Done features 2 vehicle detect and store image to redis

This commit is contained in:
ziesorx 2025-08-10 15:01:18 +07:00
parent a1d358aead
commit 18c62a2370
2 changed files with 262 additions and 65 deletions

23
app.py
View file

@ -239,7 +239,20 @@ async def detect(websocket: WebSocket):
logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}")
start_time = time.time()
detection_result = run_pipeline(cropped_frame, model_tree)
# Extract display identifier for session ID lookup
subscription_parts = stream["subscriptionIdentifier"].split(';')
display_identifier = subscription_parts[0] if subscription_parts else None
session_id = session_ids.get(display_identifier) if display_identifier else None
# Create context for pipeline execution
pipeline_context = {
"camera_id": camera_id,
"display_id": display_identifier,
"session_id": session_id
}
detection_result = run_pipeline(cropped_frame, model_tree, context=pipeline_context)
process_time = (time.time() - start_time) * 1000
logger.debug(f"Detection for camera {camera_id} completed in {process_time:.2f}ms")
@ -298,11 +311,6 @@ async def detect(websocket: WebSocket):
if key not in ["box", "id"]: # Skip internal fields
detection_dict[key] = value
# Extract display identifier for session ID lookup
subscription_parts = stream["subscriptionIdentifier"].split(';')
display_identifier = subscription_parts[0] if subscription_parts else None
session_id = session_ids.get(display_identifier) if display_identifier else None
detection_data = {
"type": "imageDetection",
"subscriptionIdentifier": stream["subscriptionIdentifier"],
@ -322,9 +330,6 @@ async def detect(websocket: WebSocket):
logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {highest_confidence_detection['confidence']:.2f} using model {stream['modelName']}")
# Log session ID if available
subscription_parts = stream["subscriptionIdentifier"].split(';')
display_identifier = subscription_parts[0] if subscription_parts else None
session_id = session_ids.get(display_identifier) if display_identifier else None
if session_id:
logger.debug(f"Detection associated with session ID: {session_id}")

View file

@ -3,13 +3,13 @@ import json
import logging
import torch
import cv2
import requests
import zipfile
import shutil
import traceback
import redis
import time
import uuid
import concurrent.futures
from ultralytics import YOLO
from urllib.parse import urlparse
from .database import DatabaseManager
@ -45,6 +45,29 @@ def validate_postgresql_config(pg_config: dict) -> bool:
return True
def crop_region_by_class(frame, regions_dict, class_name):
"""Crop a specific region from frame based on detected class."""
if class_name not in regions_dict:
logger.warning(f"Class '{class_name}' not found in detected regions")
return None
bbox = regions_dict[class_name]['bbox']
x1, y1, x2, y2 = bbox
cropped = frame[y1:y2, x1:x2]
if cropped.size == 0:
logger.warning(f"Empty crop for class '{class_name}' with bbox {bbox}")
return None
return cropped
def format_action_context(base_context, additional_context=None):
"""Format action context with dynamic values."""
context = {**base_context}
if additional_context:
context.update(additional_context)
return context
def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client, db_manager=None) -> dict:
# Recursively load a model node from configuration.
model_path = os.path.join(mpta_dir, node_config["modelFile"])
@ -249,22 +272,53 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
return None
def execute_actions(node, frame, detection_result):
def execute_actions(node, frame, detection_result, regions_dict=None):
if not node["redis_client"] or not node["actions"]:
return
# Create a dynamic context for this detection event
from datetime import datetime
action_context = {
**detection_result,
"timestamp_ms": int(time.time() * 1000),
"uuid": str(uuid.uuid4()),
"timestamp": datetime.now().strftime("%Y-%m-%dT%H-%M-%S"),
"filename": f"{uuid.uuid4()}.jpg"
}
for action in node["actions"]:
try:
if action["type"] == "redis_save_image":
key = action["key"].format(**action_context)
_, buffer = cv2.imencode('.jpg', frame)
# Check if we need to crop a specific region
region_name = action.get("region")
image_to_save = frame
if region_name and regions_dict:
cropped_image = crop_region_by_class(frame, regions_dict, region_name)
if cropped_image is not None:
image_to_save = cropped_image
logger.debug(f"Cropped region '{region_name}' for redis_save_image")
else:
logger.warning(f"Could not crop region '{region_name}', saving full frame instead")
# Encode image with specified format and quality (default to JPEG)
img_format = action.get("format", "jpeg").lower()
quality = action.get("quality", 90)
if img_format == "jpeg":
encode_params = [cv2.IMWRITE_JPEG_QUALITY, quality]
success, buffer = cv2.imencode('.jpg', image_to_save, encode_params)
elif img_format == "png":
success, buffer = cv2.imencode('.png', image_to_save)
else:
success, buffer = cv2.imencode('.jpg', image_to_save, [cv2.IMWRITE_JPEG_QUALITY, quality])
if not success:
logger.error(f"Failed to encode image for redis_save_image")
continue
expire_seconds = action.get("expire_seconds")
if expire_seconds:
node["redis_client"].setex(key, expire_seconds, buffer.tobytes())
@ -272,59 +326,101 @@ def execute_actions(node, frame, detection_result):
else:
node["redis_client"].set(key, buffer.tobytes())
logger.info(f"Saved image to Redis with key: {key}")
# Add the generated key to the context for subsequent actions
action_context["image_key"] = key
elif action["type"] == "redis_publish":
channel = action["channel"]
message = action["message"].format(**action_context)
node["redis_client"].publish(channel, message)
logger.info(f"Published message to Redis channel '{channel}': {message}")
try:
# Handle JSON message format by creating it programmatically
message_template = action["message"]
# Check if the message is JSON-like (starts and ends with braces)
if message_template.strip().startswith('{') and message_template.strip().endswith('}'):
# Create JSON data programmatically to avoid formatting issues
json_data = {}
# Add common fields
json_data["event"] = "frontal_detected"
json_data["display_id"] = action_context.get("display_id", "unknown")
json_data["session_id"] = action_context.get("session_id")
json_data["timestamp"] = action_context.get("timestamp", "")
json_data["image_key"] = action_context.get("image_key", "")
# Convert to JSON string
message = json.dumps(json_data)
else:
# Use regular string formatting for non-JSON messages
message = message_template.format(**action_context)
# Publish to Redis
if not node["redis_client"]:
logger.error("Redis client is None, cannot publish message")
continue
# Test Redis connection
try:
node["redis_client"].ping()
logger.debug("Redis connection is active")
except Exception as ping_error:
logger.error(f"Redis connection test failed: {ping_error}")
continue
result = node["redis_client"].publish(channel, message)
logger.info(f"Published message to Redis channel '{channel}': {message}")
logger.info(f"Redis publish result (subscribers count): {result}")
# Additional debug info
if result == 0:
logger.warning(f"No subscribers listening to channel '{channel}'")
else:
logger.info(f"Message delivered to {result} subscriber(s)")
except KeyError as e:
logger.error(f"Missing key in redis_publish message template: {e}")
logger.debug(f"Available context keys: {list(action_context.keys())}")
except Exception as e:
logger.error(f"Error in redis_publish action: {e}")
logger.debug(f"Message template: {action['message']}")
logger.debug(f"Available context keys: {list(action_context.keys())}")
import traceback
logger.debug(f"Full traceback: {traceback.format_exc()}")
except Exception as e:
logger.error(f"Error executing action {action['type']}: {e}")
def run_pipeline(frame, node: dict, return_bbox: bool=False):
def run_pipeline(frame, node: dict, return_bbox: bool=False, context=None):
"""
- For detection nodes (task != 'classify'):
runs `track(..., classes=triggerClassIndices)`
picks top box minConfidence
optionally crops & resizes recurse into child
else returns (det_dict, bbox)
- For classify nodes:
runs `predict()`
returns top (class,confidence) and no bbox
Enhanced pipeline that supports:
- Multi-class detection (detecting multiple classes simultaneously)
- Parallel branch processing
- Region-based actions and cropping
- Context passing for session/camera information
"""
try:
task = getattr(node["model"], "task", None)
# ─── Classification stage ───────────────────────────────────
if task == "classify":
# run the classifier and grab its top-1 directly via the Probs API
results = node["model"].predict(frame, stream=False)
# nothing returned?
if not results:
return (None, None) if return_bbox else None
# take the first result's probs object
r = results[0]
r = results[0]
probs = r.probs
if probs is None:
return (None, None) if return_bbox else None
# get the top-1 class index and its confidence
top1_idx = int(probs.top1)
top1_idx = int(probs.top1)
top1_conf = float(probs.top1conf)
det = {
"class": node["model"].names[top1_idx],
"confidence": top1_conf,
"id": None
"id": None,
node["model"].names[top1_idx]: node["model"].names[top1_idx] # Add class name as key
}
execute_actions(node, frame, det)
return (det, None) if return_bbox else det
# ─── Detection stage ────────────────────────────────────────
# only look for your triggerClasses
# ─── Detection stage - Multi-class support ──────────────────
tk = node["triggerClassIndices"]
res = node["model"].track(
frame,
@ -333,48 +429,144 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False):
**({"classes": tk} if tk else {})
)[0]
dets, boxes = [], []
# Collect all detections above confidence threshold
all_detections = []
all_boxes = []
regions_dict = {}
for box in res.boxes:
conf = float(box.cpu().conf[0])
cid = int(box.cpu().cls[0])
cid = int(box.cpu().cls[0])
name = node["model"].names[cid]
if conf < node["minConfidence"]:
continue
xy = box.cpu().xyxy[0]
x1,y1,x2,y2 = map(int, xy)
dets.append({"class": name, "confidence": conf,
"id": box.id.item() if hasattr(box, "id") else None})
boxes.append((x1, y1, x2, y2))
x1, y1, x2, y2 = map(int, xy)
bbox = (x1, y1, x2, y2)
detection = {
"class": name,
"confidence": conf,
"id": box.id.item() if hasattr(box, "id") else None,
"bbox": bbox
}
all_detections.append(detection)
all_boxes.append(bbox)
# Store highest confidence detection for each class
if name not in regions_dict or conf > regions_dict[name]["confidence"]:
regions_dict[name] = {
"bbox": bbox,
"confidence": conf,
"detection": detection
}
if not dets:
if not all_detections:
return (None, None) if return_bbox else None
# take highestconfidence
best_idx = max(range(len(dets)), key=lambda i: dets[i]["confidence"])
best_det = dets[best_idx]
best_box = boxes[best_idx]
# ─── Multi-class validation ─────────────────────────────────
if node.get("multiClass", False) and node.get("expectedClasses"):
expected_classes = node["expectedClasses"]
detected_classes = list(regions_dict.keys())
# Check if all expected classes are detected
missing_classes = [cls for cls in expected_classes if cls not in detected_classes]
if missing_classes:
logger.debug(f"Missing expected classes: {missing_classes}. Detected: {detected_classes}")
return (None, None) if return_bbox else None
logger.info(f"Multi-class detection success: {detected_classes}")
# ─── Branch (classification) ───────────────────────────────
for br in node["branches"]:
if (best_det["class"] in br["triggerClasses"]
and best_det["confidence"] >= br["minConfidence"]):
# crop if requested
sub = frame
if br["crop"]:
x1,y1,x2,y2 = best_box
sub = frame[y1:y2, x1:x2]
sub = cv2.resize(sub, (224, 224))
# ─── Execute actions with region information ────────────────
detection_result = {
"detections": all_detections,
"regions": regions_dict,
**(context or {})
}
execute_actions(node, frame, detection_result, regions_dict)
det2, _ = run_pipeline(sub, br, return_bbox=True)
if det2:
# return classification result + original bbox
execute_actions(br, sub, det2)
return (det2, best_box) if return_bbox else det2
# ─── Parallel branch processing ─────────────────────────────
if node["branches"]:
branch_results = {}
# Filter branches that should be triggered
active_branches = []
for br in node["branches"]:
trigger_classes = br.get("triggerClasses", [])
min_conf = br.get("minConfidence", 0)
# Check if any detected class matches branch trigger
for det_class in regions_dict:
if (det_class in trigger_classes and
regions_dict[det_class]["confidence"] >= min_conf):
active_branches.append(br)
break
if active_branches:
if node.get("parallel", False) or any(br.get("parallel", False) for br in active_branches):
# Run branches in parallel
with concurrent.futures.ThreadPoolExecutor(max_workers=len(active_branches)) as executor:
futures = {}
for br in active_branches:
crop_class = br.get("cropClass", br.get("triggerClasses", [])[0] if br.get("triggerClasses") else None)
sub_frame = frame
if br.get("crop", False) and crop_class:
cropped = crop_region_by_class(frame, regions_dict, crop_class)
if cropped is not None:
sub_frame = cv2.resize(cropped, (224, 224))
else:
continue
future = executor.submit(run_pipeline, sub_frame, br, True, context)
futures[future] = br
# Collect results
for future in concurrent.futures.as_completed(futures):
br = futures[future]
try:
result, _ = future.result()
if result:
branch_results[br["modelId"]] = result
logger.info(f"Branch {br['modelId']} completed: {result}")
except Exception as e:
logger.error(f"Branch {br['modelId']} failed: {e}")
else:
# Run branches sequentially
for br in active_branches:
crop_class = br.get("cropClass", br.get("triggerClasses", [])[0] if br.get("triggerClasses") else None)
sub_frame = frame
if br.get("crop", False) and crop_class:
cropped = crop_region_by_class(frame, regions_dict, crop_class)
if cropped is not None:
sub_frame = cv2.resize(cropped, (224, 224))
else:
continue
result, _ = run_pipeline(sub_frame, br, True, context)
if result:
branch_results[br["modelId"]] = result
logger.info(f"Branch {br['modelId']} completed: {result}")
# ─── No branch matched → return this detection ─────────────
execute_actions(node, frame, best_det)
return (best_det, best_box) if return_bbox else best_det
# Store branch results in detection_result for parallel actions
detection_result["branch_results"] = branch_results
# ─── Return detection result ────────────────────────────────
primary_detection = max(all_detections, key=lambda x: x["confidence"])
primary_bbox = primary_detection["bbox"]
# Add branch results to primary detection for compatibility
if "branch_results" in detection_result:
primary_detection["branch_results"] = detection_result["branch_results"]
return (primary_detection, primary_bbox) if return_bbox else primary_detection
except Exception as e:
logging.error(f"Error in node {node.get('modelId')}: {e}")
logger.error(f"Error in node {node.get('modelId')}: {e}")
traceback.print_exc()
return (None, None) if return_bbox else None