import os import json import logging import torch import cv2 import requests import zipfile import shutil import traceback from ultralytics import YOLO from urllib.parse import urlparse # Create a logger specifically for this module logger = logging.getLogger("detector_worker.pympta") def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict: # Recursively load a model node from configuration. model_path = os.path.join(mpta_dir, node_config["modelFile"]) if not os.path.exists(model_path): logger.error(f"Model file {model_path} not found. Current directory: {os.getcwd()}") logger.error(f"Directory content: {os.listdir(os.path.dirname(model_path))}") raise FileNotFoundError(f"Model file {model_path} not found.") logger.info(f"Loading model for node {node_config['modelId']} from {model_path}") model = YOLO(model_path) if torch.cuda.is_available(): logger.info(f"CUDA available. Moving model {node_config['modelId']} to GPU") model.to("cuda") else: logger.info(f"CUDA not available. Using CPU for model {node_config['modelId']}") node = { "modelId": node_config["modelId"], "modelFile": node_config["modelFile"], "triggerClasses": node_config.get("triggerClasses", []), "crop": node_config.get("crop", False), "minConfidence": node_config.get("minConfidence", None), "model": model, "branches": [] } logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}") for child in node_config.get("branches", []): logger.debug(f"Loading branch for parent node {node_config['modelId']}") node["branches"].append(load_pipeline_node(child, mpta_dir)) return node def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict: logger.info(f"Attempting to load pipeline from {zip_source} to {target_dir}") os.makedirs(target_dir, exist_ok=True) zip_path = os.path.join(target_dir, "pipeline.mpta") # Parse the source; only local files are supported here. parsed = urlparse(zip_source) if parsed.scheme in ("", "file"): local_path = parsed.path if parsed.scheme == "file" else zip_source logger.debug(f"Checking if local file exists: {local_path}") if os.path.exists(local_path): try: shutil.copy(local_path, zip_path) logger.info(f"Copied local .mpta file from {local_path} to {zip_path}") except Exception as e: logger.error(f"Failed to copy local .mpta file from {local_path}: {str(e)}", exc_info=True) return None else: logger.error(f"Local file {local_path} does not exist. Current directory: {os.getcwd()}") # List all subdirectories of models directory to help debugging if os.path.exists("models"): logger.error(f"Content of models directory: {os.listdir('models')}") for root, dirs, files in os.walk("models"): logger.error(f"Directory {root} contains subdirs: {dirs} and files: {files}") else: logger.error("The models directory doesn't exist") return None else: logger.error(f"HTTP download functionality has been moved. Use a local file path here. Received: {zip_source}") return None try: if not os.path.exists(zip_path): logger.error(f"Zip file not found at expected location: {zip_path}") return None logger.debug(f"Extracting .mpta file from {zip_path} to {target_dir}") # Extract contents and track the directories created extracted_dirs = [] with zipfile.ZipFile(zip_path, "r") as zip_ref: file_list = zip_ref.namelist() logger.debug(f"Files in .mpta archive: {file_list}") # Extract and track the top-level directories for file_path in file_list: parts = file_path.split('/') if len(parts) > 1: top_dir = parts[0] if top_dir and top_dir not in extracted_dirs: extracted_dirs.append(top_dir) # Now extract the files zip_ref.extractall(target_dir) logger.info(f"Successfully extracted .mpta file to {target_dir}") logger.debug(f"Extracted directories: {extracted_dirs}") # Check what was actually created after extraction actual_dirs = [d for d in os.listdir(target_dir) if os.path.isdir(os.path.join(target_dir, d))] logger.debug(f"Actual directories created: {actual_dirs}") except zipfile.BadZipFile as e: logger.error(f"Bad zip file {zip_path}: {str(e)}", exc_info=True) return None except Exception as e: logger.error(f"Failed to extract .mpta file {zip_path}: {str(e)}", exc_info=True) return None finally: if os.path.exists(zip_path): os.remove(zip_path) logger.debug(f"Removed temporary zip file: {zip_path}") # Use the first extracted directory if it exists, otherwise use the expected name pipeline_name = os.path.basename(zip_source) pipeline_name = os.path.splitext(pipeline_name)[0] # Find the directory with pipeline.json mpta_dir = None # First try the expected directory name expected_dir = os.path.join(target_dir, pipeline_name) if os.path.exists(expected_dir) and os.path.exists(os.path.join(expected_dir, "pipeline.json")): mpta_dir = expected_dir logger.debug(f"Found pipeline.json in the expected directory: {mpta_dir}") else: # Look through all subdirectories for pipeline.json for subdir in actual_dirs: potential_dir = os.path.join(target_dir, subdir) if os.path.exists(os.path.join(potential_dir, "pipeline.json")): mpta_dir = potential_dir logger.info(f"Found pipeline.json in directory: {mpta_dir} (different from expected: {expected_dir})") break if not mpta_dir: logger.error(f"Could not find pipeline.json in any extracted directory. Directory content: {os.listdir(target_dir)}") return None pipeline_json_path = os.path.join(mpta_dir, "pipeline.json") if not os.path.exists(pipeline_json_path): logger.error(f"pipeline.json not found in the .mpta file. Files in directory: {os.listdir(mpta_dir)}") return None try: with open(pipeline_json_path, "r") as f: pipeline_config = json.load(f) logger.info(f"Successfully loaded pipeline configuration from {pipeline_json_path}") logger.debug(f"Pipeline config: {json.dumps(pipeline_config, indent=2)}") return load_pipeline_node(pipeline_config["pipeline"], mpta_dir) except json.JSONDecodeError as e: logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True) return None except KeyError as e: logger.error(f"Missing key in pipeline.json: {str(e)}", exc_info=True) return None except Exception as e: logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True) return None def run_pipeline(frame, node: dict, return_bbox: bool = False, is_last_stage: bool = True): """ Processes the frame with the given pipeline node. When return_bbox is True, the function returns a tuple (detection, bbox) where bbox is (x1,y1,x2,y2) for drawing. Otherwise, returns only the detection. The is_last_stage parameter controls whether this node is considered the last in the pipeline chain. Only the last stage will return detection results. """ try: # Check model type and use appropriate method model_task = getattr(node["model"], "task", None) if model_task == "classify": # Classification models need to use predict() instead of track() logger.debug(f"Running classification model: {node.get('modelId')}") results = node["model"].predict(frame, stream=False) detection = None best_box = None # Process classification results for r in results: probs = r.probs if probs is not None and len(probs) > 0: # Get the most confident class class_id = int(probs.top1) conf = float(probs.top1conf) detection = { "class": node["model"].names[class_id], "confidence": conf, "id": None # Classification doesn't have tracking IDs } logger.debug(f"Classification detection: {detection}") else: logger.debug(f"Empty classification results for model {node.get('modelId')}") # Classification doesn't produce bounding boxes bbox = None else: # Detection/segmentation models use tracking logger.debug(f"Running detection/tracking model: {node.get('modelId')}") results = node["model"].track(frame, stream=False, persist=True) detection = None best_box = None max_conf = -1 # Log raw detection count detection_count = 0 for r in results: if hasattr(r.boxes, 'cpu') and len(r.boxes.cpu()) > 0: detection_count += len(r.boxes.cpu()) if detection_count == 0: logger.debug(f"Empty detection results (no objects found) for model {node.get('modelId')}") else: logger.debug(f"Detection model {node.get('modelId')} found {detection_count} objects") for r in results: for box in r.boxes: box_cpu = box.cpu() conf = float(box_cpu.conf[0]) if conf > max_conf and hasattr(box, "id") and box.id is not None: max_conf = conf detection = { "class": node["model"].names[int(box_cpu.cls[0])], "confidence": conf, "id": box.id.item() } best_box = box_cpu if detection: logger.debug(f"Best detection: {detection}") else: logger.debug(f"No valid detection with tracking ID for model {node.get('modelId')}") bbox = None # Calculate bbox if best_box exists if detection and best_box is not None: coords = best_box.xyxy[0] x1, y1, x2, y2 = map(int, coords) h, w = frame.shape[:2] x1, y1 = max(0, x1), max(0, y1) x2, y2 = min(w, x2), min(h, y2) if x2 > x1 and y2 > y1: bbox = (x1, y1, x2, y2) logger.debug(f"Detection bounding box: {bbox}") if node.get("crop", False): frame = frame[y1:y2, x1:x2] logger.debug(f"Cropped frame to {frame.shape}") # Check if we should process branches if detection is not None: for branch in node["branches"]: if detection["class"] in branch.get("triggerClasses", []): min_conf = branch.get("minConfidence") if min_conf is not None and detection["confidence"] < min_conf: logger.debug(f"Confidence {detection['confidence']} below threshold {min_conf} for branch {branch['modelId']}.") break # If we have branches, this is not the last stage branch_result = run_pipeline(frame, branch, return_bbox, is_last_stage=True) # This node is no longer the last stage, so its results shouldn't be returned is_last_stage = False if branch_result is not None: if return_bbox: return branch_result return branch_result break # Return this node's detection only if it's considered the last stage if is_last_stage: if return_bbox: return detection, bbox return detection # No detection or not the last stage if return_bbox: return None, None return None except Exception as e: logger.error(f"Error running pipeline on node {node.get('modelId')}: {e}") if return_bbox: return None, None return None