Done features 2 vehicle detect and store image to redis
This commit is contained in:
		
							parent
							
								
									a1d358aead
								
							
						
					
					
						commit
						18c62a2370
					
				
					 2 changed files with 262 additions and 65 deletions
				
			
		
							
								
								
									
										23
									
								
								app.py
									
										
									
									
									
								
							
							
						
						
									
										23
									
								
								app.py
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -239,7 +239,20 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
            
 | 
			
		||||
            logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}")
 | 
			
		||||
            start_time = time.time()
 | 
			
		||||
            detection_result = run_pipeline(cropped_frame, model_tree)
 | 
			
		||||
            
 | 
			
		||||
            # Extract display identifier for session ID lookup
 | 
			
		||||
            subscription_parts = stream["subscriptionIdentifier"].split(';')
 | 
			
		||||
            display_identifier = subscription_parts[0] if subscription_parts else None
 | 
			
		||||
            session_id = session_ids.get(display_identifier) if display_identifier else None
 | 
			
		||||
            
 | 
			
		||||
            # Create context for pipeline execution
 | 
			
		||||
            pipeline_context = {
 | 
			
		||||
                "camera_id": camera_id,
 | 
			
		||||
                "display_id": display_identifier,
 | 
			
		||||
                "session_id": session_id
 | 
			
		||||
            }
 | 
			
		||||
            
 | 
			
		||||
            detection_result = run_pipeline(cropped_frame, model_tree, context=pipeline_context)
 | 
			
		||||
            process_time = (time.time() - start_time) * 1000
 | 
			
		||||
            logger.debug(f"Detection for camera {camera_id} completed in {process_time:.2f}ms")
 | 
			
		||||
            
 | 
			
		||||
| 
						 | 
				
			
			@ -298,11 +311,6 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                    if key not in ["box", "id"]:  # Skip internal fields
 | 
			
		||||
                        detection_dict[key] = value
 | 
			
		||||
            
 | 
			
		||||
            # Extract display identifier for session ID lookup
 | 
			
		||||
            subscription_parts = stream["subscriptionIdentifier"].split(';')
 | 
			
		||||
            display_identifier = subscription_parts[0] if subscription_parts else None
 | 
			
		||||
            session_id = session_ids.get(display_identifier) if display_identifier else None
 | 
			
		||||
            
 | 
			
		||||
            detection_data = {
 | 
			
		||||
                "type": "imageDetection",
 | 
			
		||||
                "subscriptionIdentifier": stream["subscriptionIdentifier"],
 | 
			
		||||
| 
						 | 
				
			
			@ -322,9 +330,6 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {highest_confidence_detection['confidence']:.2f} using model {stream['modelName']}")
 | 
			
		||||
                
 | 
			
		||||
                # Log session ID if available
 | 
			
		||||
                subscription_parts = stream["subscriptionIdentifier"].split(';')
 | 
			
		||||
                display_identifier = subscription_parts[0] if subscription_parts else None
 | 
			
		||||
                session_id = session_ids.get(display_identifier) if display_identifier else None
 | 
			
		||||
                if session_id:
 | 
			
		||||
                    logger.debug(f"Detection associated with session ID: {session_id}")
 | 
			
		||||
            
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -3,13 +3,13 @@ import json
 | 
			
		|||
import logging
 | 
			
		||||
import torch
 | 
			
		||||
import cv2
 | 
			
		||||
import requests
 | 
			
		||||
import zipfile
 | 
			
		||||
import shutil
 | 
			
		||||
import traceback
 | 
			
		||||
import redis
 | 
			
		||||
import time
 | 
			
		||||
import uuid
 | 
			
		||||
import concurrent.futures
 | 
			
		||||
from ultralytics import YOLO
 | 
			
		||||
from urllib.parse import urlparse
 | 
			
		||||
from .database import DatabaseManager
 | 
			
		||||
| 
						 | 
				
			
			@ -45,6 +45,29 @@ def validate_postgresql_config(pg_config: dict) -> bool:
 | 
			
		|||
    
 | 
			
		||||
    return True
 | 
			
		||||
 | 
			
		||||
def crop_region_by_class(frame, regions_dict, class_name):
 | 
			
		||||
    """Crop a specific region from frame based on detected class."""
 | 
			
		||||
    if class_name not in regions_dict:
 | 
			
		||||
        logger.warning(f"Class '{class_name}' not found in detected regions")
 | 
			
		||||
        return None
 | 
			
		||||
    
 | 
			
		||||
    bbox = regions_dict[class_name]['bbox']
 | 
			
		||||
    x1, y1, x2, y2 = bbox
 | 
			
		||||
    cropped = frame[y1:y2, x1:x2]
 | 
			
		||||
    
 | 
			
		||||
    if cropped.size == 0:
 | 
			
		||||
        logger.warning(f"Empty crop for class '{class_name}' with bbox {bbox}")
 | 
			
		||||
        return None
 | 
			
		||||
    
 | 
			
		||||
    return cropped
 | 
			
		||||
 | 
			
		||||
def format_action_context(base_context, additional_context=None):
 | 
			
		||||
    """Format action context with dynamic values."""
 | 
			
		||||
    context = {**base_context}
 | 
			
		||||
    if additional_context:
 | 
			
		||||
        context.update(additional_context)
 | 
			
		||||
    return context
 | 
			
		||||
 | 
			
		||||
def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client, db_manager=None) -> dict:
 | 
			
		||||
    # Recursively load a model node from configuration.
 | 
			
		||||
    model_path = os.path.join(mpta_dir, node_config["modelFile"])
 | 
			
		||||
| 
						 | 
				
			
			@ -249,22 +272,53 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
 | 
			
		|||
        logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
def execute_actions(node, frame, detection_result):
 | 
			
		||||
def execute_actions(node, frame, detection_result, regions_dict=None):
 | 
			
		||||
    if not node["redis_client"] or not node["actions"]:
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    # Create a dynamic context for this detection event
 | 
			
		||||
    from datetime import datetime
 | 
			
		||||
    action_context = {
 | 
			
		||||
        **detection_result,
 | 
			
		||||
        "timestamp_ms": int(time.time() * 1000),
 | 
			
		||||
        "uuid": str(uuid.uuid4()),
 | 
			
		||||
        "timestamp": datetime.now().strftime("%Y-%m-%dT%H-%M-%S"),
 | 
			
		||||
        "filename": f"{uuid.uuid4()}.jpg"
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for action in node["actions"]:
 | 
			
		||||
        try:
 | 
			
		||||
            if action["type"] == "redis_save_image":
 | 
			
		||||
                key = action["key"].format(**action_context)
 | 
			
		||||
                _, buffer = cv2.imencode('.jpg', frame)
 | 
			
		||||
                
 | 
			
		||||
                # Check if we need to crop a specific region
 | 
			
		||||
                region_name = action.get("region")
 | 
			
		||||
                image_to_save = frame
 | 
			
		||||
                
 | 
			
		||||
                if region_name and regions_dict:
 | 
			
		||||
                    cropped_image = crop_region_by_class(frame, regions_dict, region_name)
 | 
			
		||||
                    if cropped_image is not None:
 | 
			
		||||
                        image_to_save = cropped_image
 | 
			
		||||
                        logger.debug(f"Cropped region '{region_name}' for redis_save_image")
 | 
			
		||||
                    else:
 | 
			
		||||
                        logger.warning(f"Could not crop region '{region_name}', saving full frame instead")
 | 
			
		||||
                
 | 
			
		||||
                # Encode image with specified format and quality (default to JPEG)
 | 
			
		||||
                img_format = action.get("format", "jpeg").lower()
 | 
			
		||||
                quality = action.get("quality", 90)
 | 
			
		||||
                
 | 
			
		||||
                if img_format == "jpeg":
 | 
			
		||||
                    encode_params = [cv2.IMWRITE_JPEG_QUALITY, quality]
 | 
			
		||||
                    success, buffer = cv2.imencode('.jpg', image_to_save, encode_params)
 | 
			
		||||
                elif img_format == "png":
 | 
			
		||||
                    success, buffer = cv2.imencode('.png', image_to_save)
 | 
			
		||||
                else:
 | 
			
		||||
                    success, buffer = cv2.imencode('.jpg', image_to_save, [cv2.IMWRITE_JPEG_QUALITY, quality])
 | 
			
		||||
                
 | 
			
		||||
                if not success:
 | 
			
		||||
                    logger.error(f"Failed to encode image for redis_save_image")
 | 
			
		||||
                    continue
 | 
			
		||||
                
 | 
			
		||||
                expire_seconds = action.get("expire_seconds")
 | 
			
		||||
                if expire_seconds:
 | 
			
		||||
                    node["redis_client"].setex(key, expire_seconds, buffer.tobytes())
 | 
			
		||||
| 
						 | 
				
			
			@ -272,59 +326,101 @@ def execute_actions(node, frame, detection_result):
 | 
			
		|||
                else:
 | 
			
		||||
                    node["redis_client"].set(key, buffer.tobytes())
 | 
			
		||||
                    logger.info(f"Saved image to Redis with key: {key}")
 | 
			
		||||
                # Add the generated key to the context for subsequent actions
 | 
			
		||||
                action_context["image_key"] = key
 | 
			
		||||
            elif action["type"] == "redis_publish":
 | 
			
		||||
                channel = action["channel"]
 | 
			
		||||
                message = action["message"].format(**action_context)
 | 
			
		||||
                node["redis_client"].publish(channel, message)
 | 
			
		||||
                logger.info(f"Published message to Redis channel '{channel}': {message}")
 | 
			
		||||
                try:
 | 
			
		||||
                    # Handle JSON message format by creating it programmatically
 | 
			
		||||
                    message_template = action["message"]
 | 
			
		||||
                    
 | 
			
		||||
                    # Check if the message is JSON-like (starts and ends with braces)
 | 
			
		||||
                    if message_template.strip().startswith('{') and message_template.strip().endswith('}'):
 | 
			
		||||
                        # Create JSON data programmatically to avoid formatting issues
 | 
			
		||||
                        json_data = {}
 | 
			
		||||
                        
 | 
			
		||||
                        # Add common fields
 | 
			
		||||
                        json_data["event"] = "frontal_detected"
 | 
			
		||||
                        json_data["display_id"] = action_context.get("display_id", "unknown")
 | 
			
		||||
                        json_data["session_id"] = action_context.get("session_id")
 | 
			
		||||
                        json_data["timestamp"] = action_context.get("timestamp", "")
 | 
			
		||||
                        json_data["image_key"] = action_context.get("image_key", "")
 | 
			
		||||
                        
 | 
			
		||||
                        # Convert to JSON string
 | 
			
		||||
                        message = json.dumps(json_data)
 | 
			
		||||
                    else:
 | 
			
		||||
                        # Use regular string formatting for non-JSON messages
 | 
			
		||||
                        message = message_template.format(**action_context)
 | 
			
		||||
                    
 | 
			
		||||
                    # Publish to Redis
 | 
			
		||||
                    if not node["redis_client"]:
 | 
			
		||||
                        logger.error("Redis client is None, cannot publish message")
 | 
			
		||||
                        continue
 | 
			
		||||
                        
 | 
			
		||||
                    # Test Redis connection
 | 
			
		||||
                    try:
 | 
			
		||||
                        node["redis_client"].ping()
 | 
			
		||||
                        logger.debug("Redis connection is active")
 | 
			
		||||
                    except Exception as ping_error:
 | 
			
		||||
                        logger.error(f"Redis connection test failed: {ping_error}")
 | 
			
		||||
                        continue
 | 
			
		||||
                    
 | 
			
		||||
                    result = node["redis_client"].publish(channel, message)
 | 
			
		||||
                    logger.info(f"Published message to Redis channel '{channel}': {message}")
 | 
			
		||||
                    logger.info(f"Redis publish result (subscribers count): {result}")
 | 
			
		||||
                    
 | 
			
		||||
                    # Additional debug info
 | 
			
		||||
                    if result == 0:
 | 
			
		||||
                        logger.warning(f"No subscribers listening to channel '{channel}'")
 | 
			
		||||
                    else:
 | 
			
		||||
                        logger.info(f"Message delivered to {result} subscriber(s)")
 | 
			
		||||
                    
 | 
			
		||||
                except KeyError as e:
 | 
			
		||||
                    logger.error(f"Missing key in redis_publish message template: {e}")
 | 
			
		||||
                    logger.debug(f"Available context keys: {list(action_context.keys())}")
 | 
			
		||||
                except Exception as e:
 | 
			
		||||
                    logger.error(f"Error in redis_publish action: {e}")
 | 
			
		||||
                    logger.debug(f"Message template: {action['message']}")
 | 
			
		||||
                    logger.debug(f"Available context keys: {list(action_context.keys())}")
 | 
			
		||||
                    import traceback
 | 
			
		||||
                    logger.debug(f"Full traceback: {traceback.format_exc()}")
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Error executing action {action['type']}: {e}")
 | 
			
		||||
 | 
			
		||||
def run_pipeline(frame, node: dict, return_bbox: bool=False):
 | 
			
		||||
def run_pipeline(frame, node: dict, return_bbox: bool=False, context=None):
 | 
			
		||||
    """
 | 
			
		||||
    - For detection nodes (task != 'classify'):
 | 
			
		||||
        • runs `track(..., classes=triggerClassIndices)`
 | 
			
		||||
        • picks top box ≥ minConfidence
 | 
			
		||||
        • optionally crops & resizes → recurse into child
 | 
			
		||||
        • else returns (det_dict, bbox)
 | 
			
		||||
    - For classify nodes:
 | 
			
		||||
        • runs `predict()`
 | 
			
		||||
        • returns top (class,confidence) and no bbox
 | 
			
		||||
    Enhanced pipeline that supports:
 | 
			
		||||
    - Multi-class detection (detecting multiple classes simultaneously)
 | 
			
		||||
    - Parallel branch processing
 | 
			
		||||
    - Region-based actions and cropping
 | 
			
		||||
    - Context passing for session/camera information
 | 
			
		||||
    """
 | 
			
		||||
    try:
 | 
			
		||||
        task = getattr(node["model"], "task", None)
 | 
			
		||||
 | 
			
		||||
        # ─── Classification stage ───────────────────────────────────
 | 
			
		||||
        if task == "classify":
 | 
			
		||||
            # run the classifier and grab its top-1 directly via the Probs API
 | 
			
		||||
            results = node["model"].predict(frame, stream=False)
 | 
			
		||||
            # nothing returned?
 | 
			
		||||
            if not results:
 | 
			
		||||
                return (None, None) if return_bbox else None
 | 
			
		||||
 | 
			
		||||
            # take the first result's probs object
 | 
			
		||||
            r     = results[0]
 | 
			
		||||
            r = results[0]
 | 
			
		||||
            probs = r.probs
 | 
			
		||||
            if probs is None:
 | 
			
		||||
                return (None, None) if return_bbox else None
 | 
			
		||||
 | 
			
		||||
            # get the top-1 class index and its confidence
 | 
			
		||||
            top1_idx  = int(probs.top1)
 | 
			
		||||
            top1_idx = int(probs.top1)
 | 
			
		||||
            top1_conf = float(probs.top1conf)
 | 
			
		||||
 | 
			
		||||
            det = {
 | 
			
		||||
                "class": node["model"].names[top1_idx],
 | 
			
		||||
                "confidence": top1_conf,
 | 
			
		||||
                "id": None
 | 
			
		||||
                "id": None,
 | 
			
		||||
                node["model"].names[top1_idx]: node["model"].names[top1_idx]  # Add class name as key
 | 
			
		||||
            }
 | 
			
		||||
            execute_actions(node, frame, det)
 | 
			
		||||
            return (det, None) if return_bbox else det
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        # ─── Detection stage ────────────────────────────────────────
 | 
			
		||||
        # only look for your triggerClasses
 | 
			
		||||
        # ─── Detection stage - Multi-class support ──────────────────
 | 
			
		||||
        tk = node["triggerClassIndices"]
 | 
			
		||||
        res = node["model"].track(
 | 
			
		||||
            frame,
 | 
			
		||||
| 
						 | 
				
			
			@ -333,48 +429,144 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False):
 | 
			
		|||
            **({"classes": tk} if tk else {})
 | 
			
		||||
        )[0]
 | 
			
		||||
 | 
			
		||||
        dets, boxes = [], []
 | 
			
		||||
        # Collect all detections above confidence threshold
 | 
			
		||||
        all_detections = []
 | 
			
		||||
        all_boxes = []
 | 
			
		||||
        regions_dict = {}
 | 
			
		||||
        
 | 
			
		||||
        for box in res.boxes:
 | 
			
		||||
            conf = float(box.cpu().conf[0])
 | 
			
		||||
            cid  = int(box.cpu().cls[0])
 | 
			
		||||
            cid = int(box.cpu().cls[0])
 | 
			
		||||
            name = node["model"].names[cid]
 | 
			
		||||
            
 | 
			
		||||
            if conf < node["minConfidence"]:
 | 
			
		||||
                continue
 | 
			
		||||
                
 | 
			
		||||
            xy = box.cpu().xyxy[0]
 | 
			
		||||
            x1,y1,x2,y2 = map(int, xy)
 | 
			
		||||
            dets.append({"class": name, "confidence": conf,
 | 
			
		||||
                         "id": box.id.item() if hasattr(box, "id") else None})
 | 
			
		||||
            boxes.append((x1, y1, x2, y2))
 | 
			
		||||
            x1, y1, x2, y2 = map(int, xy)
 | 
			
		||||
            bbox = (x1, y1, x2, y2)
 | 
			
		||||
            
 | 
			
		||||
            detection = {
 | 
			
		||||
                "class": name,
 | 
			
		||||
                "confidence": conf,
 | 
			
		||||
                "id": box.id.item() if hasattr(box, "id") else None,
 | 
			
		||||
                "bbox": bbox
 | 
			
		||||
            }
 | 
			
		||||
            
 | 
			
		||||
            all_detections.append(detection)
 | 
			
		||||
            all_boxes.append(bbox)
 | 
			
		||||
            
 | 
			
		||||
            # Store highest confidence detection for each class
 | 
			
		||||
            if name not in regions_dict or conf > regions_dict[name]["confidence"]:
 | 
			
		||||
                regions_dict[name] = {
 | 
			
		||||
                    "bbox": bbox,
 | 
			
		||||
                    "confidence": conf,
 | 
			
		||||
                    "detection": detection
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
        if not dets:
 | 
			
		||||
        if not all_detections:
 | 
			
		||||
            return (None, None) if return_bbox else None
 | 
			
		||||
 | 
			
		||||
        # take highest‐confidence
 | 
			
		||||
        best_idx = max(range(len(dets)), key=lambda i: dets[i]["confidence"])
 | 
			
		||||
        best_det = dets[best_idx]
 | 
			
		||||
        best_box = boxes[best_idx]
 | 
			
		||||
        # ─── Multi-class validation ─────────────────────────────────
 | 
			
		||||
        if node.get("multiClass", False) and node.get("expectedClasses"):
 | 
			
		||||
            expected_classes = node["expectedClasses"]
 | 
			
		||||
            detected_classes = list(regions_dict.keys())
 | 
			
		||||
            
 | 
			
		||||
            # Check if all expected classes are detected
 | 
			
		||||
            missing_classes = [cls for cls in expected_classes if cls not in detected_classes]
 | 
			
		||||
            if missing_classes:
 | 
			
		||||
                logger.debug(f"Missing expected classes: {missing_classes}. Detected: {detected_classes}")
 | 
			
		||||
                return (None, None) if return_bbox else None
 | 
			
		||||
            
 | 
			
		||||
            logger.info(f"Multi-class detection success: {detected_classes}")
 | 
			
		||||
 | 
			
		||||
        # ─── Branch (classification) ───────────────────────────────
 | 
			
		||||
        for br in node["branches"]:
 | 
			
		||||
            if (best_det["class"] in br["triggerClasses"]
 | 
			
		||||
                    and best_det["confidence"] >= br["minConfidence"]):
 | 
			
		||||
                # crop if requested
 | 
			
		||||
                sub = frame
 | 
			
		||||
                if br["crop"]:
 | 
			
		||||
                    x1,y1,x2,y2 = best_box
 | 
			
		||||
                    sub = frame[y1:y2, x1:x2]
 | 
			
		||||
                    sub = cv2.resize(sub, (224, 224))
 | 
			
		||||
        # ─── Execute actions with region information ────────────────
 | 
			
		||||
        detection_result = {
 | 
			
		||||
            "detections": all_detections,
 | 
			
		||||
            "regions": regions_dict,
 | 
			
		||||
            **(context or {})
 | 
			
		||||
        }
 | 
			
		||||
        execute_actions(node, frame, detection_result, regions_dict)
 | 
			
		||||
 | 
			
		||||
                det2, _ = run_pipeline(sub, br, return_bbox=True)
 | 
			
		||||
                if det2:
 | 
			
		||||
                    # return classification result + original bbox
 | 
			
		||||
                    execute_actions(br, sub, det2)
 | 
			
		||||
                    return (det2, best_box) if return_bbox else det2
 | 
			
		||||
        # ─── Parallel branch processing ─────────────────────────────
 | 
			
		||||
        if node["branches"]:
 | 
			
		||||
            branch_results = {}
 | 
			
		||||
            
 | 
			
		||||
            # Filter branches that should be triggered
 | 
			
		||||
            active_branches = []
 | 
			
		||||
            for br in node["branches"]:
 | 
			
		||||
                trigger_classes = br.get("triggerClasses", [])
 | 
			
		||||
                min_conf = br.get("minConfidence", 0)
 | 
			
		||||
                
 | 
			
		||||
                # Check if any detected class matches branch trigger
 | 
			
		||||
                for det_class in regions_dict:
 | 
			
		||||
                    if (det_class in trigger_classes and 
 | 
			
		||||
                        regions_dict[det_class]["confidence"] >= min_conf):
 | 
			
		||||
                        active_branches.append(br)
 | 
			
		||||
                        break
 | 
			
		||||
            
 | 
			
		||||
            if active_branches:
 | 
			
		||||
                if node.get("parallel", False) or any(br.get("parallel", False) for br in active_branches):
 | 
			
		||||
                    # Run branches in parallel
 | 
			
		||||
                    with concurrent.futures.ThreadPoolExecutor(max_workers=len(active_branches)) as executor:
 | 
			
		||||
                        futures = {}
 | 
			
		||||
                        
 | 
			
		||||
                        for br in active_branches:
 | 
			
		||||
                            crop_class = br.get("cropClass", br.get("triggerClasses", [])[0] if br.get("triggerClasses") else None)
 | 
			
		||||
                            sub_frame = frame
 | 
			
		||||
                            
 | 
			
		||||
                            if br.get("crop", False) and crop_class:
 | 
			
		||||
                                cropped = crop_region_by_class(frame, regions_dict, crop_class)
 | 
			
		||||
                                if cropped is not None:
 | 
			
		||||
                                    sub_frame = cv2.resize(cropped, (224, 224))
 | 
			
		||||
                                else:
 | 
			
		||||
                                    continue
 | 
			
		||||
                            
 | 
			
		||||
                            future = executor.submit(run_pipeline, sub_frame, br, True, context)
 | 
			
		||||
                            futures[future] = br
 | 
			
		||||
                        
 | 
			
		||||
                        # Collect results
 | 
			
		||||
                        for future in concurrent.futures.as_completed(futures):
 | 
			
		||||
                            br = futures[future]
 | 
			
		||||
                            try:
 | 
			
		||||
                                result, _ = future.result()
 | 
			
		||||
                                if result:
 | 
			
		||||
                                    branch_results[br["modelId"]] = result
 | 
			
		||||
                                    logger.info(f"Branch {br['modelId']} completed: {result}")
 | 
			
		||||
                            except Exception as e:
 | 
			
		||||
                                logger.error(f"Branch {br['modelId']} failed: {e}")
 | 
			
		||||
                else:
 | 
			
		||||
                    # Run branches sequentially  
 | 
			
		||||
                    for br in active_branches:
 | 
			
		||||
                        crop_class = br.get("cropClass", br.get("triggerClasses", [])[0] if br.get("triggerClasses") else None)
 | 
			
		||||
                        sub_frame = frame
 | 
			
		||||
                        
 | 
			
		||||
                        if br.get("crop", False) and crop_class:
 | 
			
		||||
                            cropped = crop_region_by_class(frame, regions_dict, crop_class)
 | 
			
		||||
                            if cropped is not None:
 | 
			
		||||
                                sub_frame = cv2.resize(cropped, (224, 224))
 | 
			
		||||
                            else:
 | 
			
		||||
                                continue
 | 
			
		||||
                        
 | 
			
		||||
                        result, _ = run_pipeline(sub_frame, br, True, context)
 | 
			
		||||
                        if result:
 | 
			
		||||
                            branch_results[br["modelId"]] = result
 | 
			
		||||
                            logger.info(f"Branch {br['modelId']} completed: {result}")
 | 
			
		||||
 | 
			
		||||
        # ─── No branch matched → return this detection ─────────────
 | 
			
		||||
        execute_actions(node, frame, best_det)
 | 
			
		||||
        return (best_det, best_box) if return_bbox else best_det
 | 
			
		||||
            # Store branch results in detection_result for parallel actions
 | 
			
		||||
            detection_result["branch_results"] = branch_results
 | 
			
		||||
 | 
			
		||||
        # ─── Return detection result ────────────────────────────────
 | 
			
		||||
        primary_detection = max(all_detections, key=lambda x: x["confidence"])
 | 
			
		||||
        primary_bbox = primary_detection["bbox"]
 | 
			
		||||
        
 | 
			
		||||
        # Add branch results to primary detection for compatibility
 | 
			
		||||
        if "branch_results" in detection_result:
 | 
			
		||||
            primary_detection["branch_results"] = detection_result["branch_results"]
 | 
			
		||||
        
 | 
			
		||||
        return (primary_detection, primary_bbox) if return_bbox else primary_detection
 | 
			
		||||
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Error in node {node.get('modelId')}: {e}")
 | 
			
		||||
        logger.error(f"Error in node {node.get('modelId')}: {e}")
 | 
			
		||||
        traceback.print_exc()
 | 
			
		||||
        return (None, None) if return_bbox else None
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue