={node.get('multiClass', False)}")
|
||||
|
||||
res = node["model"].track(
|
||||
frame,
|
||||
stream=False,
|
||||
|
@ -277,48 +571,228 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False):
|
|||
**({"classes": tk} if tk else {})
|
||||
)[0]
|
||||
|
||||
dets, boxes = [], []
|
||||
for box in res.boxes:
|
||||
# Collect all detections above confidence threshold
|
||||
all_detections = []
|
||||
all_boxes = []
|
||||
regions_dict = {}
|
||||
|
||||
logger.debug(f"Raw detection results from model: {len(res.boxes) if res.boxes is not None else 0} detections")
|
||||
|
||||
for i, box in enumerate(res.boxes):
|
||||
conf = float(box.cpu().conf[0])
|
||||
cid = int(box.cpu().cls[0])
|
||||
cid = int(box.cpu().cls[0])
|
||||
name = node["model"].names[cid]
|
||||
|
||||
logger.debug(f"Detection {i}: class='{name}' (id={cid}), confidence={conf:.3f}, threshold={node['minConfidence']}")
|
||||
|
||||
if conf < node["minConfidence"]:
|
||||
logger.debug(f" -> REJECTED: confidence {conf:.3f} < threshold {node['minConfidence']}")
|
||||
continue
|
||||
|
||||
xy = box.cpu().xyxy[0]
|
||||
x1,y1,x2,y2 = map(int, xy)
|
||||
dets.append({"class": name, "confidence": conf,
|
||||
"id": box.id.item() if hasattr(box, "id") else None})
|
||||
boxes.append((x1, y1, x2, y2))
|
||||
x1, y1, x2, y2 = map(int, xy)
|
||||
bbox = (x1, y1, x2, y2)
|
||||
|
||||
detection = {
|
||||
"class": name,
|
||||
"confidence": conf,
|
||||
"id": box.id.item() if hasattr(box, "id") else None,
|
||||
"bbox": bbox
|
||||
}
|
||||
|
||||
all_detections.append(detection)
|
||||
all_boxes.append(bbox)
|
||||
|
||||
logger.debug(f" -> ACCEPTED: {name} with confidence {conf:.3f}, bbox={bbox}")
|
||||
|
||||
# Store highest confidence detection for each class
|
||||
if name not in regions_dict or conf > regions_dict[name]["confidence"]:
|
||||
regions_dict[name] = {
|
||||
"bbox": bbox,
|
||||
"confidence": conf,
|
||||
"detection": detection
|
||||
}
|
||||
logger.debug(f" -> Updated regions_dict['{name}'] with confidence {conf:.3f}")
|
||||
|
||||
if not dets:
|
||||
logger.info(f"Detection summary: {len(all_detections)} accepted detections from {len(res.boxes) if res.boxes is not None else 0} total")
|
||||
logger.info(f"Detected classes: {list(regions_dict.keys())}")
|
||||
|
||||
if not all_detections:
|
||||
logger.warning("No detections above confidence threshold - returning null")
|
||||
return (None, None) if return_bbox else None
|
||||
|
||||
# take highest‐confidence
|
||||
best_idx = max(range(len(dets)), key=lambda i: dets[i]["confidence"])
|
||||
best_det = dets[best_idx]
|
||||
best_box = boxes[best_idx]
|
||||
# ─── Multi-class validation ─────────────────────────────────
|
||||
if node.get("multiClass", False) and node.get("expectedClasses"):
|
||||
expected_classes = node["expectedClasses"]
|
||||
detected_classes = list(regions_dict.keys())
|
||||
|
||||
logger.info(f"Multi-class validation: expected={expected_classes}, detected={detected_classes}")
|
||||
|
||||
# Check if at least one expected class is detected (flexible mode)
|
||||
matching_classes = [cls for cls in expected_classes if cls in detected_classes]
|
||||
missing_classes = [cls for cls in expected_classes if cls not in detected_classes]
|
||||
|
||||
logger.debug(f"Matching classes: {matching_classes}, Missing classes: {missing_classes}")
|
||||
|
||||
if not matching_classes:
|
||||
# No expected classes found at all
|
||||
logger.warning(f"PIPELINE REJECTED: No expected classes detected. Expected: {expected_classes}, Detected: {detected_classes}")
|
||||
return (None, None) if return_bbox else None
|
||||
|
||||
if missing_classes:
|
||||
logger.info(f"Partial multi-class detection: {matching_classes} found, {missing_classes} missing")
|
||||
else:
|
||||
logger.info(f"Complete multi-class detection success: {detected_classes}")
|
||||
else:
|
||||
logger.debug("No multi-class validation - proceeding with all detections")
|
||||
|
||||
# ─── Branch (classification) ───────────────────────────────
|
||||
for br in node["branches"]:
|
||||
if (best_det["class"] in br["triggerClasses"]
|
||||
and best_det["confidence"] >= br["minConfidence"]):
|
||||
# crop if requested
|
||||
sub = frame
|
||||
if br["crop"]:
|
||||
x1,y1,x2,y2 = best_box
|
||||
sub = frame[y1:y2, x1:x2]
|
||||
sub = cv2.resize(sub, (224, 224))
|
||||
# ─── Execute actions with region information ────────────────
|
||||
detection_result = {
|
||||
"detections": all_detections,
|
||||
"regions": regions_dict,
|
||||
**(context or {})
|
||||
}
|
||||
|
||||
# ─── Create initial database record when Car+Frontal detected ────
|
||||
if node.get("db_manager") and node.get("multiClass", False):
|
||||
# Only create database record if we have both Car and Frontal
|
||||
has_car = "Car" in regions_dict
|
||||
has_frontal = "Frontal" in regions_dict
|
||||
|
||||
if has_car and has_frontal:
|
||||
# Generate UUID session_id since client session is None for now
|
||||
import uuid as uuid_lib
|
||||
from datetime import datetime
|
||||
generated_session_id = str(uuid_lib.uuid4())
|
||||
|
||||
# Insert initial detection record
|
||||
display_id = detection_result.get("display_id", "unknown")
|
||||
timestamp = datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
||||
|
||||
inserted_session_id = node["db_manager"].insert_initial_detection(
|
||||
display_id=display_id,
|
||||
captured_timestamp=timestamp,
|
||||
session_id=generated_session_id
|
||||
)
|
||||
|
||||
if inserted_session_id:
|
||||
# Update detection_result with the generated session_id for actions and branches
|
||||
detection_result["session_id"] = inserted_session_id
|
||||
detection_result["timestamp"] = timestamp # Update with proper timestamp
|
||||
logger.info(f"Created initial database record with session_id: {inserted_session_id}")
|
||||
else:
|
||||
logger.debug(f"Database record not created - missing required classes. Has Car: {has_car}, Has Frontal: {has_frontal}")
|
||||
|
||||
execute_actions(node, frame, detection_result, regions_dict)
|
||||
|
||||
det2, _ = run_pipeline(sub, br, return_bbox=True)
|
||||
if det2:
|
||||
# return classification result + original bbox
|
||||
execute_actions(br, sub, det2)
|
||||
return (det2, best_box) if return_bbox else det2
|
||||
# ─── Parallel branch processing ─────────────────────────────
|
||||
if node["branches"]:
|
||||
branch_results = {}
|
||||
|
||||
# Filter branches that should be triggered
|
||||
active_branches = []
|
||||
for br in node["branches"]:
|
||||
trigger_classes = br.get("triggerClasses", [])
|
||||
min_conf = br.get("minConfidence", 0)
|
||||
|
||||
logger.debug(f"Evaluating branch {br['modelId']}: trigger_classes={trigger_classes}, min_conf={min_conf}")
|
||||
|
||||
# Check if any detected class matches branch trigger
|
||||
branch_triggered = False
|
||||
for det_class in regions_dict:
|
||||
det_confidence = regions_dict[det_class]["confidence"]
|
||||
logger.debug(f" Checking detected class '{det_class}' (confidence={det_confidence:.3f}) against triggers {trigger_classes}")
|
||||
|
||||
if (det_class in trigger_classes and det_confidence >= min_conf):
|
||||
active_branches.append(br)
|
||||
branch_triggered = True
|
||||
logger.info(f"Branch {br['modelId']} activated by class '{det_class}' (conf={det_confidence:.3f} >= {min_conf})")
|
||||
break
|
||||
|
||||
if not branch_triggered:
|
||||
logger.debug(f"Branch {br['modelId']} not triggered - no matching classes or insufficient confidence")
|
||||
|
||||
if active_branches:
|
||||
if node.get("parallel", False) or any(br.get("parallel", False) for br in active_branches):
|
||||
# Run branches in parallel
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=len(active_branches)) as executor:
|
||||
futures = {}
|
||||
|
||||
for br in active_branches:
|
||||
crop_class = br.get("cropClass", br.get("triggerClasses", [])[0] if br.get("triggerClasses") else None)
|
||||
sub_frame = frame
|
||||
|
||||
logger.info(f"Starting parallel branch: {br['modelId']}, crop_class: {crop_class}")
|
||||
|
||||
if br.get("crop", False) and crop_class:
|
||||
cropped = crop_region_by_class(frame, regions_dict, crop_class)
|
||||
if cropped is not None:
|
||||
sub_frame = cv2.resize(cropped, (224, 224))
|
||||
logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']}")
|
||||
else:
|
||||
logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
|
||||
continue
|
||||
|
||||
future = executor.submit(run_pipeline, sub_frame, br, True, context)
|
||||
futures[future] = br
|
||||
|
||||
# Collect results
|
||||
for future in concurrent.futures.as_completed(futures):
|
||||
br = futures[future]
|
||||
try:
|
||||
result, _ = future.result()
|
||||
if result:
|
||||
branch_results[br["modelId"]] = result
|
||||
logger.info(f"Branch {br['modelId']} completed: {result}")
|
||||
except Exception as e:
|
||||
logger.error(f"Branch {br['modelId']} failed: {e}")
|
||||
else:
|
||||
# Run branches sequentially
|
||||
for br in active_branches:
|
||||
crop_class = br.get("cropClass", br.get("triggerClasses", [])[0] if br.get("triggerClasses") else None)
|
||||
sub_frame = frame
|
||||
|
||||
logger.info(f"Starting sequential branch: {br['modelId']}, crop_class: {crop_class}")
|
||||
|
||||
if br.get("crop", False) and crop_class:
|
||||
cropped = crop_region_by_class(frame, regions_dict, crop_class)
|
||||
if cropped is not None:
|
||||
sub_frame = cv2.resize(cropped, (224, 224))
|
||||
logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']}")
|
||||
else:
|
||||
logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
|
||||
continue
|
||||
|
||||
try:
|
||||
result, _ = run_pipeline(sub_frame, br, True, context)
|
||||
if result:
|
||||
branch_results[br["modelId"]] = result
|
||||
logger.info(f"Branch {br['modelId']} completed: {result}")
|
||||
else:
|
||||
logger.warning(f"Branch {br['modelId']} returned no result")
|
||||
except Exception as e:
|
||||
logger.error(f"Error in sequential branch {br['modelId']}: {e}")
|
||||
import traceback
|
||||
logger.debug(f"Branch error traceback: {traceback.format_exc()}")
|
||||
|
||||
# ─── No branch matched → return this detection ─────────────
|
||||
execute_actions(node, frame, best_det)
|
||||
return (best_det, best_box) if return_bbox else best_det
|
||||
# Store branch results in detection_result for parallel actions
|
||||
detection_result["branch_results"] = branch_results
|
||||
|
||||
# ─── Execute Parallel Actions ───────────────────────────────
|
||||
if node.get("parallelActions") and "branch_results" in detection_result:
|
||||
execute_parallel_actions(node, frame, detection_result, regions_dict)
|
||||
|
||||
# ─── Return detection result ────────────────────────────────
|
||||
primary_detection = max(all_detections, key=lambda x: x["confidence"])
|
||||
primary_bbox = primary_detection["bbox"]
|
||||
|
||||
# Add branch results to primary detection for compatibility
|
||||
if "branch_results" in detection_result:
|
||||
primary_detection["branch_results"] = detection_result["branch_results"]
|
||||
|
||||
return (primary_detection, primary_bbox) if return_bbox else primary_detection
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error in node {node.get('modelId')}: {e}")
|
||||
logger.error(f"Error in node {node.get('modelId')}: {e}")
|
||||
traceback.print_exc()
|
||||
return (None, None) if return_bbox else None
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue