python-detector-worker/pympta.md
ziesorx cfc7503a14
All checks were successful
Build Worker Base and Application Images / check-base-changes (push) Successful in 8s
Build Worker Base and Application Images / build-base (push) Has been skipped
Build Worker Base and Application Images / build-docker (push) Successful in 2m15s
Build Worker Base and Application Images / deploy-stack (push) Successful in 8s
Update markdown
2025-08-10 20:51:16 +07:00

17 KiB

pympta: Modular Pipeline Task Executor

pympta is a Python module designed to load and execute modular, multi-stage AI pipelines defined in a special package format (.mpta). It is primarily used within the detector worker to run complex computer vision tasks where the output of one model can trigger a subsequent model on a specific region of interest.

Core Concepts

1. MPTA Package (.mpta)

An .mpta file is a standard .zip archive with a different extension. It bundles all the necessary components for a pipeline to run.

A typical .mpta file has the following structure:

my_pipeline.mpta/
├── pipeline.json
├── model1.pt
├── model2.pt
└── ...
  • pipeline.json: (Required) The manifest file that defines the structure of the pipeline, the models to use, and the logic connecting them.
  • Model Files (.pt, etc.): The actual pre-trained model files (e.g., PyTorch, ONNX). The pipeline currently uses ultralytics.YOLO models.

2. Pipeline Structure

A pipeline is a tree-like structure of "nodes," defined in pipeline.json.

  • Root Node: The entry point of the pipeline. It processes the initial, full-frame image.
  • Branch Nodes: Child nodes that are triggered by specific detection results from their parent. For example, a root node might detect a "vehicle," which then triggers a branch node to detect a "license plate" within the vehicle's bounding box.

This modular structure allows for creating complex and efficient inference logic, avoiding the need to run every model on every frame.

pipeline.json Specification

This file defines the entire pipeline logic. The root object contains a pipeline key for the pipeline definition, optional redis key for Redis configuration, and optional postgresql key for database integration.

Top-Level Object Structure

Key Type Required Description
pipeline Object Yes The root node object of the pipeline.
redis Object No Configuration for connecting to a Redis server.
postgresql Object No Configuration for connecting to a PostgreSQL database.

Redis Configuration (redis)

Key Type Required Description
host String Yes The hostname or IP address of the Redis server.
port Number Yes The port number of the Redis server.
password String No The password for Redis authentication.
db Number No The Redis database number to use. Defaults to 0.

PostgreSQL Configuration (postgresql)

Key Type Required Description
host String Yes The hostname or IP address of the PostgreSQL server.
port Number Yes The port number of the PostgreSQL server.
database String Yes The database name to connect to.
username String Yes The username for database authentication.
password String Yes The password for database authentication.

Node Object Structure

Key Type Required Description
modelId String Yes A unique identifier for this model node (e.g., "vehicle-detector").
modelFile String Yes The path to the model file within the .mpta archive (e.g., "yolov8n.pt").
minConfidence Float Yes The minimum confidence score (0.0 to 1.0) required for a detection to be considered valid and potentially trigger a branch.
triggerClasses Array Yes A list of class names that, when detected by the parent, can trigger this node. For the root node, this lists all classes of interest.
crop Boolean No If true, the image is cropped to the parent's detection bounding box before being passed to this node's model. Defaults to false.
cropClass String No The specific class to use for cropping (e.g., "Frontal" for frontal view cropping).
multiClass Boolean No If true, enables multi-class detection mode where multiple classes can be detected simultaneously.
expectedClasses Array No When multiClass is true, defines which classes are expected. At least one must be detected for processing to continue.
parallel Boolean No If true, this branch will be processed in parallel with other parallel branches.
branches Array No A list of child node objects that can be triggered by this node's detections.
actions Array No A list of actions to execute upon a successful detection in this node.
parallelActions Array No A list of actions to execute after all specified branches have completed.

Action Object Structure

Actions allow the pipeline to interact with Redis and PostgreSQL databases. They are executed sequentially for a given detection.

Action Context & Dynamic Keys

All actions have access to a dynamic context for formatting keys and messages. The context is created for each detection event and includes:

  • All key-value pairs from the detection result (e.g., class, confidence, id).
  • {timestamp_ms}: The current Unix timestamp in milliseconds.
  • {timestamp}: Formatted timestamp string (YYYY-MM-DDTHH-MM-SS).
  • {uuid}: A unique identifier (UUID4) for the detection event.
  • {filename}: Generated filename with UUID.
  • {camera_id}: Full camera subscription identifier.
  • {display_id}: Display identifier extracted from subscription.
  • {session_id}: Session ID for database operations.
  • {image_key}: If a redis_save_image action has already been executed for this event, this placeholder will be replaced with the key where the image was stored.

redis_save_image

Saves the current image frame (or cropped sub-image) to a Redis key.

Key Type Required Description
type String Yes Must be "redis_save_image".
key String Yes The Redis key to save the image to. Can contain any of the dynamic placeholders.
region String No Specific detected region to crop and save (e.g., "Frontal").
format String No Image format: "jpeg" or "png". Defaults to "jpeg".
quality Number No JPEG quality (1-100). Defaults to 90.
expire_seconds Number No If provided, sets an expiration time (in seconds) for the Redis key.

redis_publish

Publishes a message to a Redis channel.

Key Type Required Description
type String Yes Must be "redis_publish".
channel String Yes The Redis channel to publish the message to.
message String Yes The message to publish. Can contain any of the dynamic placeholders, including {image_key}.

postgresql_update_combined

Updates PostgreSQL database with results from multiple branches after they complete.

Key Type Required Description
type String Yes Must be "postgresql_update_combined".
table String Yes The database table name (will be prefixed with gas_station_1. schema).
key_field String Yes The field to use as the update key (typically "session_id").
key_value String Yes Template for the key value (e.g., "{session_id}").
waitForBranches Array Yes List of branch model IDs to wait for completion before executing update.
fields Object Yes Field mapping object where keys are database columns and values are templates (e.g., "{branch.field}").

Complete Example pipeline.json

This example demonstrates a comprehensive pipeline for vehicle detection with parallel classification and database integration:

{
  "redis": {
    "host": "10.100.1.3",
    "port": 6379,
    "password": "your-redis-password",
    "db": 0
  },
  "postgresql": {
    "host": "10.100.1.3",
    "port": 5432,
    "database": "inference",
    "username": "root",
    "password": "your-db-password"
  },
  "pipeline": {
    "modelId": "car_frontal_detection_v1",
    "modelFile": "car_frontal_detection_v1.pt",
    "crop": false,
    "triggerClasses": ["Car", "Frontal"],
    "minConfidence": 0.8,
    "multiClass": true,
    "expectedClasses": ["Car", "Frontal"],
    "actions": [
      {
        "type": "redis_save_image",
        "region": "Frontal",
        "key": "inference:{display_id}:{timestamp}:{session_id}:{filename}",
        "expire_seconds": 600,
        "format": "jpeg",
        "quality": 90
      },
      {
        "type": "redis_publish",
        "channel": "car_detections",
        "message": "{\"event\":\"frontal_detected\"}"
      }
    ],
    "branches": [
      {
        "modelId": "car_brand_cls_v1",
        "modelFile": "car_brand_cls_v1.pt",
        "crop": true,
        "cropClass": "Frontal",
        "resizeTarget": [224, 224],
        "triggerClasses": ["Frontal"],
        "minConfidence": 0.85,
        "parallel": true,
        "branches": []
      },
      {
        "modelId": "car_bodytype_cls_v1",
        "modelFile": "car_bodytype_cls_v1.pt",
        "crop": true,
        "cropClass": "Car",
        "resizeTarget": [224, 224],
        "triggerClasses": ["Car"],
        "minConfidence": 0.85,
        "parallel": true,
        "branches": []
      }
    ],
    "parallelActions": [
      {
        "type": "postgresql_update_combined",
        "table": "car_frontal_info",
        "key_field": "session_id",
        "key_value": "{session_id}",
        "waitForBranches": ["car_brand_cls_v1", "car_bodytype_cls_v1"],
        "fields": {
          "car_brand": "{car_brand_cls_v1.brand}",
          "car_body_type": "{car_bodytype_cls_v1.body_type}"
        }
      }
    ]
  }
}

API Reference

The pympta module exposes two main functions.

load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict

Loads, extracts, and parses an .mpta file to build a pipeline tree in memory. It also establishes Redis and PostgreSQL connections if configured in pipeline.json.

  • Parameters:
    • zip_source (str): The file path to the local .mpta zip archive.
    • target_dir (str): A directory path where the archive's contents will be extracted.
  • Returns:
    • A dictionary representing the root node of the pipeline, ready to be used with run_pipeline. Returns None if loading fails.

run_pipeline(frame, node: dict, return_bbox: bool = False, context: dict = None)

Executes the inference pipeline on a single image frame.

  • Parameters:
    • frame: The input image frame (e.g., a NumPy array from OpenCV).
    • node (dict): The pipeline node to execute (typically the root node returned by load_pipeline_from_zip).
    • return_bbox (bool): If True, the function returns a tuple (detection, bounding_box). Otherwise, it returns only the detection.
    • context (dict): Optional context dictionary containing camera_id, display_id, session_id for action formatting.
  • Returns:
    • The final detection result from the last executed node in the chain. A detection is a dictionary like {'class': 'car', 'confidence': 0.95, 'id': 1}. If no detection meets the criteria, it returns None (or (None, None) if return_bbox is True).

Database Integration

The pipeline system includes automatic PostgreSQL database management:

Table Schema (gas_station_1.car_frontal_info)

The system automatically creates and manages the following table structure:

CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
    display_id VARCHAR(255),
    captured_timestamp VARCHAR(255),
    session_id VARCHAR(255) PRIMARY KEY,
    license_character VARCHAR(255) DEFAULT NULL,
    license_type VARCHAR(255) DEFAULT 'No model available',
    car_brand VARCHAR(255) DEFAULT NULL,
    car_model VARCHAR(255) DEFAULT NULL,
    car_body_type VARCHAR(255) DEFAULT NULL,
    created_at TIMESTAMP DEFAULT NOW(),
    updated_at TIMESTAMP DEFAULT NOW()
);

Workflow

  1. Initial Record Creation: When both "Car" and "Frontal" are detected, an initial database record is created with a UUID session_id.
  2. Redis Storage: Vehicle images are stored in Redis with keys containing the session_id.
  3. Parallel Classification: Brand and body type classification run concurrently.
  4. Database Update: After all branches complete, the database record is updated with classification results.

Usage Example

This snippet shows how to use pympta with the enhanced features:

import cv2
from siwatsystem.pympta import load_pipeline_from_zip, run_pipeline

# 1. Define paths
MPTA_FILE = "path/to/your/pipeline.mpta"
CACHE_DIR = ".mptacache"

# 2. Load the pipeline from the .mpta file
# This reads pipeline.json and loads the YOLO models into memory.
model_tree = load_pipeline_from_zip(MPTA_FILE, CACHE_DIR)

if not model_tree:
    print("Failed to load pipeline.")
    exit()

# 3. Open a video source
cap = cv2.VideoCapture(0)

while True:
    ret, frame = cap.read()
    if not ret:
        break

    # 4. Run the pipeline on the current frame with context
    context = {
        "camera_id": "display-001;cam-001",
        "display_id": "display-001", 
        "session_id": None  # Will be generated automatically
    }
    
    detection_result, bounding_box = run_pipeline(frame, model_tree, return_bbox=True, context=context)

    # 5. Display the results
    if detection_result:
        print(f"Detected: {detection_result['class']} with confidence {detection_result['confidence']:.2f}")
        if bounding_box:
            x1, y1, x2, y2 = bounding_box
            cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.putText(frame, detection_result['class'], (x1, y1 - 10),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)

    cv2.imshow("Pipeline Output", frame)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()