add REST API endpoint for image retrieval; implement error handling and response formatting
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 8m48s
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 8m48s
This commit is contained in:
parent
b5ae2801c1
commit
22370e2040
2 changed files with 41 additions and 367 deletions
42
app.py
42
app.py
|
@ -14,8 +14,9 @@ import asyncio
|
|||
import psutil
|
||||
import zipfile
|
||||
from urllib.parse import urlparse
|
||||
from fastapi import FastAPI, WebSocket
|
||||
from fastapi import FastAPI, WebSocket, HTTPException
|
||||
from fastapi.websockets import WebSocketDisconnect
|
||||
from fastapi.responses import Response
|
||||
from websockets.exceptions import ConnectionClosedError
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
@ -121,6 +122,45 @@ def fetch_snapshot(url: str):
|
|||
logger.error(f"Exception fetching snapshot from {url}: {str(e)}")
|
||||
return None
|
||||
|
||||
####################################################
|
||||
# REST API endpoint for image retrieval
|
||||
####################################################
|
||||
@app.get("/camera/{camera_id}/image")
|
||||
async def get_camera_image(camera_id: str):
|
||||
"""
|
||||
Get the current frame from a camera as JPEG image
|
||||
"""
|
||||
try:
|
||||
with streams_lock:
|
||||
if camera_id not in streams:
|
||||
raise HTTPException(status_code=404, detail=f"Camera {camera_id} not found or not active")
|
||||
|
||||
stream = streams[camera_id]
|
||||
buffer = stream["buffer"]
|
||||
|
||||
if buffer.empty():
|
||||
raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
|
||||
|
||||
# Get the latest frame (non-blocking)
|
||||
try:
|
||||
frame = buffer.queue[-1] # Get the most recent frame without removing it
|
||||
except IndexError:
|
||||
raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
|
||||
|
||||
# Encode frame as JPEG
|
||||
success, buffer_img = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 85])
|
||||
if not success:
|
||||
raise HTTPException(status_code=500, detail="Failed to encode image as JPEG")
|
||||
|
||||
# Return image as binary response
|
||||
return Response(content=buffer_img.tobytes(), media_type="image/jpeg")
|
||||
|
||||
except HTTPException:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving image for camera {camera_id}: {str(e)}", exc_info=True)
|
||||
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
||||
|
||||
####################################################
|
||||
# Detection and frame processing functions
|
||||
####################################################
|
||||
|
|
366
app_single.py
366
app_single.py
|
@ -1,366 +0,0 @@
|
|||
from typing import List
|
||||
from fastapi import FastAPI, WebSocket
|
||||
from fastapi.websockets import WebSocketDisconnect
|
||||
from websockets.exceptions import ConnectionClosedError
|
||||
from ultralytics import YOLO
|
||||
import torch
|
||||
import cv2
|
||||
import base64
|
||||
import numpy as np
|
||||
import json
|
||||
import logging
|
||||
import threading
|
||||
import queue
|
||||
import os
|
||||
import requests
|
||||
from urllib.parse import urlparse
|
||||
import asyncio
|
||||
import psutil
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
models = {}
|
||||
|
||||
with open("config.json", "r") as f:
|
||||
config = json.load(f)
|
||||
|
||||
poll_interval = config.get("poll_interval_ms", 100)
|
||||
reconnect_interval = config.get("reconnect_interval_sec", 5)
|
||||
TARGET_FPS = config.get("target_fps", 10)
|
||||
poll_interval = 1000 / TARGET_FPS
|
||||
logging.info(f"Poll interval: {poll_interval}ms")
|
||||
max_streams = config.get("max_streams", 5)
|
||||
max_retries = config.get("max_retries", 3)
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
level=logging.DEBUG,
|
||||
format="%(asctime)s [%(levelname)s] %(message)s",
|
||||
handlers=[
|
||||
logging.FileHandler("app.log"),
|
||||
logging.StreamHandler()
|
||||
]
|
||||
)
|
||||
|
||||
# Ensure the models directory exists
|
||||
os.makedirs("models", exist_ok=True)
|
||||
|
||||
# Add constants for heartbeat
|
||||
HEARTBEAT_INTERVAL = 2 # seconds
|
||||
WORKER_TIMEOUT_MS = 10000
|
||||
|
||||
# Add a lock for thread-safe operations on shared resources
|
||||
streams_lock = threading.Lock()
|
||||
models_lock = threading.Lock()
|
||||
|
||||
@app.websocket("/")
|
||||
async def detect(websocket: WebSocket):
|
||||
import asyncio
|
||||
import time
|
||||
|
||||
logging.info("WebSocket connection accepted")
|
||||
|
||||
streams = {}
|
||||
|
||||
# This function is user-modifiable
|
||||
# Save data you want to persist across frames in the persistent_data dictionary
|
||||
async def handle_detection(camera_id, stream, frame, websocket, model: YOLO, persistent_data):
|
||||
try:
|
||||
highest_conf_box = None
|
||||
max_conf = -1
|
||||
|
||||
for r in model.track(frame, stream=False, persist=True):
|
||||
for box in r.boxes:
|
||||
box_cpu = box.cpu()
|
||||
conf = float(box_cpu.conf[0])
|
||||
if conf > max_conf and hasattr(box, "id") and box.id is not None:
|
||||
max_conf = conf
|
||||
highest_conf_box = {
|
||||
"class": model.names[int(box_cpu.cls[0])],
|
||||
"confidence": conf,
|
||||
"id": box.id.item(),
|
||||
}
|
||||
|
||||
# Broadcast to all subscribers of this URL
|
||||
detection_data = {
|
||||
"type": "imageDetection",
|
||||
"cameraIdentifier": camera_id,
|
||||
"timestamp": time.time(),
|
||||
"data": {
|
||||
"detections": highest_conf_box if highest_conf_box else None,
|
||||
"modelId": stream['modelId'],
|
||||
"modelName": stream['modelName']
|
||||
}
|
||||
}
|
||||
logging.debug(f"Sending detection data for camera {camera_id}: {detection_data}")
|
||||
await websocket.send_json(detection_data)
|
||||
return persistent_data
|
||||
except Exception as e:
|
||||
logging.error(f"Error in handle_detection for camera {camera_id}: {e}")
|
||||
return persistent_data
|
||||
|
||||
def frame_reader(camera_id, cap, buffer, stop_event):
|
||||
import time
|
||||
retries = 0
|
||||
try:
|
||||
while not stop_event.is_set():
|
||||
try:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
logging.warning(f"Connection lost for camera: {camera_id}, retry {retries+1}/{max_retries}")
|
||||
cap.release()
|
||||
time.sleep(reconnect_interval)
|
||||
retries += 1
|
||||
if retries > max_retries and max_retries != -1:
|
||||
logging.error(f"Max retries reached for camera: {camera_id}")
|
||||
break
|
||||
# Re-open the VideoCapture
|
||||
cap = cv2.VideoCapture(streams[camera_id]['rtsp_url'])
|
||||
if not cap.isOpened():
|
||||
logging.error(f"Failed to reopen RTSP stream for camera: {camera_id}")
|
||||
continue
|
||||
continue
|
||||
retries = 0 # Reset on success
|
||||
if not buffer.empty():
|
||||
try:
|
||||
buffer.get_nowait() # Discard the old frame
|
||||
except queue.Empty:
|
||||
pass
|
||||
buffer.put(frame)
|
||||
except cv2.error as e:
|
||||
logging.error(f"OpenCV error for camera {camera_id}: {e}")
|
||||
cap.release()
|
||||
time.sleep(reconnect_interval)
|
||||
retries += 1
|
||||
if retries > max_retries and max_retries != -1:
|
||||
logging.error(f"Max retries reached after OpenCV error for camera: {camera_id}")
|
||||
break
|
||||
# Re-open the VideoCapture
|
||||
cap = cv2.VideoCapture(streams[camera_id]['rtsp_url'])
|
||||
if not cap.isOpened():
|
||||
logging.error(f"Failed to reopen RTSP stream for camera {camera_id} after OpenCV error")
|
||||
continue
|
||||
except Exception as e:
|
||||
logging.error(f"Unexpected error for camera {camera_id}: {e}")
|
||||
cap.release()
|
||||
break
|
||||
except Exception as e:
|
||||
logging.error(f"Error in frame_reader thread for camera {camera_id}: {e}")
|
||||
|
||||
async def process_streams():
|
||||
global models
|
||||
logging.info("Started processing streams")
|
||||
persistent_data_dict = {}
|
||||
try:
|
||||
while True:
|
||||
start_time = time.time()
|
||||
# Round-robin processing
|
||||
with streams_lock:
|
||||
current_streams = list(streams.items())
|
||||
for camera_id, stream in current_streams:
|
||||
buffer = stream['buffer']
|
||||
if not buffer.empty():
|
||||
frame = buffer.get()
|
||||
with models_lock:
|
||||
model = models.get(camera_id, {}).get(stream['modelId'])
|
||||
key = (camera_id, stream['modelId'])
|
||||
persistent_data = persistent_data_dict.get(key, {})
|
||||
updated_persistent_data = await handle_detection(camera_id, stream, frame, websocket, model, persistent_data)
|
||||
persistent_data_dict[key] = updated_persistent_data
|
||||
elapsed_time = (time.time() - start_time) * 1000 # in ms
|
||||
sleep_time = max(poll_interval - elapsed_time, 0)
|
||||
logging.debug(f"Elapsed time: {elapsed_time}ms, sleeping for: {sleep_time}ms")
|
||||
await asyncio.sleep(sleep_time / 1000.0)
|
||||
except asyncio.CancelledError:
|
||||
logging.info("Stream processing task cancelled")
|
||||
except Exception as e:
|
||||
logging.error(f"Error in process_streams: {e}")
|
||||
|
||||
async def send_heartbeat():
|
||||
while True:
|
||||
try:
|
||||
cpu_usage = psutil.cpu_percent()
|
||||
memory_usage = psutil.virtual_memory().percent
|
||||
if torch.cuda.is_available():
|
||||
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2) # Convert to MB
|
||||
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2) # Convert to MB
|
||||
else:
|
||||
gpu_usage = None
|
||||
gpu_memory_usage = None
|
||||
|
||||
camera_connections = [
|
||||
{
|
||||
"cameraIdentifier": camera_id,
|
||||
"modelId": stream['modelId'],
|
||||
"modelName": stream['modelName'],
|
||||
"online": True
|
||||
}
|
||||
for camera_id, stream in streams.items()
|
||||
]
|
||||
|
||||
state_report = {
|
||||
"type": "stateReport",
|
||||
"cpuUsage": cpu_usage,
|
||||
"memoryUsage": memory_usage,
|
||||
"gpuUsage": gpu_usage,
|
||||
"gpuMemoryUsage": gpu_memory_usage,
|
||||
"cameraConnections": camera_connections
|
||||
}
|
||||
await websocket.send_text(json.dumps(state_report))
|
||||
logging.debug("Sent stateReport as heartbeat")
|
||||
await asyncio.sleep(HEARTBEAT_INTERVAL)
|
||||
except Exception as e:
|
||||
logging.error(f"Error sending stateReport heartbeat: {e}")
|
||||
break
|
||||
|
||||
async def on_message():
|
||||
global models
|
||||
while True:
|
||||
try:
|
||||
msg = await websocket.receive_text()
|
||||
logging.debug(f"Received message: {msg}")
|
||||
print(f"Received message: {msg}")
|
||||
data = json.loads(msg)
|
||||
msg_type = data.get("type")
|
||||
|
||||
if msg_type == "subscribe":
|
||||
payload = data.get("payload", {})
|
||||
camera_id = payload.get("cameraIdentifier")
|
||||
rtsp_url = payload.get("rtspUrl")
|
||||
model_url = payload.get("modelUrl")
|
||||
modelId = payload.get("modelId")
|
||||
modelName = payload.get("modelName")
|
||||
|
||||
if model_url:
|
||||
with models_lock:
|
||||
if camera_id not in models:
|
||||
models[camera_id] = {}
|
||||
if modelId not in models[camera_id]:
|
||||
print(f"Downloading model from {model_url}")
|
||||
parsed_url = urlparse(model_url)
|
||||
filename = os.path.basename(parsed_url.path)
|
||||
model_filename = os.path.join("models", filename)
|
||||
# Download the model
|
||||
response = requests.get(model_url, stream=True)
|
||||
if response.status_code == 200:
|
||||
with open(model_filename, 'wb') as f:
|
||||
for chunk in response.iter_content(chunk_size=8192):
|
||||
f.write(chunk)
|
||||
logging.info(f"Downloaded model from {model_url} to {model_filename}")
|
||||
model = YOLO(model_filename)
|
||||
if torch.cuda.is_available():
|
||||
model.to('cuda')
|
||||
models[camera_id][modelId] = model
|
||||
logging.info(f"Loaded model {modelId} for camera {camera_id}")
|
||||
else:
|
||||
logging.error(f"Failed to download model from {model_url}")
|
||||
continue
|
||||
if camera_id and rtsp_url:
|
||||
with streams_lock:
|
||||
if camera_id not in streams and len(streams) < max_streams:
|
||||
cap = cv2.VideoCapture(rtsp_url)
|
||||
if not cap.isOpened():
|
||||
logging.error(f"Failed to open RTSP stream for camera {camera_id}")
|
||||
continue
|
||||
buffer = queue.Queue(maxsize=1)
|
||||
stop_event = threading.Event()
|
||||
thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
|
||||
thread.daemon = True
|
||||
thread.start()
|
||||
streams[camera_id] = {
|
||||
'cap': cap,
|
||||
'buffer': buffer,
|
||||
'thread': thread,
|
||||
'rtsp_url': rtsp_url,
|
||||
'stop_event': stop_event,
|
||||
'modelId': modelId,
|
||||
'modelName': modelName
|
||||
}
|
||||
logging.info(f"Subscribed to camera {camera_id} with modelId {modelId}, modelName {modelName} and URL {rtsp_url}")
|
||||
elif camera_id and camera_id in streams:
|
||||
stream = streams.pop(camera_id)
|
||||
stream['cap'].release()
|
||||
logging.info(f"Unsubscribed from camera {camera_id}")
|
||||
if camera_id in models and modelId in models[camera_id]:
|
||||
del models[camera_id][modelId]
|
||||
if not models[camera_id]:
|
||||
del models[camera_id]
|
||||
elif msg_type == "unsubscribe":
|
||||
payload = data.get("payload", {})
|
||||
camera_id = payload.get("cameraIdentifier")
|
||||
logging.debug(f"Unsubscribing from camera {camera_id}")
|
||||
with streams_lock:
|
||||
if camera_id and camera_id in streams:
|
||||
stream = streams.pop(camera_id)
|
||||
stream['stop_event'].set()
|
||||
stream['thread'].join()
|
||||
stream['cap'].release()
|
||||
logging.info(f"Unsubscribed from camera {camera_id}")
|
||||
if camera_id in models and modelId in models[camera_id]:
|
||||
del models[camera_id][modelId]
|
||||
if not models[camera_id]:
|
||||
del models[camera_id]
|
||||
elif msg_type == "requestState":
|
||||
# Handle state request
|
||||
cpu_usage = psutil.cpu_percent()
|
||||
memory_usage = psutil.virtual_memory().percent
|
||||
if torch.cuda.is_available():
|
||||
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2) # Convert to MB
|
||||
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2) # Convert to MB
|
||||
else:
|
||||
gpu_usage = None
|
||||
gpu_memory_usage = None
|
||||
|
||||
camera_connections = [
|
||||
{
|
||||
"cameraIdentifier": camera_id,
|
||||
"modelId": stream['modelId'],
|
||||
"modelName": stream['modelName'],
|
||||
"online": True
|
||||
}
|
||||
for camera_id, stream in streams.items()
|
||||
]
|
||||
|
||||
state_report = {
|
||||
"type": "stateReport",
|
||||
"cpuUsage": cpu_usage,
|
||||
"memoryUsage": memory_usage,
|
||||
"gpuUsage": gpu_usage,
|
||||
"gpuMemoryUsage": gpu_memory_usage,
|
||||
"cameraConnections": camera_connections
|
||||
}
|
||||
await websocket.send_text(json.dumps(state_report))
|
||||
else:
|
||||
logging.error(f"Unknown message type: {msg_type}")
|
||||
except json.JSONDecodeError:
|
||||
logging.error("Received invalid JSON message")
|
||||
except (WebSocketDisconnect, ConnectionClosedError) as e:
|
||||
logging.warning(f"WebSocket disconnected: {e}")
|
||||
break
|
||||
except Exception as e:
|
||||
logging.error(f"Error handling message: {e}")
|
||||
break
|
||||
|
||||
try:
|
||||
await websocket.accept()
|
||||
task = asyncio.create_task(process_streams())
|
||||
heartbeat_task = asyncio.create_task(send_heartbeat())
|
||||
message_task = asyncio.create_task(on_message())
|
||||
|
||||
await asyncio.gather(heartbeat_task, message_task)
|
||||
except Exception as e:
|
||||
logging.error(f"Error in detect websocket: {e}")
|
||||
finally:
|
||||
task.cancel()
|
||||
await task
|
||||
with streams_lock:
|
||||
for camera_id, stream in streams.items():
|
||||
stream['stop_event'].set()
|
||||
stream['thread'].join()
|
||||
stream['cap'].release()
|
||||
stream['buffer'].queue.clear()
|
||||
logging.info(f"Released camera {camera_id} and cleaned up resources")
|
||||
streams.clear()
|
||||
with models_lock:
|
||||
models.clear()
|
||||
logging.info("WebSocket connection closed")
|
Loading…
Add table
Add a link
Reference in a new issue