python-detector-worker/siwatsystem/pympta.py
Siwat Sirichai d4754fcd27
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 9m22s
enhance logging for model loading and pipeline processing; update log levels and add detailed error messages
2025-05-28 19:18:58 +07:00

287 lines
13 KiB
Python

import os
import json
import logging
import torch
import cv2
import requests
import zipfile
import shutil
import traceback
from ultralytics import YOLO
from urllib.parse import urlparse
# Create a logger specifically for this module
logger = logging.getLogger("detector_worker.pympta")
def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
# Recursively load a model node from configuration.
model_path = os.path.join(mpta_dir, node_config["modelFile"])
if not os.path.exists(model_path):
logger.error(f"Model file {model_path} not found. Current directory: {os.getcwd()}")
logger.error(f"Directory content: {os.listdir(os.path.dirname(model_path))}")
raise FileNotFoundError(f"Model file {model_path} not found.")
logger.info(f"Loading model for node {node_config['modelId']} from {model_path}")
model = YOLO(model_path)
if torch.cuda.is_available():
logger.info(f"CUDA available. Moving model {node_config['modelId']} to GPU")
model.to("cuda")
else:
logger.info(f"CUDA not available. Using CPU for model {node_config['modelId']}")
node = {
"modelId": node_config["modelId"],
"modelFile": node_config["modelFile"],
"triggerClasses": node_config.get("triggerClasses", []),
"crop": node_config.get("crop", False),
"minConfidence": node_config.get("minConfidence", None),
"model": model,
"branches": []
}
logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
for child in node_config.get("branches", []):
logger.debug(f"Loading branch for parent node {node_config['modelId']}")
node["branches"].append(load_pipeline_node(child, mpta_dir))
return node
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
logger.info(f"Attempting to load pipeline from {zip_source} to {target_dir}")
os.makedirs(target_dir, exist_ok=True)
zip_path = os.path.join(target_dir, "pipeline.mpta")
# Parse the source; only local files are supported here.
parsed = urlparse(zip_source)
if parsed.scheme in ("", "file"):
local_path = parsed.path if parsed.scheme == "file" else zip_source
logger.debug(f"Checking if local file exists: {local_path}")
if os.path.exists(local_path):
try:
shutil.copy(local_path, zip_path)
logger.info(f"Copied local .mpta file from {local_path} to {zip_path}")
except Exception as e:
logger.error(f"Failed to copy local .mpta file from {local_path}: {str(e)}", exc_info=True)
return None
else:
logger.error(f"Local file {local_path} does not exist. Current directory: {os.getcwd()}")
# List all subdirectories of models directory to help debugging
if os.path.exists("models"):
logger.error(f"Content of models directory: {os.listdir('models')}")
for root, dirs, files in os.walk("models"):
logger.error(f"Directory {root} contains subdirs: {dirs} and files: {files}")
else:
logger.error("The models directory doesn't exist")
return None
else:
logger.error(f"HTTP download functionality has been moved. Use a local file path here. Received: {zip_source}")
return None
try:
if not os.path.exists(zip_path):
logger.error(f"Zip file not found at expected location: {zip_path}")
return None
logger.debug(f"Extracting .mpta file from {zip_path} to {target_dir}")
# Extract contents and track the directories created
extracted_dirs = []
with zipfile.ZipFile(zip_path, "r") as zip_ref:
file_list = zip_ref.namelist()
logger.debug(f"Files in .mpta archive: {file_list}")
# Extract and track the top-level directories
for file_path in file_list:
parts = file_path.split('/')
if len(parts) > 1:
top_dir = parts[0]
if top_dir and top_dir not in extracted_dirs:
extracted_dirs.append(top_dir)
# Now extract the files
zip_ref.extractall(target_dir)
logger.info(f"Successfully extracted .mpta file to {target_dir}")
logger.debug(f"Extracted directories: {extracted_dirs}")
# Check what was actually created after extraction
actual_dirs = [d for d in os.listdir(target_dir) if os.path.isdir(os.path.join(target_dir, d))]
logger.debug(f"Actual directories created: {actual_dirs}")
except zipfile.BadZipFile as e:
logger.error(f"Bad zip file {zip_path}: {str(e)}", exc_info=True)
return None
except Exception as e:
logger.error(f"Failed to extract .mpta file {zip_path}: {str(e)}", exc_info=True)
return None
finally:
if os.path.exists(zip_path):
os.remove(zip_path)
logger.debug(f"Removed temporary zip file: {zip_path}")
# Use the first extracted directory if it exists, otherwise use the expected name
pipeline_name = os.path.basename(zip_source)
pipeline_name = os.path.splitext(pipeline_name)[0]
# Find the directory with pipeline.json
mpta_dir = None
# First try the expected directory name
expected_dir = os.path.join(target_dir, pipeline_name)
if os.path.exists(expected_dir) and os.path.exists(os.path.join(expected_dir, "pipeline.json")):
mpta_dir = expected_dir
logger.debug(f"Found pipeline.json in the expected directory: {mpta_dir}")
else:
# Look through all subdirectories for pipeline.json
for subdir in actual_dirs:
potential_dir = os.path.join(target_dir, subdir)
if os.path.exists(os.path.join(potential_dir, "pipeline.json")):
mpta_dir = potential_dir
logger.info(f"Found pipeline.json in directory: {mpta_dir} (different from expected: {expected_dir})")
break
if not mpta_dir:
logger.error(f"Could not find pipeline.json in any extracted directory. Directory content: {os.listdir(target_dir)}")
return None
pipeline_json_path = os.path.join(mpta_dir, "pipeline.json")
if not os.path.exists(pipeline_json_path):
logger.error(f"pipeline.json not found in the .mpta file. Files in directory: {os.listdir(mpta_dir)}")
return None
try:
with open(pipeline_json_path, "r") as f:
pipeline_config = json.load(f)
logger.info(f"Successfully loaded pipeline configuration from {pipeline_json_path}")
logger.debug(f"Pipeline config: {json.dumps(pipeline_config, indent=2)}")
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir)
except json.JSONDecodeError as e:
logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
return None
except KeyError as e:
logger.error(f"Missing key in pipeline.json: {str(e)}", exc_info=True)
return None
except Exception as e:
logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
return None
def run_pipeline(frame, node: dict, return_bbox: bool = False, is_last_stage: bool = True):
"""
Processes the frame with the given pipeline node. When return_bbox is True,
the function returns a tuple (detection, bbox) where bbox is (x1,y1,x2,y2)
for drawing. Otherwise, returns only the detection.
The is_last_stage parameter controls whether this node is considered the last
in the pipeline chain. Only the last stage will return detection results.
"""
try:
# Check model type and use appropriate method
model_task = getattr(node["model"], "task", None)
if model_task == "classify":
# Classification models need to use predict() instead of track()
logger.debug(f"Running classification model: {node.get('modelId')}")
results = node["model"].predict(frame, stream=False)
detection = None
best_box = None
# Process classification results
for r in results:
probs = r.probs
if probs is not None and len(probs) > 0:
# Get the most confident class
class_id = int(probs.top1)
conf = float(probs.top1conf)
detection = {
"class": node["model"].names[class_id],
"confidence": conf,
"id": None # Classification doesn't have tracking IDs
}
logger.debug(f"Classification detection: {detection}")
else:
logger.debug(f"Empty classification results for model {node.get('modelId')}")
# Classification doesn't produce bounding boxes
bbox = None
else:
# Detection/segmentation models use tracking
logger.debug(f"Running detection/tracking model: {node.get('modelId')}")
results = node["model"].track(frame, stream=False, persist=True)
detection = None
best_box = None
max_conf = -1
# Log raw detection count
detection_count = 0
for r in results:
if hasattr(r.boxes, 'cpu') and len(r.boxes.cpu()) > 0:
detection_count += len(r.boxes.cpu())
if detection_count == 0:
logger.debug(f"Empty detection results (no objects found) for model {node.get('modelId')}")
else:
logger.debug(f"Detection model {node.get('modelId')} found {detection_count} objects")
for r in results:
for box in r.boxes:
box_cpu = box.cpu()
conf = float(box_cpu.conf[0])
if conf > max_conf and hasattr(box, "id") and box.id is not None:
max_conf = conf
detection = {
"class": node["model"].names[int(box_cpu.cls[0])],
"confidence": conf,
"id": box.id.item()
}
best_box = box_cpu
if detection:
logger.debug(f"Best detection: {detection}")
else:
logger.debug(f"No valid detection with tracking ID for model {node.get('modelId')}")
bbox = None
# Calculate bbox if best_box exists
if detection and best_box is not None:
coords = best_box.xyxy[0]
x1, y1, x2, y2 = map(int, coords)
h, w = frame.shape[:2]
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(w, x2), min(h, y2)
if x2 > x1 and y2 > y1:
bbox = (x1, y1, x2, y2)
logger.debug(f"Detection bounding box: {bbox}")
if node.get("crop", False):
frame = frame[y1:y2, x1:x2]
logger.debug(f"Cropped frame to {frame.shape}")
# Check if we should process branches
if detection is not None:
for branch in node["branches"]:
if detection["class"] in branch.get("triggerClasses", []):
min_conf = branch.get("minConfidence")
if min_conf is not None and detection["confidence"] < min_conf:
logger.debug(f"Confidence {detection['confidence']} below threshold {min_conf} for branch {branch['modelId']}.")
break
# If we have branches, this is not the last stage
branch_result = run_pipeline(frame, branch, return_bbox, is_last_stage=True)
# This node is no longer the last stage, so its results shouldn't be returned
is_last_stage = False
if branch_result is not None:
if return_bbox:
return branch_result
return branch_result
break
# Return this node's detection only if it's considered the last stage
if is_last_stage:
if return_bbox:
return detection, bbox
return detection
# No detection or not the last stage
if return_bbox:
return None, None
return None
except Exception as e:
logger.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
if return_bbox:
return None, None
return None