enhance logging for model loading and pipeline processing; update log levels and add detailed error messages
	
		
			
	
		
	
	
		
	
		
			All checks were successful
		
		
	
	
		
			
				
	
				Build Backend Application and Docker Image / build-docker (push) Successful in 9m22s
				
			
		
		
	
	
				
					
				
			
		
			All checks were successful
		
		
	
	Build Backend Application and Docker Image / build-docker (push) Successful in 9m22s
				
			This commit is contained in:
		
							parent
							
								
									3511d6ad7a
								
							
						
					
					
						commit
						d4754fcd27
					
				
					 3 changed files with 325 additions and 82 deletions
				
			
		
							
								
								
									
										5
									
								
								.gitignore
									
										
									
									
										vendored
									
									
								
							
							
						
						
									
										5
									
								
								.gitignore
									
										
									
									
										vendored
									
									
								
							| 
						 | 
				
			
			@ -6,4 +6,7 @@ app.log
 | 
			
		|||
__pycache__/
 | 
			
		||||
.mptacache
 | 
			
		||||
 | 
			
		||||
mptas
 | 
			
		||||
mptas
 | 
			
		||||
detector_worker.log
 | 
			
		||||
.gitignore
 | 
			
		||||
no_frame_debug.log
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										237
									
								
								app.py
									
										
									
									
									
								
							
							
						
						
									
										237
									
								
								app.py
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -41,41 +41,61 @@ max_retries = config.get("max_retries", 3)
 | 
			
		|||
 | 
			
		||||
# Configure logging
 | 
			
		||||
logging.basicConfig(
 | 
			
		||||
    level=logging.DEBUG,
 | 
			
		||||
    format="%(asctime)s [%(levelname)s] %(message)s",
 | 
			
		||||
    level=logging.INFO,  # Set to INFO level for less verbose output
 | 
			
		||||
    format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
 | 
			
		||||
    handlers=[
 | 
			
		||||
        logging.FileHandler("app.log"),
 | 
			
		||||
        logging.StreamHandler()
 | 
			
		||||
        logging.FileHandler("detector_worker.log"),  # Write logs to a file
 | 
			
		||||
        logging.StreamHandler()  # Also output to console
 | 
			
		||||
    ]
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
# Create a logger specifically for this application
 | 
			
		||||
logger = logging.getLogger("detector_worker")
 | 
			
		||||
logger.setLevel(logging.DEBUG)  # Set app-specific logger to DEBUG level
 | 
			
		||||
 | 
			
		||||
# Ensure all other libraries (including root) use at least INFO level
 | 
			
		||||
logging.getLogger().setLevel(logging.INFO)
 | 
			
		||||
 | 
			
		||||
logger.info("Starting detector worker application")
 | 
			
		||||
logger.info(f"Configuration: Target FPS: {TARGET_FPS}, Max streams: {max_streams}, Max retries: {max_retries}")
 | 
			
		||||
 | 
			
		||||
# Ensure the models directory exists
 | 
			
		||||
os.makedirs("models", exist_ok=True)
 | 
			
		||||
logger.info("Ensured models directory exists")
 | 
			
		||||
 | 
			
		||||
# Constants for heartbeat and timeouts
 | 
			
		||||
HEARTBEAT_INTERVAL = 2  # seconds
 | 
			
		||||
WORKER_TIMEOUT_MS = 10000
 | 
			
		||||
logger.debug(f"Heartbeat interval set to {HEARTBEAT_INTERVAL} seconds")
 | 
			
		||||
 | 
			
		||||
# Locks for thread-safe operations
 | 
			
		||||
streams_lock = threading.Lock()
 | 
			
		||||
models_lock = threading.Lock()
 | 
			
		||||
logger.debug("Initialized thread locks")
 | 
			
		||||
 | 
			
		||||
# Add helper to download mpta ZIP file from a remote URL
 | 
			
		||||
def download_mpta(url: str, dest_path: str) -> str:
 | 
			
		||||
    try:
 | 
			
		||||
        logger.info(f"Starting download of model from {url} to {dest_path}")
 | 
			
		||||
        os.makedirs(os.path.dirname(dest_path), exist_ok=True)
 | 
			
		||||
        response = requests.get(url, stream=True)
 | 
			
		||||
        if response.status_code == 200:
 | 
			
		||||
            file_size = int(response.headers.get('content-length', 0))
 | 
			
		||||
            logger.info(f"Model file size: {file_size/1024/1024:.2f} MB")
 | 
			
		||||
            downloaded = 0
 | 
			
		||||
            with open(dest_path, "wb") as f:
 | 
			
		||||
                for chunk in response.iter_content(chunk_size=8192):
 | 
			
		||||
                    f.write(chunk)
 | 
			
		||||
            logging.info(f"Downloaded mpta file from {url} to {dest_path}")
 | 
			
		||||
                    downloaded += len(chunk)
 | 
			
		||||
                    if file_size > 0 and downloaded % (file_size // 10) < 8192:  # Log approximately every 10%
 | 
			
		||||
                        logger.debug(f"Download progress: {downloaded/file_size*100:.1f}%")
 | 
			
		||||
            logger.info(f"Successfully downloaded mpta file from {url} to {dest_path}")
 | 
			
		||||
            return dest_path
 | 
			
		||||
        else:
 | 
			
		||||
            logging.error(f"Failed to download mpta file (status code {response.status_code})")
 | 
			
		||||
            logger.error(f"Failed to download mpta file (status code {response.status_code}): {response.text}")
 | 
			
		||||
            return None
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Exception downloading mpta file from {url}: {e}")
 | 
			
		||||
        logger.error(f"Exception downloading mpta file from {url}: {str(e)}", exc_info=True)
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
####################################################
 | 
			
		||||
| 
						 | 
				
			
			@ -83,12 +103,17 @@ def download_mpta(url: str, dest_path: str) -> str:
 | 
			
		|||
####################################################
 | 
			
		||||
@app.websocket("/")
 | 
			
		||||
async def detect(websocket: WebSocket):
 | 
			
		||||
    logging.info("WebSocket connection accepted")
 | 
			
		||||
    logger.info("WebSocket connection accepted")
 | 
			
		||||
    persistent_data_dict = {}
 | 
			
		||||
 | 
			
		||||
    async def handle_detection(camera_id, stream, frame, websocket, model_tree, persistent_data):
 | 
			
		||||
        try:
 | 
			
		||||
            logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}")
 | 
			
		||||
            start_time = time.time()
 | 
			
		||||
            detection_result = run_pipeline(frame, model_tree)
 | 
			
		||||
            process_time = (time.time() - start_time) * 1000
 | 
			
		||||
            logger.debug(f"Detection for camera {camera_id} completed in {process_time:.2f}ms")
 | 
			
		||||
            
 | 
			
		||||
            detection_data = {
 | 
			
		||||
                "type": "imageDetection",
 | 
			
		||||
                "cameraIdentifier": camera_id,
 | 
			
		||||
| 
						 | 
				
			
			@ -99,87 +124,157 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                    "modelName": stream["modelName"]
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            logging.debug(f"Sending detection data for camera {camera_id}: {detection_data}")
 | 
			
		||||
            
 | 
			
		||||
            if detection_result:
 | 
			
		||||
                detection_count = len(detection_result.get("detections", []))
 | 
			
		||||
                logger.info(f"Camera {camera_id}: Detected {detection_count} objects with model {stream['modelName']}")
 | 
			
		||||
                
 | 
			
		||||
            await websocket.send_json(detection_data)
 | 
			
		||||
            return persistent_data
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logging.error(f"Error in handle_detection for camera {camera_id}: {e}")
 | 
			
		||||
            logger.error(f"Error in handle_detection for camera {camera_id}: {str(e)}", exc_info=True)
 | 
			
		||||
            return persistent_data
 | 
			
		||||
 | 
			
		||||
    def frame_reader(camera_id, cap, buffer, stop_event):
 | 
			
		||||
        retries = 0
 | 
			
		||||
        logger.info(f"Starting frame reader thread for camera {camera_id}")
 | 
			
		||||
        frame_count = 0
 | 
			
		||||
        last_log_time = time.time()
 | 
			
		||||
        
 | 
			
		||||
        try:
 | 
			
		||||
            # Log initial camera status and properties
 | 
			
		||||
            if cap.isOpened():
 | 
			
		||||
                width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
 | 
			
		||||
                height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
 | 
			
		||||
                fps = cap.get(cv2.CAP_PROP_FPS)
 | 
			
		||||
                logger.info(f"Camera {camera_id} opened successfully with resolution {width}x{height}, FPS: {fps}")
 | 
			
		||||
            else:
 | 
			
		||||
                logger.error(f"Camera {camera_id} failed to open initially")
 | 
			
		||||
            
 | 
			
		||||
            while not stop_event.is_set():
 | 
			
		||||
                try:
 | 
			
		||||
                    if not cap.isOpened():
 | 
			
		||||
                        logger.error(f"Camera {camera_id} is not open before trying to read")
 | 
			
		||||
                        # Attempt to reopen
 | 
			
		||||
                        cap = cv2.VideoCapture(streams[camera_id]["rtsp_url"])
 | 
			
		||||
                        time.sleep(reconnect_interval)
 | 
			
		||||
                        continue
 | 
			
		||||
                    
 | 
			
		||||
                    logger.debug(f"Attempting to read frame from camera {camera_id}")
 | 
			
		||||
                    ret, frame = cap.read()
 | 
			
		||||
                    
 | 
			
		||||
                    if not ret:
 | 
			
		||||
                        logging.warning(f"Connection lost for camera: {camera_id}, retry {retries+1}/{max_retries}")
 | 
			
		||||
                        logger.warning(f"Connection lost for camera: {camera_id}, retry {retries+1}/{max_retries}")
 | 
			
		||||
                        cap.release()
 | 
			
		||||
                        time.sleep(reconnect_interval)
 | 
			
		||||
                        retries += 1
 | 
			
		||||
                        if retries > max_retries and max_retries != -1:
 | 
			
		||||
                            logging.error(f"Max retries reached for camera: {camera_id}")
 | 
			
		||||
                            logger.error(f"Max retries reached for camera: {camera_id}, stopping frame reader")
 | 
			
		||||
                            break
 | 
			
		||||
                        # Re-open
 | 
			
		||||
                        logger.info(f"Attempting to reopen RTSP stream for camera: {camera_id}")
 | 
			
		||||
                        cap = cv2.VideoCapture(streams[camera_id]["rtsp_url"])
 | 
			
		||||
                        if not cap.isOpened():
 | 
			
		||||
                            logging.error(f"Failed to reopen RTSP stream for camera: {camera_id}")
 | 
			
		||||
                            logger.error(f"Failed to reopen RTSP stream for camera: {camera_id}")
 | 
			
		||||
                            continue
 | 
			
		||||
                        logger.info(f"Successfully reopened RTSP stream for camera: {camera_id}")
 | 
			
		||||
                        continue
 | 
			
		||||
                    
 | 
			
		||||
                    # Successfully read a frame
 | 
			
		||||
                    frame_count += 1
 | 
			
		||||
                    current_time = time.time()
 | 
			
		||||
                    # Log frame stats every 5 seconds
 | 
			
		||||
                    if current_time - last_log_time > 5:
 | 
			
		||||
                        logger.info(f"Camera {camera_id}: Read {frame_count} frames in the last {current_time - last_log_time:.1f} seconds")
 | 
			
		||||
                        frame_count = 0
 | 
			
		||||
                        last_log_time = current_time
 | 
			
		||||
                    
 | 
			
		||||
                    logger.debug(f"Successfully read frame from camera {camera_id}, shape: {frame.shape}")
 | 
			
		||||
                    retries = 0
 | 
			
		||||
                    
 | 
			
		||||
                    # Overwrite old frame if buffer is full
 | 
			
		||||
                    if not buffer.empty():
 | 
			
		||||
                        try:
 | 
			
		||||
                            buffer.get_nowait()
 | 
			
		||||
                            logger.debug(f"Removed old frame from buffer for camera {camera_id}")
 | 
			
		||||
                        except queue.Empty:
 | 
			
		||||
                            pass
 | 
			
		||||
                    
 | 
			
		||||
                    buffer.put(frame)
 | 
			
		||||
                    logger.debug(f"Added new frame to buffer for camera {camera_id}")
 | 
			
		||||
                    
 | 
			
		||||
                    # Short sleep to avoid CPU overuse
 | 
			
		||||
                    time.sleep(0.01)
 | 
			
		||||
                    
 | 
			
		||||
                except cv2.error as e:
 | 
			
		||||
                    logging.error(f"OpenCV error for camera {camera_id}: {e}")
 | 
			
		||||
                    logger.error(f"OpenCV error for camera {camera_id}: {e}", exc_info=True)
 | 
			
		||||
                    cap.release()
 | 
			
		||||
                    time.sleep(reconnect_interval)
 | 
			
		||||
                    retries += 1
 | 
			
		||||
                    if retries > max_retries and max_retries != -1:
 | 
			
		||||
                        logging.error(f"Max retries reached after OpenCV error for camera {camera_id}")
 | 
			
		||||
                        logger.error(f"Max retries reached after OpenCV error for camera {camera_id}")
 | 
			
		||||
                        break
 | 
			
		||||
                    logger.info(f"Attempting to reopen RTSP stream after OpenCV error for camera: {camera_id}")
 | 
			
		||||
                    cap = cv2.VideoCapture(streams[camera_id]["rtsp_url"])
 | 
			
		||||
                    if not cap.isOpened():
 | 
			
		||||
                        logging.error(f"Failed to reopen RTSP stream for camera {camera_id} after OpenCV error")
 | 
			
		||||
                        logger.error(f"Failed to reopen RTSP stream for camera {camera_id} after OpenCV error")
 | 
			
		||||
                        continue
 | 
			
		||||
                    logger.info(f"Successfully reopened RTSP stream after OpenCV error for camera: {camera_id}")
 | 
			
		||||
                except Exception as e:
 | 
			
		||||
                    logging.error(f"Unexpected error for camera {camera_id}: {e}")
 | 
			
		||||
                    logger.error(f"Unexpected error for camera {camera_id}: {str(e)}", exc_info=True)
 | 
			
		||||
                    cap.release()
 | 
			
		||||
                    break
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logging.error(f"Error in frame_reader thread for camera {camera_id}: {e}")
 | 
			
		||||
            logger.error(f"Error in frame_reader thread for camera {camera_id}: {str(e)}", exc_info=True)
 | 
			
		||||
        finally:
 | 
			
		||||
            logger.info(f"Frame reader thread for camera {camera_id} is exiting")
 | 
			
		||||
            if cap and cap.isOpened():
 | 
			
		||||
                cap.release()
 | 
			
		||||
 | 
			
		||||
    async def process_streams():
 | 
			
		||||
        logging.info("Started processing streams")
 | 
			
		||||
        logger.info("Started processing streams")
 | 
			
		||||
        try:
 | 
			
		||||
            while True:
 | 
			
		||||
                start_time = time.time()
 | 
			
		||||
                with streams_lock:
 | 
			
		||||
                    current_streams = list(streams.items())
 | 
			
		||||
                    if current_streams:
 | 
			
		||||
                        logger.debug(f"Processing {len(current_streams)} active streams")
 | 
			
		||||
                    else:
 | 
			
		||||
                        logger.debug("No active streams to process")
 | 
			
		||||
                
 | 
			
		||||
                for camera_id, stream in current_streams:
 | 
			
		||||
                    buffer = stream["buffer"]
 | 
			
		||||
                    if not buffer.empty():
 | 
			
		||||
                        frame = buffer.get()
 | 
			
		||||
                        with models_lock:
 | 
			
		||||
                            model_tree = models.get(camera_id, {}).get(stream["modelId"])
 | 
			
		||||
                        key = (camera_id, stream["modelId"])
 | 
			
		||||
                        persistent_data = persistent_data_dict.get(key, {})
 | 
			
		||||
                        updated_persistent_data = await handle_detection(
 | 
			
		||||
                            camera_id, stream, frame, websocket, model_tree, persistent_data
 | 
			
		||||
                        )
 | 
			
		||||
                        persistent_data_dict[key] = updated_persistent_data
 | 
			
		||||
                    if buffer.empty():
 | 
			
		||||
                        logger.debug(f"Frame buffer is empty for camera {camera_id}")
 | 
			
		||||
                        continue
 | 
			
		||||
                    
 | 
			
		||||
                    logger.debug(f"Got frame from buffer for camera {camera_id}")
 | 
			
		||||
                    frame = buffer.get()
 | 
			
		||||
                    
 | 
			
		||||
                    with models_lock:
 | 
			
		||||
                        model_tree = models.get(camera_id, {}).get(stream["modelId"])
 | 
			
		||||
                        if not model_tree:
 | 
			
		||||
                            logger.warning(f"Model not found for camera {camera_id}, modelId {stream['modelId']}")
 | 
			
		||||
                            continue
 | 
			
		||||
                        logger.debug(f"Found model tree for camera {camera_id}, modelId {stream['modelId']}")
 | 
			
		||||
                    
 | 
			
		||||
                    key = (camera_id, stream["modelId"])
 | 
			
		||||
                    persistent_data = persistent_data_dict.get(key, {})
 | 
			
		||||
                    logger.debug(f"Starting detection for camera {camera_id} with modelId {stream['modelId']}")
 | 
			
		||||
                    updated_persistent_data = await handle_detection(
 | 
			
		||||
                        camera_id, stream, frame, websocket, model_tree, persistent_data
 | 
			
		||||
                    )
 | 
			
		||||
                    persistent_data_dict[key] = updated_persistent_data
 | 
			
		||||
                
 | 
			
		||||
                elapsed_time = (time.time() - start_time) * 1000  # ms
 | 
			
		||||
                sleep_time = max(poll_interval - elapsed_time, 0)
 | 
			
		||||
                logging.debug(f"Elapsed time: {elapsed_time}ms, sleeping for: {sleep_time}ms")
 | 
			
		||||
                logger.debug(f"Frame processing cycle: {elapsed_time:.2f}ms, sleeping for: {sleep_time:.2f}ms")
 | 
			
		||||
                await asyncio.sleep(sleep_time / 1000.0)
 | 
			
		||||
        except asyncio.CancelledError:
 | 
			
		||||
            logging.info("Stream processing task cancelled")
 | 
			
		||||
            logger.info("Stream processing task cancelled")
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logging.error(f"Error in process_streams: {e}")
 | 
			
		||||
            logger.error(f"Error in process_streams: {str(e)}", exc_info=True)
 | 
			
		||||
 | 
			
		||||
    async def send_heartbeat():
 | 
			
		||||
        while True:
 | 
			
		||||
| 
						 | 
				
			
			@ -212,17 +307,17 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                    "cameraConnections": camera_connections
 | 
			
		||||
                }
 | 
			
		||||
                await websocket.send_text(json.dumps(state_report))
 | 
			
		||||
                logging.debug("Sent stateReport as heartbeat")
 | 
			
		||||
                logger.debug("Sent stateReport as heartbeat")
 | 
			
		||||
                await asyncio.sleep(HEARTBEAT_INTERVAL)
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
                logging.error(f"Error sending stateReport heartbeat: {e}")
 | 
			
		||||
                logger.error(f"Error sending stateReport heartbeat: {e}")
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
    async def on_message():
 | 
			
		||||
        while True:
 | 
			
		||||
            try:
 | 
			
		||||
                msg = await websocket.receive_text()
 | 
			
		||||
                logging.debug(f"Received message: {msg}")
 | 
			
		||||
                logger.debug(f"Received message: {msg}")
 | 
			
		||||
                data = json.loads(msg)
 | 
			
		||||
                msg_type = data.get("type")
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -236,35 +331,67 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
 | 
			
		||||
                    if model_url:
 | 
			
		||||
                        with models_lock:
 | 
			
		||||
                            if camera_id not in models:
 | 
			
		||||
                                models[camera_id] = {}
 | 
			
		||||
                            if modelId not in models[camera_id]:
 | 
			
		||||
                                logging.info(f"Loading model from {model_url}")
 | 
			
		||||
                            if (camera_id not in models) or (modelId not in models[camera_id]):
 | 
			
		||||
                                logger.info(f"Loading model from {model_url} for camera {camera_id}, modelId {modelId}")
 | 
			
		||||
                                extraction_dir = os.path.join("models", camera_id, str(modelId))
 | 
			
		||||
                                os.makedirs(extraction_dir, exist_ok=True)
 | 
			
		||||
                                # If model_url is remote, download it first.
 | 
			
		||||
                                parsed = urlparse(model_url)
 | 
			
		||||
                                if parsed.scheme in ("http", "https"):
 | 
			
		||||
                                    logger.info(f"Downloading remote model from {model_url}")
 | 
			
		||||
                                    local_mpta = os.path.join(extraction_dir, os.path.basename(parsed.path))
 | 
			
		||||
                                    logger.debug(f"Download destination: {local_mpta}")
 | 
			
		||||
                                    local_path = download_mpta(model_url, local_mpta)
 | 
			
		||||
                                    if not local_path:
 | 
			
		||||
                                        logging.error("Failed to download the remote mpta file.")
 | 
			
		||||
                                        logger.error(f"Failed to download the remote mpta file from {model_url}")
 | 
			
		||||
                                        error_response = {
 | 
			
		||||
                                            "type": "error",
 | 
			
		||||
                                            "cameraIdentifier": camera_id,
 | 
			
		||||
                                            "error": f"Failed to download model from {model_url}"
 | 
			
		||||
                                        }
 | 
			
		||||
                                        await websocket.send_json(error_response)
 | 
			
		||||
                                        continue
 | 
			
		||||
                                    model_tree = load_pipeline_from_zip(local_path, extraction_dir)
 | 
			
		||||
                                else:
 | 
			
		||||
                                    logger.info(f"Loading local model from {model_url}")
 | 
			
		||||
                                    # Check if file exists before attempting to load
 | 
			
		||||
                                    if not os.path.exists(model_url):
 | 
			
		||||
                                        logger.error(f"Local model file not found: {model_url}")
 | 
			
		||||
                                        logger.debug(f"Current working directory: {os.getcwd()}")
 | 
			
		||||
                                        error_response = {
 | 
			
		||||
                                            "type": "error",
 | 
			
		||||
                                            "cameraIdentifier": camera_id,
 | 
			
		||||
                                            "error": f"Model file not found: {model_url}"
 | 
			
		||||
                                        }
 | 
			
		||||
                                        await websocket.send_json(error_response)
 | 
			
		||||
                                        continue
 | 
			
		||||
                                    model_tree = load_pipeline_from_zip(model_url, extraction_dir)
 | 
			
		||||
                                if model_tree is None:
 | 
			
		||||
                                    logging.error("Failed to load model from mpta file.")
 | 
			
		||||
                                    logger.error(f"Failed to load model {modelId} from mpta file for camera {camera_id}")
 | 
			
		||||
                                    error_response = {
 | 
			
		||||
                                        "type": "error",
 | 
			
		||||
                                        "cameraIdentifier": camera_id,
 | 
			
		||||
                                        "error": f"Failed to load model {modelId}"
 | 
			
		||||
                                    }
 | 
			
		||||
                                    await websocket.send_json(error_response)
 | 
			
		||||
                                    continue
 | 
			
		||||
                                if camera_id not in models:
 | 
			
		||||
                                    models[camera_id] = {}
 | 
			
		||||
                                models[camera_id][modelId] = model_tree
 | 
			
		||||
                                logging.info(f"Loaded model {modelId} for camera {camera_id}")
 | 
			
		||||
 | 
			
		||||
                                logger.info(f"Successfully loaded model {modelId} for camera {camera_id}")
 | 
			
		||||
                                success_response = {
 | 
			
		||||
                                    "type": "modelLoaded",
 | 
			
		||||
                                    "cameraIdentifier": camera_id,
 | 
			
		||||
                                    "modelId": modelId
 | 
			
		||||
                                }
 | 
			
		||||
                                await websocket.send_json(success_response)
 | 
			
		||||
                    
 | 
			
		||||
                    if camera_id and rtsp_url:
 | 
			
		||||
                        with streams_lock:
 | 
			
		||||
                            if camera_id not in streams and len(streams) < max_streams:
 | 
			
		||||
                                cap = cv2.VideoCapture(rtsp_url)
 | 
			
		||||
                                if not cap.isOpened():
 | 
			
		||||
                                    logging.error(f"Failed to open RTSP stream for camera {camera_id}")
 | 
			
		||||
                                    logger.error(f"Failed to open RTSP stream for camera {camera_id}")
 | 
			
		||||
                                    continue
 | 
			
		||||
                                buffer = queue.Queue(maxsize=1)
 | 
			
		||||
                                stop_event = threading.Event()
 | 
			
		||||
| 
						 | 
				
			
			@ -280,12 +407,12 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                                    "modelId": modelId,
 | 
			
		||||
                                    "modelName": modelName
 | 
			
		||||
                                }
 | 
			
		||||
                                logging.info(f"Subscribed to camera {camera_id} with modelId {modelId}, modelName {modelName}, URL {rtsp_url}")
 | 
			
		||||
                                logger.info(f"Subscribed to camera {camera_id} with modelId {modelId}, modelName {modelName}, URL {rtsp_url}")
 | 
			
		||||
                            elif camera_id and camera_id in streams:
 | 
			
		||||
                                # If already subscribed, unsubscribe
 | 
			
		||||
                                stream = streams.pop(camera_id)
 | 
			
		||||
                                stream["cap"].release()
 | 
			
		||||
                                logging.info(f"Unsubscribed from camera {camera_id}")
 | 
			
		||||
                                logger.info(f"Unsubscribed from camera {camera_id}")
 | 
			
		||||
                                with models_lock:
 | 
			
		||||
                                    if camera_id in models and modelId in models[camera_id]:
 | 
			
		||||
                                        del models[camera_id][modelId]
 | 
			
		||||
| 
						 | 
				
			
			@ -294,14 +421,14 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                elif msg_type == "unsubscribe":
 | 
			
		||||
                    payload = data.get("payload", {})
 | 
			
		||||
                    camera_id = payload.get("cameraIdentifier")
 | 
			
		||||
                    logging.debug(f"Unsubscribing from camera {camera_id}")
 | 
			
		||||
                    logger.debug(f"Unsubscribing from camera {camera_id}")
 | 
			
		||||
                    with streams_lock:
 | 
			
		||||
                        if camera_id and camera_id in streams:
 | 
			
		||||
                            stream = streams.pop(camera_id)
 | 
			
		||||
                            stream["stop_event"].set()
 | 
			
		||||
                            stream["thread"].join()
 | 
			
		||||
                            stream["cap"].release()
 | 
			
		||||
                            logging.info(f"Unsubscribed from camera {camera_id}")
 | 
			
		||||
                            logger.info(f"Unsubscribed from camera {camera_id}")
 | 
			
		||||
                            with models_lock:
 | 
			
		||||
                                if camera_id in models:
 | 
			
		||||
                                    del models[camera_id]
 | 
			
		||||
| 
						 | 
				
			
			@ -335,14 +462,14 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                    }
 | 
			
		||||
                    await websocket.send_text(json.dumps(state_report))
 | 
			
		||||
                else:
 | 
			
		||||
                    logging.error(f"Unknown message type: {msg_type}")
 | 
			
		||||
                    logger.error(f"Unknown message type: {msg_type}")
 | 
			
		||||
            except json.JSONDecodeError:
 | 
			
		||||
                logging.error("Received invalid JSON message")
 | 
			
		||||
                logger.error("Received invalid JSON message")
 | 
			
		||||
            except (WebSocketDisconnect, ConnectionClosedError) as e:
 | 
			
		||||
                logging.warning(f"WebSocket disconnected: {e}")
 | 
			
		||||
                logger.warning(f"WebSocket disconnected: {e}")
 | 
			
		||||
                break
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
                logging.error(f"Error handling message: {e}")
 | 
			
		||||
                logger.error(f"Error handling message: {e}")
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
| 
						 | 
				
			
			@ -352,7 +479,7 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
        message_task = asyncio.create_task(on_message())
 | 
			
		||||
        await asyncio.gather(heartbeat_task, message_task)
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Error in detect websocket: {e}")
 | 
			
		||||
        logger.error(f"Error in detect websocket: {e}")
 | 
			
		||||
    finally:
 | 
			
		||||
        stream_task.cancel()
 | 
			
		||||
        await stream_task
 | 
			
		||||
| 
						 | 
				
			
			@ -366,8 +493,8 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                        stream["buffer"].get_nowait()
 | 
			
		||||
                    except queue.Empty:
 | 
			
		||||
                        pass
 | 
			
		||||
                logging.info(f"Released camera {camera_id} and cleaned up resources")
 | 
			
		||||
                logger.info(f"Released camera {camera_id} and cleaned up resources")
 | 
			
		||||
            streams.clear()
 | 
			
		||||
        with models_lock:
 | 
			
		||||
            models.clear()
 | 
			
		||||
        logging.info("WebSocket connection closed")
 | 
			
		||||
        logger.info("WebSocket connection closed")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -6,19 +6,27 @@ import cv2
 | 
			
		|||
import requests
 | 
			
		||||
import zipfile
 | 
			
		||||
import shutil
 | 
			
		||||
import traceback
 | 
			
		||||
from ultralytics import YOLO
 | 
			
		||||
from urllib.parse import urlparse
 | 
			
		||||
 | 
			
		||||
# Create a logger specifically for this module
 | 
			
		||||
logger = logging.getLogger("detector_worker.pympta")
 | 
			
		||||
 | 
			
		||||
def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
 | 
			
		||||
    # Recursively load a model node from configuration.
 | 
			
		||||
    model_path = os.path.join(mpta_dir, node_config["modelFile"])
 | 
			
		||||
    if not os.path.exists(model_path):
 | 
			
		||||
        logging.error(f"Model file {model_path} not found.")
 | 
			
		||||
        logger.error(f"Model file {model_path} not found. Current directory: {os.getcwd()}")
 | 
			
		||||
        logger.error(f"Directory content: {os.listdir(os.path.dirname(model_path))}")
 | 
			
		||||
        raise FileNotFoundError(f"Model file {model_path} not found.")
 | 
			
		||||
    logging.info(f"Loading model for node {node_config['modelId']} from {model_path}")
 | 
			
		||||
    logger.info(f"Loading model for node {node_config['modelId']} from {model_path}")
 | 
			
		||||
    model = YOLO(model_path)
 | 
			
		||||
    if torch.cuda.is_available():
 | 
			
		||||
        logger.info(f"CUDA available. Moving model {node_config['modelId']} to GPU")
 | 
			
		||||
        model.to("cuda")
 | 
			
		||||
    else:
 | 
			
		||||
        logger.info(f"CUDA not available. Using CPU for model {node_config['modelId']}")
 | 
			
		||||
    node = {
 | 
			
		||||
        "modelId": node_config["modelId"],
 | 
			
		||||
        "modelFile": node_config["modelFile"],
 | 
			
		||||
| 
						 | 
				
			
			@ -28,11 +36,14 @@ def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
 | 
			
		|||
        "model": model,
 | 
			
		||||
        "branches": []
 | 
			
		||||
    }
 | 
			
		||||
    logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
 | 
			
		||||
    for child in node_config.get("branches", []):
 | 
			
		||||
        logger.debug(f"Loading branch for parent node {node_config['modelId']}")
 | 
			
		||||
        node["branches"].append(load_pipeline_node(child, mpta_dir))
 | 
			
		||||
    return node
 | 
			
		||||
 | 
			
		||||
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
 | 
			
		||||
    logger.info(f"Attempting to load pipeline from {zip_source} to {target_dir}")
 | 
			
		||||
    os.makedirs(target_dir, exist_ok=True)
 | 
			
		||||
    zip_path = os.path.join(target_dir, "pipeline.mpta")
 | 
			
		||||
    
 | 
			
		||||
| 
						 | 
				
			
			@ -40,51 +51,121 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
 | 
			
		|||
    parsed = urlparse(zip_source)
 | 
			
		||||
    if parsed.scheme in ("", "file"):
 | 
			
		||||
        local_path = parsed.path if parsed.scheme == "file" else zip_source
 | 
			
		||||
        logger.debug(f"Checking if local file exists: {local_path}")
 | 
			
		||||
        if os.path.exists(local_path):
 | 
			
		||||
            try:
 | 
			
		||||
                shutil.copy(local_path, zip_path)
 | 
			
		||||
                logging.info(f"Copied local .mpta file from {local_path} to {zip_path}")
 | 
			
		||||
                logger.info(f"Copied local .mpta file from {local_path} to {zip_path}")
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
                logging.error(f"Failed to copy local .mpta file from {local_path}: {e}")
 | 
			
		||||
                logger.error(f"Failed to copy local .mpta file from {local_path}: {str(e)}", exc_info=True)
 | 
			
		||||
                return None
 | 
			
		||||
        else:
 | 
			
		||||
            logging.error(f"Local file {local_path} does not exist.")
 | 
			
		||||
            logger.error(f"Local file {local_path} does not exist. Current directory: {os.getcwd()}")
 | 
			
		||||
            # List all subdirectories of models directory to help debugging
 | 
			
		||||
            if os.path.exists("models"):
 | 
			
		||||
                logger.error(f"Content of models directory: {os.listdir('models')}")
 | 
			
		||||
                for root, dirs, files in os.walk("models"):
 | 
			
		||||
                    logger.error(f"Directory {root} contains subdirs: {dirs} and files: {files}")
 | 
			
		||||
            else:
 | 
			
		||||
                logger.error("The models directory doesn't exist")
 | 
			
		||||
            return None
 | 
			
		||||
    else:
 | 
			
		||||
        logging.error("HTTP download functionality has been moved. Use a local file path here.")
 | 
			
		||||
        logger.error(f"HTTP download functionality has been moved. Use a local file path here. Received: {zip_source}")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        if not os.path.exists(zip_path):
 | 
			
		||||
            logger.error(f"Zip file not found at expected location: {zip_path}")
 | 
			
		||||
            return None
 | 
			
		||||
            
 | 
			
		||||
        logger.debug(f"Extracting .mpta file from {zip_path} to {target_dir}")
 | 
			
		||||
        # Extract contents and track the directories created
 | 
			
		||||
        extracted_dirs = []
 | 
			
		||||
        with zipfile.ZipFile(zip_path, "r") as zip_ref:
 | 
			
		||||
            file_list = zip_ref.namelist()
 | 
			
		||||
            logger.debug(f"Files in .mpta archive: {file_list}")
 | 
			
		||||
            
 | 
			
		||||
            # Extract and track the top-level directories
 | 
			
		||||
            for file_path in file_list:
 | 
			
		||||
                parts = file_path.split('/')
 | 
			
		||||
                if len(parts) > 1:
 | 
			
		||||
                    top_dir = parts[0]
 | 
			
		||||
                    if top_dir and top_dir not in extracted_dirs:
 | 
			
		||||
                        extracted_dirs.append(top_dir)
 | 
			
		||||
            
 | 
			
		||||
            # Now extract the files
 | 
			
		||||
            zip_ref.extractall(target_dir)
 | 
			
		||||
        logging.info(f"Extracted .mpta file to {target_dir}")
 | 
			
		||||
            
 | 
			
		||||
        logger.info(f"Successfully extracted .mpta file to {target_dir}")
 | 
			
		||||
        logger.debug(f"Extracted directories: {extracted_dirs}")
 | 
			
		||||
        
 | 
			
		||||
        # Check what was actually created after extraction
 | 
			
		||||
        actual_dirs = [d for d in os.listdir(target_dir) if os.path.isdir(os.path.join(target_dir, d))]
 | 
			
		||||
        logger.debug(f"Actual directories created: {actual_dirs}")
 | 
			
		||||
    except zipfile.BadZipFile as e:
 | 
			
		||||
        logger.error(f"Bad zip file {zip_path}: {str(e)}", exc_info=True)
 | 
			
		||||
        return None
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Failed to extract .mpta file: {e}")
 | 
			
		||||
        logger.error(f"Failed to extract .mpta file {zip_path}: {str(e)}", exc_info=True)
 | 
			
		||||
        return None
 | 
			
		||||
    finally:
 | 
			
		||||
        if os.path.exists(zip_path):
 | 
			
		||||
            os.remove(zip_path)
 | 
			
		||||
            logger.debug(f"Removed temporary zip file: {zip_path}")
 | 
			
		||||
 | 
			
		||||
    # Use the first extracted directory if it exists, otherwise use the expected name
 | 
			
		||||
    pipeline_name = os.path.basename(zip_source)
 | 
			
		||||
    pipeline_name = os.path.splitext(pipeline_name)[0]
 | 
			
		||||
    mpta_dir = os.path.join(target_dir, pipeline_name)
 | 
			
		||||
    
 | 
			
		||||
    # Find the directory with pipeline.json
 | 
			
		||||
    mpta_dir = None
 | 
			
		||||
    # First try the expected directory name
 | 
			
		||||
    expected_dir = os.path.join(target_dir, pipeline_name)
 | 
			
		||||
    if os.path.exists(expected_dir) and os.path.exists(os.path.join(expected_dir, "pipeline.json")):
 | 
			
		||||
        mpta_dir = expected_dir
 | 
			
		||||
        logger.debug(f"Found pipeline.json in the expected directory: {mpta_dir}")
 | 
			
		||||
    else:
 | 
			
		||||
        # Look through all subdirectories for pipeline.json
 | 
			
		||||
        for subdir in actual_dirs:
 | 
			
		||||
            potential_dir = os.path.join(target_dir, subdir)
 | 
			
		||||
            if os.path.exists(os.path.join(potential_dir, "pipeline.json")):
 | 
			
		||||
                mpta_dir = potential_dir
 | 
			
		||||
                logger.info(f"Found pipeline.json in directory: {mpta_dir} (different from expected: {expected_dir})")
 | 
			
		||||
                break
 | 
			
		||||
    
 | 
			
		||||
    if not mpta_dir:
 | 
			
		||||
        logger.error(f"Could not find pipeline.json in any extracted directory. Directory content: {os.listdir(target_dir)}")
 | 
			
		||||
        return None
 | 
			
		||||
        
 | 
			
		||||
    pipeline_json_path = os.path.join(mpta_dir, "pipeline.json")
 | 
			
		||||
    if not os.path.exists(pipeline_json_path):
 | 
			
		||||
        logging.error("pipeline.json not found in the .mpta file")
 | 
			
		||||
        logger.error(f"pipeline.json not found in the .mpta file. Files in directory: {os.listdir(mpta_dir)}")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        with open(pipeline_json_path, "r") as f:
 | 
			
		||||
            pipeline_config = json.load(f)
 | 
			
		||||
        logger.info(f"Successfully loaded pipeline configuration from {pipeline_json_path}")
 | 
			
		||||
        logger.debug(f"Pipeline config: {json.dumps(pipeline_config, indent=2)}")
 | 
			
		||||
        return load_pipeline_node(pipeline_config["pipeline"], mpta_dir)
 | 
			
		||||
    except json.JSONDecodeError as e:
 | 
			
		||||
        logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
 | 
			
		||||
        return None
 | 
			
		||||
    except KeyError as e:
 | 
			
		||||
        logger.error(f"Missing key in pipeline.json: {str(e)}", exc_info=True)
 | 
			
		||||
        return None
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Error loading pipeline.json: {e}")
 | 
			
		||||
        logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
def run_pipeline(frame, node: dict, return_bbox: bool = False):
 | 
			
		||||
def run_pipeline(frame, node: dict, return_bbox: bool = False, is_last_stage: bool = True):
 | 
			
		||||
    """
 | 
			
		||||
    Processes the frame with the given pipeline node. When return_bbox is True,
 | 
			
		||||
    the function returns a tuple (detection, bbox) where bbox is (x1,y1,x2,y2)
 | 
			
		||||
    for drawing. Otherwise, returns only the detection.
 | 
			
		||||
    
 | 
			
		||||
    The is_last_stage parameter controls whether this node is considered the last
 | 
			
		||||
    in the pipeline chain. Only the last stage will return detection results.
 | 
			
		||||
    """
 | 
			
		||||
    try:
 | 
			
		||||
        # Check model type and use appropriate method
 | 
			
		||||
| 
						 | 
				
			
			@ -92,7 +173,7 @@ def run_pipeline(frame, node: dict, return_bbox: bool = False):
 | 
			
		|||
        
 | 
			
		||||
        if model_task == "classify":
 | 
			
		||||
            # Classification models need to use predict() instead of track()
 | 
			
		||||
            logging.debug(f"Running classification model: {node.get('modelId')}")
 | 
			
		||||
            logger.debug(f"Running classification model: {node.get('modelId')}")
 | 
			
		||||
            results = node["model"].predict(frame, stream=False)
 | 
			
		||||
            detection = None
 | 
			
		||||
            best_box = None
 | 
			
		||||
| 
						 | 
				
			
			@ -109,18 +190,32 @@ def run_pipeline(frame, node: dict, return_bbox: bool = False):
 | 
			
		|||
                        "confidence": conf,
 | 
			
		||||
                        "id": None  # Classification doesn't have tracking IDs
 | 
			
		||||
                    }
 | 
			
		||||
                    logger.debug(f"Classification detection: {detection}")
 | 
			
		||||
                else:
 | 
			
		||||
                    logger.debug(f"Empty classification results for model {node.get('modelId')}")
 | 
			
		||||
            
 | 
			
		||||
            # Classification doesn't produce bounding boxes
 | 
			
		||||
            bbox = None
 | 
			
		||||
            
 | 
			
		||||
        else:
 | 
			
		||||
            # Detection/segmentation models use tracking
 | 
			
		||||
            logging.debug(f"Running detection/tracking model: {node.get('modelId')}")
 | 
			
		||||
            logger.debug(f"Running detection/tracking model: {node.get('modelId')}")
 | 
			
		||||
            results = node["model"].track(frame, stream=False, persist=True)
 | 
			
		||||
            detection = None
 | 
			
		||||
            best_box = None
 | 
			
		||||
            max_conf = -1
 | 
			
		||||
 | 
			
		||||
            # Log raw detection count
 | 
			
		||||
            detection_count = 0
 | 
			
		||||
            for r in results:
 | 
			
		||||
                if hasattr(r.boxes, 'cpu') and len(r.boxes.cpu()) > 0:
 | 
			
		||||
                    detection_count += len(r.boxes.cpu())
 | 
			
		||||
            
 | 
			
		||||
            if detection_count == 0:
 | 
			
		||||
                logger.debug(f"Empty detection results (no objects found) for model {node.get('modelId')}")
 | 
			
		||||
            else:
 | 
			
		||||
                logger.debug(f"Detection model {node.get('modelId')} found {detection_count} objects")
 | 
			
		||||
 | 
			
		||||
            for r in results:
 | 
			
		||||
                for box in r.boxes:
 | 
			
		||||
                    box_cpu = box.cpu()
 | 
			
		||||
| 
						 | 
				
			
			@ -133,6 +228,11 @@ def run_pipeline(frame, node: dict, return_bbox: bool = False):
 | 
			
		|||
                            "id": box.id.item()
 | 
			
		||||
                        }
 | 
			
		||||
                        best_box = box_cpu
 | 
			
		||||
            
 | 
			
		||||
            if detection:
 | 
			
		||||
                logger.debug(f"Best detection: {detection}")
 | 
			
		||||
            else:
 | 
			
		||||
                logger.debug(f"No valid detection with tracking ID for model {node.get('modelId')}")
 | 
			
		||||
 | 
			
		||||
            bbox = None
 | 
			
		||||
            # Calculate bbox if best_box exists
 | 
			
		||||
| 
						 | 
				
			
			@ -144,31 +244,44 @@ def run_pipeline(frame, node: dict, return_bbox: bool = False):
 | 
			
		|||
                x2, y2 = min(w, x2), min(h, y2)
 | 
			
		||||
                if x2 > x1 and y2 > y1:
 | 
			
		||||
                    bbox = (x1, y1, x2, y2)
 | 
			
		||||
                    logger.debug(f"Detection bounding box: {bbox}")
 | 
			
		||||
                    if node.get("crop", False):
 | 
			
		||||
                        frame = frame[y1:y2, x1:x2]
 | 
			
		||||
                        logger.debug(f"Cropped frame to {frame.shape}")
 | 
			
		||||
 | 
			
		||||
        # Check if we should process branches
 | 
			
		||||
        if detection is not None:
 | 
			
		||||
            for branch in node["branches"]:
 | 
			
		||||
                if detection["class"] in branch.get("triggerClasses", []):
 | 
			
		||||
                    min_conf = branch.get("minConfidence")
 | 
			
		||||
                    if min_conf is not None and detection["confidence"] < min_conf:
 | 
			
		||||
                        logging.debug(f"Confidence {detection['confidence']} below threshold {min_conf} for branch {branch['modelId']}.")
 | 
			
		||||
                        logger.debug(f"Confidence {detection['confidence']} below threshold {min_conf} for branch {branch['modelId']}.")
 | 
			
		||||
                        break
 | 
			
		||||
                    
 | 
			
		||||
                    # If we have branches, this is not the last stage
 | 
			
		||||
                    branch_result = run_pipeline(frame, branch, return_bbox, is_last_stage=True)
 | 
			
		||||
                    
 | 
			
		||||
                    # This node is no longer the last stage, so its results shouldn't be returned
 | 
			
		||||
                    is_last_stage = False
 | 
			
		||||
                    
 | 
			
		||||
                    if branch_result is not None:
 | 
			
		||||
                        if return_bbox:
 | 
			
		||||
                            return detection, bbox
 | 
			
		||||
                        return detection
 | 
			
		||||
                    res = run_pipeline(frame, branch, return_bbox)
 | 
			
		||||
                    if res is not None:
 | 
			
		||||
                        if return_bbox:
 | 
			
		||||
                            return res
 | 
			
		||||
                        return res
 | 
			
		||||
            if return_bbox:
 | 
			
		||||
                return detection, bbox
 | 
			
		||||
            return detection
 | 
			
		||||
                            return branch_result
 | 
			
		||||
                        return branch_result
 | 
			
		||||
                    break
 | 
			
		||||
            
 | 
			
		||||
            # Return this node's detection only if it's considered the last stage
 | 
			
		||||
            if is_last_stage:
 | 
			
		||||
                if return_bbox:
 | 
			
		||||
                    return detection, bbox
 | 
			
		||||
                return detection
 | 
			
		||||
            
 | 
			
		||||
        # No detection or not the last stage
 | 
			
		||||
        if return_bbox:
 | 
			
		||||
            return None, None
 | 
			
		||||
        return None
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
 | 
			
		||||
        logger.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
 | 
			
		||||
        if return_bbox:
 | 
			
		||||
            return None, None
 | 
			
		||||
        return None
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue