Feat: connect with cms

This commit is contained in:
ziesorx 2025-08-12 23:18:54 +07:00
parent 9a1496f224
commit 0f8b575c90
2 changed files with 162 additions and 72 deletions

230
app.py
View file

@ -13,7 +13,13 @@ import requests
import asyncio
import psutil
import zipfile
import ssl
import urllib3
import subprocess
import tempfile
from urllib.parse import urlparse
from requests.adapters import HTTPAdapter
from urllib3.util.ssl_ import create_urllib3_context
from fastapi import FastAPI, WebSocket, HTTPException
from fastapi.websockets import WebSocketDisconnect
from fastapi.responses import Response
@ -88,7 +94,101 @@ def download_mpta(url: str, dest_path: str) -> str:
try:
logger.info(f"Starting download of model from {url} to {dest_path}")
os.makedirs(os.path.dirname(dest_path), exist_ok=True)
response = requests.get(url, stream=True)
# Configure session with headers and SSL settings for compatibility
session = requests.Session()
# Add headers to mimic browser request
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
'Accept': '*/*',
'Accept-Encoding': 'gzip, deflate',
'Connection': 'keep-alive',
'Cache-Control': 'no-cache',
}
session.headers.update(headers)
# Disable SSL verification warnings
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
# Try multiple approaches for SSL compatibility
ssl_success = False
response = None
# Approach 1: Standard request with verify=False and updated TLS
try:
# Create a custom SSL context with modern settings
ssl_context = ssl.create_default_context()
ssl_context.check_hostname = False
ssl_context.verify_mode = ssl.CERT_NONE
ssl_context.set_ciphers('DEFAULT:@SECLEVEL=1')
# Create adapter with custom SSL context
class SSLContextAdapter(HTTPAdapter):
def __init__(self, ssl_context=None):
self.ssl_context = ssl_context
super().__init__()
def init_poolmanager(self, *args, **kwargs):
kwargs['ssl_context'] = self.ssl_context
return super().init_poolmanager(*args, **kwargs)
session.mount('https://', SSLContextAdapter(ssl_context))
response = session.get(url, stream=True, verify=False, timeout=30)
ssl_success = True
except Exception as e1:
logger.debug(f"First SSL approach failed: {e1}")
# Approach 2: Fallback to basic request without custom SSL
try:
response = session.get(url, stream=True, verify=False, timeout=30)
ssl_success = True
except Exception as e2:
logger.debug(f"Second SSL approach failed: {e2}")
# Approach 3: Last resort - use system curl if available
try:
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
tmp_path = tmp_file.name
curl_cmd = [
'curl', '-L', '-k', '--silent', '--show-error',
'-H', f'User-Agent: {headers["User-Agent"]}',
'-o', tmp_path, url
]
result = subprocess.run(curl_cmd, capture_output=True, text=True, timeout=60)
if result.returncode == 0:
# Create a fake response object
class FakeResponse:
def __init__(self, file_path):
self.status_code = 200
self.headers = {'content-length': str(os.path.getsize(file_path))}
self._file_path = file_path
def iter_content(self, chunk_size=8192):
with open(self._file_path, 'rb') as f:
while True:
chunk = f.read(chunk_size)
if not chunk:
break
yield chunk
os.unlink(self._file_path) # Clean up temp file
response = FakeResponse(tmp_path)
ssl_success = True
logger.info("Successfully downloaded using system curl as fallback")
else:
logger.error(f"curl fallback failed: {result.stderr}")
if os.path.exists(tmp_path):
os.unlink(tmp_path)
except Exception as e3:
logger.debug(f"curl fallback failed: {e3}")
if 'tmp_path' in locals() and os.path.exists(tmp_path):
os.unlink(tmp_path)
if not ssl_success or not response:
raise Exception("All SSL approaches failed - unable to establish secure connection")
if response.status_code == 200:
file_size = int(response.headers.get('content-length', 0))
logger.info(f"Model file size: {file_size/1024/1024:.2f} MB")
@ -107,6 +207,13 @@ def download_mpta(url: str, dest_path: str) -> str:
except Exception as e:
logger.error(f"Exception downloading mpta file from {url}: {str(e)}", exc_info=True)
return None
finally:
# Clean up session resources
try:
if 'session' in locals():
session.close()
except:
pass
# Add helper to fetch snapshot image from HTTP/HTTPS URL
def fetch_snapshot(url: str):
@ -240,16 +347,14 @@ async def detect(websocket: WebSocket):
logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}")
start_time = time.time()
# Extract display identifier for session ID lookup
# Extract display identifier for pipeline context
subscription_parts = stream["subscriptionIdentifier"].split(';')
display_identifier = subscription_parts[0] if subscription_parts else None
session_id = session_ids.get(display_identifier) if display_identifier else None
# Create context for pipeline execution
# Create context for pipeline execution (session_id will be generated by pipeline)
pipeline_context = {
"camera_id": camera_id,
"display_id": display_identifier,
"session_id": session_id
"display_id": display_identifier
}
detection_result = run_pipeline(cropped_frame, model_tree, context=pipeline_context)
@ -259,46 +364,24 @@ async def detect(websocket: WebSocket):
# Log the raw detection result for debugging
logger.debug(f"Raw detection result for camera {camera_id}:\n{json.dumps(detection_result, indent=2, default=str)}")
# Direct class result (no detections/classifications structure)
if detection_result and isinstance(detection_result, dict) and "class" in detection_result and "confidence" in detection_result:
highest_confidence_detection = {
"class": detection_result.get("class", "none"),
"confidence": detection_result.get("confidence", 1.0),
"box": [0, 0, 0, 0] # Empty bounding box for classifications
}
# Handle case when no detections found or result is empty
elif not detection_result or not detection_result.get("detections"):
# Check if we have classification results
if detection_result and detection_result.get("classifications"):
# Get the highest confidence classification
classifications = detection_result.get("classifications", [])
highest_confidence_class = max(classifications, key=lambda x: x.get("confidence", 0)) if classifications else None
if highest_confidence_class:
highest_confidence_detection = {
"class": highest_confidence_class.get("class", "none"),
"confidence": highest_confidence_class.get("confidence", 1.0),
"box": [0, 0, 0, 0] # Empty bounding box for classifications
}
else:
highest_confidence_detection = {
"class": "none",
"confidence": 1.0,
"box": [0, 0, 0, 0]
}
else:
highest_confidence_detection = {
"class": "none",
"confidence": 1.0,
"box": [0, 0, 0, 0]
}
# Extract session_id from pipeline result (generated during database record creation)
session_id = None
if detection_result and isinstance(detection_result, dict):
# Check if pipeline generated a session_id (happens when Car+Frontal detected together)
if "session_id" in detection_result:
session_id = detection_result["session_id"]
logger.debug(f"Extracted session_id from pipeline result: {session_id}")
# Process detection result - run_pipeline returns the primary detection directly
if detection_result and isinstance(detection_result, dict) and "class" in detection_result:
highest_confidence_detection = detection_result
else:
# Find detection with highest confidence
detections = detection_result.get("detections", [])
highest_confidence_detection = max(detections, key=lambda x: x.get("confidence", 0)) if detections else {
# No detection found
highest_confidence_detection = {
"class": "none",
"confidence": 1.0,
"box": [0, 0, 0, 0]
"bbox": [0, 0, 0, 0],
"branch_results": {}
}
# Convert detection format to match backend expectations exactly as in worker.md section 4.2
@ -311,31 +394,33 @@ async def detect(websocket: WebSocket):
"licensePlateConfidence": None
}
# Handle different detection result formats
if isinstance(highest_confidence_detection, dict):
# Extract and flatten branch results from parallel classification
branch_results = highest_confidence_detection.get("branch_results", {})
if branch_results:
logger.debug(f"Processing branch results: {branch_results}")
# Transform branch results into backend-expected detection attributes
for branch_id, branch_data in branch_results.items():
if isinstance(branch_data, dict):
# Map common classification fields to backend-expected names
if "brand" in branch_data:
detection_dict["carBrand"] = branch_data["brand"]
if "body_type" in branch_data:
detection_dict["bodyType"] = branch_data["body_type"]
if "class" in branch_data:
class_name = branch_data["class"]
# Map based on branch/model type
if "brand" in branch_id.lower():
detection_dict["carBrand"] = class_name
elif "bodytype" in branch_id.lower() or "body" in branch_id.lower():
detection_dict["bodyType"] = class_name
logger.info(f"Detection payload: {detection_dict}")
# Extract and process branch results from parallel classification
branch_results = highest_confidence_detection.get("branch_results", {})
if branch_results:
logger.debug(f"Processing branch results: {branch_results}")
# Transform branch results into backend-expected detection attributes
for branch_id, branch_data in branch_results.items():
if isinstance(branch_data, dict):
logger.debug(f"Processing branch {branch_id}: {branch_data}")
# Map common classification fields to backend-expected names
if "brand" in branch_data:
detection_dict["carBrand"] = branch_data["brand"]
if "body_type" in branch_data:
detection_dict["bodyType"] = branch_data["body_type"]
if "class" in branch_data:
class_name = branch_data["class"]
# Map based on branch/model type
if "brand" in branch_id.lower():
detection_dict["carBrand"] = class_name
elif "bodytype" in branch_id.lower() or "body" in branch_id.lower():
detection_dict["bodyType"] = class_name
logger.info(f"Detection payload after branch processing: {detection_dict}")
else:
logger.debug("No branch results found in detection result")
detection_data = {
"type": "imageDetection",
@ -348,12 +433,14 @@ async def detect(websocket: WebSocket):
}
}
# Add session ID if available
# Add session ID if available (generated by pipeline when Car+Frontal detected)
if session_id is not None:
detection_data["sessionId"] = session_id
logger.debug(f"Added session_id to WebSocket response: {session_id}")
if highest_confidence_detection["class"] != "none":
logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {highest_confidence_detection['confidence']:.2f} using model {stream['modelName']}")
if highest_confidence_detection.get("class") != "none":
confidence = highest_confidence_detection.get("confidence", 0.0)
logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {confidence:.2f} using model {stream['modelName']}")
# Log session ID if available
if session_id:
@ -361,6 +448,7 @@ async def detect(websocket: WebSocket):
await websocket.send_json(detection_data)
logger.debug(f"Sent detection data to client for camera {camera_id}")
logger.debug(f"Sent this detection data: {detection_data}")
return persistent_data
except Exception as e:
logger.error(f"Error in handle_detection for camera {camera_id}: {str(e)}", exc_info=True)

View file

@ -786,9 +786,11 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False, context=None):
primary_detection = max(all_detections, key=lambda x: x["confidence"])
primary_bbox = primary_detection["bbox"]
# Add branch results to primary detection for compatibility
# Add branch results and session_id to primary detection for compatibility
if "branch_results" in detection_result:
primary_detection["branch_results"] = detection_result["branch_results"]
if "session_id" in detection_result:
primary_detection["session_id"] = detection_result["session_id"]
return (primary_detection, primary_bbox) if return_bbox else primary_detection