Compare commits
	
		
			18 commits
		
	
	
		
			aa883e4bfa
			...
			48db3234ed
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 
							 | 
						48db3234ed | ||
| 
							 | 
						cfc7503a14 | ||
| 1c21f417ce | |||
| 10b2048e94 | |||
| 7b9eee1ad9 | |||
| 244ec65c09 | |||
| 7afd7f0832 | |||
| 252ef468c9 | |||
| 57a51f3ba3 | |||
| d35a9ae532 | |||
| 29b97ded2a | |||
| 
							 | 
						c4179b3b08 | ||
| 
							 | 
						81547311d8 | ||
| 
							 | 
						8c429cc8f6 | ||
| 
							 | 
						18c62a2370 | ||
| 
							 | 
						a1d358aead | ||
| 
							 | 
						37c2e2a4d4 | ||
| 
							 | 
						7f9cc3de8d | 
					 11 changed files with 1278 additions and 243 deletions
				
			
		| 
						 | 
					@ -1,13 +1,68 @@
 | 
				
			||||||
name: Build Backend Application and Docker Image
 | 
					name: Build Worker Base and Application Images
 | 
				
			||||||
 | 
					
 | 
				
			||||||
on:
 | 
					on:
 | 
				
			||||||
  push:
 | 
					  push:
 | 
				
			||||||
    branches:
 | 
					    branches:
 | 
				
			||||||
      - main
 | 
					      - main
 | 
				
			||||||
 | 
					      - dev
 | 
				
			||||||
  workflow_dispatch:
 | 
					  workflow_dispatch:
 | 
				
			||||||
 | 
					    inputs:
 | 
				
			||||||
 | 
					      force_base_build:
 | 
				
			||||||
 | 
					        description: 'Force base image build regardless of changes'
 | 
				
			||||||
 | 
					        required: false
 | 
				
			||||||
 | 
					        default: 'false'
 | 
				
			||||||
 | 
					        type: boolean
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					jobs:
 | 
				
			||||||
 | 
					  check-base-changes:
 | 
				
			||||||
 | 
					    runs-on: ubuntu-latest
 | 
				
			||||||
 | 
					    outputs:
 | 
				
			||||||
 | 
					      base-changed: ${{ steps.changes.outputs.base-changed }}
 | 
				
			||||||
 | 
					    steps:
 | 
				
			||||||
 | 
					      - name: Checkout code
 | 
				
			||||||
 | 
					        uses: actions/checkout@v3
 | 
				
			||||||
 | 
					        with:
 | 
				
			||||||
 | 
					          fetch-depth: 2
 | 
				
			||||||
 | 
					      - name: Check for base changes
 | 
				
			||||||
 | 
					        id: changes
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          if git diff HEAD^ HEAD --name-only | grep -E "(Dockerfile\.base|requirements\.base\.txt)" > /dev/null; then
 | 
				
			||||||
 | 
					            echo "base-changed=true" >> $GITHUB_OUTPUT
 | 
				
			||||||
 | 
					          else
 | 
				
			||||||
 | 
					            echo "base-changed=false" >> $GITHUB_OUTPUT
 | 
				
			||||||
 | 
					          fi
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  build-base:
 | 
				
			||||||
 | 
					    needs: check-base-changes
 | 
				
			||||||
 | 
					    if: needs.check-base-changes.outputs.base-changed == 'true' || (github.event_name == 'workflow_dispatch' && github.event.inputs.force_base_build == 'true')
 | 
				
			||||||
 | 
					    runs-on: ubuntu-latest
 | 
				
			||||||
 | 
					    permissions:
 | 
				
			||||||
 | 
					      packages: write
 | 
				
			||||||
 | 
					    steps:
 | 
				
			||||||
 | 
					      - name: Checkout code
 | 
				
			||||||
 | 
					        uses: actions/checkout@v3
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      - name: Set up Docker Buildx
 | 
				
			||||||
 | 
					        uses: docker/setup-buildx-action@v2
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      - name: Login to GitHub Container Registry
 | 
				
			||||||
 | 
					        uses: docker/login-action@v3
 | 
				
			||||||
 | 
					        with:
 | 
				
			||||||
 | 
					          registry: git.siwatsystem.com
 | 
				
			||||||
 | 
					          username: ${{ github.actor }}
 | 
				
			||||||
 | 
					          password: ${{ secrets.RUNNER_TOKEN }}
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					      - name: Build and push base Docker image
 | 
				
			||||||
 | 
					        uses: docker/build-push-action@v4
 | 
				
			||||||
 | 
					        with:
 | 
				
			||||||
 | 
					          context: .
 | 
				
			||||||
 | 
					          file: ./Dockerfile.base
 | 
				
			||||||
 | 
					          push: true
 | 
				
			||||||
 | 
					          tags: git.siwatsystem.com/adsist-cms/worker-base:latest
 | 
				
			||||||
 | 
					
 | 
				
			||||||
jobs:   
 | 
					 | 
				
			||||||
  build-docker:
 | 
					  build-docker:
 | 
				
			||||||
 | 
					    needs: [check-base-changes, build-base]
 | 
				
			||||||
 | 
					    if: always() && (needs.build-base.result == 'success' || needs.build-base.result == 'skipped')
 | 
				
			||||||
    runs-on: ubuntu-latest
 | 
					    runs-on: ubuntu-latest
 | 
				
			||||||
    permissions:
 | 
					    permissions:
 | 
				
			||||||
      packages: write
 | 
					      packages: write
 | 
				
			||||||
| 
						 | 
					@ -31,4 +86,27 @@ jobs:
 | 
				
			||||||
          context: .
 | 
					          context: .
 | 
				
			||||||
          file: ./Dockerfile
 | 
					          file: ./Dockerfile
 | 
				
			||||||
          push: true
 | 
					          push: true
 | 
				
			||||||
          tags: git.siwatsystem.com/adsist-cms/worker:latest
 | 
					          tags: git.siwatsystem.com/adsist-cms/worker:${{ github.ref_name == 'main' && 'latest' || 'dev' }}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  deploy-stack:
 | 
				
			||||||
 | 
					    needs: build-docker
 | 
				
			||||||
 | 
					    runs-on: adsist
 | 
				
			||||||
 | 
					    steps:
 | 
				
			||||||
 | 
					      - name: Checkout code
 | 
				
			||||||
 | 
					        uses: actions/checkout@v3
 | 
				
			||||||
 | 
					      - name: Set up SSH connection
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          mkdir -p ~/.ssh
 | 
				
			||||||
 | 
					          echo "${{ secrets.DEPLOY_KEY_CMS }}" > ~/.ssh/id_rsa
 | 
				
			||||||
 | 
					          chmod 600 ~/.ssh/id_rsa
 | 
				
			||||||
 | 
					          ssh-keyscan -H ${{ vars.DEPLOY_HOST_CMS }} >> ~/.ssh/known_hosts
 | 
				
			||||||
 | 
					      - name: Deploy stack
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          echo "Pulling and starting containers on server..."
 | 
				
			||||||
 | 
					          if [ "${{ github.ref_name }}" = "main" ]; then
 | 
				
			||||||
 | 
					            echo "Deploying production stack..."
 | 
				
			||||||
 | 
					            ssh -i ~/.ssh/id_rsa ${{ vars.DEPLOY_USER_CMS }}@${{ vars.DEPLOY_HOST_CMS }} "cd ~/cms-system-k8s && docker compose -f docker-compose.production.yml pull && docker compose -f docker-compose.production.yml up -d"
 | 
				
			||||||
 | 
					          else
 | 
				
			||||||
 | 
					            echo "Deploying staging stack..."
 | 
				
			||||||
 | 
					            ssh -i ~/.ssh/id_rsa ${{ vars.DEPLOY_USER_CMS }}@${{ vars.DEPLOY_HOST_CMS }} "cd ~/cms-system-k8s && docker compose -f docker-compose.staging.yml pull && docker compose -f docker-compose.staging.yml up -d"
 | 
				
			||||||
 | 
					          fi
 | 
				
			||||||
							
								
								
									
										139
									
								
								CLAUDE.md
									
										
									
									
									
								
							
							
						
						
									
										139
									
								
								CLAUDE.md
									
										
									
									
									
								
							| 
						 | 
					@ -1,13 +1,23 @@
 | 
				
			||||||
# Python Detector Worker - CLAUDE.md
 | 
					# Python Detector Worker - CLAUDE.md
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Project Overview
 | 
					## Project Overview
 | 
				
			||||||
This is a FastAPI-based computer vision detection worker that processes video streams from RTSP/HTTP sources and runs YOLO-based machine learning pipelines for object detection and classification. The system is designed to work within a larger CMS (Content Management System) architecture.
 | 
					This is a FastAPI-based computer vision detection worker that processes video streams from RTSP/HTTP sources and runs advanced YOLO-based machine learning pipelines for multi-class object detection and parallel classification. The system features comprehensive database integration, Redis support, and hierarchical pipeline execution designed to work within a larger CMS (Content Management System) architecture.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### Key Features
 | 
				
			||||||
 | 
					- **Multi-Class Detection**: Simultaneous detection of multiple object classes (e.g., Car + Frontal)
 | 
				
			||||||
 | 
					- **Parallel Processing**: Concurrent execution of classification branches using ThreadPoolExecutor
 | 
				
			||||||
 | 
					- **Database Integration**: Automatic PostgreSQL schema management and record updates
 | 
				
			||||||
 | 
					- **Redis Actions**: Image storage with region cropping and pub/sub messaging
 | 
				
			||||||
 | 
					- **Pipeline Synchronization**: Branch coordination with `waitForBranches` functionality
 | 
				
			||||||
 | 
					- **Dynamic Field Mapping**: Template-based field resolution for database operations
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Architecture & Technology Stack
 | 
					## Architecture & Technology Stack
 | 
				
			||||||
- **Framework**: FastAPI with WebSocket support
 | 
					- **Framework**: FastAPI with WebSocket support
 | 
				
			||||||
- **ML/CV**: PyTorch, Ultralytics YOLO, OpenCV
 | 
					- **ML/CV**: PyTorch, Ultralytics YOLO, OpenCV
 | 
				
			||||||
- **Containerization**: Docker (Python 3.13-bookworm base)
 | 
					- **Containerization**: Docker (Python 3.13-bookworm base)
 | 
				
			||||||
- **Data Storage**: Redis integration for action handling
 | 
					- **Data Storage**: Redis integration for action handling + PostgreSQL for persistent storage
 | 
				
			||||||
 | 
					- **Database**: Automatic schema management with gas_station_1 database
 | 
				
			||||||
 | 
					- **Parallel Processing**: ThreadPoolExecutor for concurrent classification
 | 
				
			||||||
- **Communication**: WebSocket-based real-time protocol
 | 
					- **Communication**: WebSocket-based real-time protocol
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Core Components
 | 
					## Core Components
 | 
				
			||||||
| 
						 | 
					@ -24,9 +34,20 @@ This is a FastAPI-based computer vision detection worker that processes video st
 | 
				
			||||||
### Pipeline System (`siwatsystem/pympta.py`)
 | 
					### Pipeline System (`siwatsystem/pympta.py`)
 | 
				
			||||||
- **MPTA file handling** - ZIP archives containing model configurations
 | 
					- **MPTA file handling** - ZIP archives containing model configurations
 | 
				
			||||||
- **Hierarchical pipeline execution** with detection → classification branching
 | 
					- **Hierarchical pipeline execution** with detection → classification branching
 | 
				
			||||||
- **Redis action system** for image saving and message publishing
 | 
					- **Multi-class detection** - Simultaneous detection of multiple classes (Car + Frontal)
 | 
				
			||||||
 | 
					- **Parallel processing** - Concurrent classification branches with ThreadPoolExecutor
 | 
				
			||||||
 | 
					- **Redis action system** - Image saving with region cropping and message publishing
 | 
				
			||||||
 | 
					- **PostgreSQL integration** - Automatic table creation and combined updates
 | 
				
			||||||
- **Dynamic model loading** with GPU optimization
 | 
					- **Dynamic model loading** with GPU optimization
 | 
				
			||||||
- **Configurable trigger classes and confidence thresholds**
 | 
					- **Configurable trigger classes and confidence thresholds**
 | 
				
			||||||
 | 
					- **Branch synchronization** - waitForBranches coordination for database updates
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### Database System (`siwatsystem/database.py`)
 | 
				
			||||||
 | 
					- **DatabaseManager class** for PostgreSQL operations
 | 
				
			||||||
 | 
					- **Automatic table creation** with gas_station_1.car_frontal_info schema
 | 
				
			||||||
 | 
					- **Combined update operations** with field mapping from branch results
 | 
				
			||||||
 | 
					- **Session management** with UUID generation
 | 
				
			||||||
 | 
					- **Error handling** and connection management
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Testing & Debugging
 | 
					### Testing & Debugging
 | 
				
			||||||
- **Protocol test script** (`test_protocol.py`) for WebSocket communication validation
 | 
					- **Protocol test script** (`test_protocol.py`) for WebSocket communication validation
 | 
				
			||||||
| 
						 | 
					@ -92,33 +113,61 @@ This is a FastAPI-based computer vision detection worker that processes video st
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Model Pipeline (MPTA) Format
 | 
					## Model Pipeline (MPTA) Format
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Structure
 | 
					### Enhanced Structure
 | 
				
			||||||
- **ZIP archive** containing models and configuration
 | 
					- **ZIP archive** containing models and configuration
 | 
				
			||||||
- **pipeline.json** - Main configuration file
 | 
					- **pipeline.json** - Main configuration file with Redis + PostgreSQL settings
 | 
				
			||||||
- **Model files** - YOLO .pt files for detection/classification
 | 
					- **Model files** - YOLO .pt files for detection/classification
 | 
				
			||||||
- **Redis configuration** - Optional for action execution
 | 
					- **Multi-model support** - Detection + multiple classification models
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Pipeline Flow
 | 
					### Advanced Pipeline Flow
 | 
				
			||||||
1. **Detection stage** - YOLO object detection with bounding boxes
 | 
					1. **Multi-class detection stage** - YOLO detection of Car + Frontal simultaneously
 | 
				
			||||||
2. **Trigger evaluation** - Check if detected class matches trigger conditions
 | 
					2. **Validation stage** - Check for expected classes (flexible matching)
 | 
				
			||||||
3. **Classification stage** - Crop detected region and run classification model
 | 
					3. **Database initialization** - Create initial record with session_id
 | 
				
			||||||
4. **Action execution** - Redis operations (image saving, message publishing)
 | 
					4. **Redis actions** - Save cropped frontal images with expiration
 | 
				
			||||||
 | 
					5. **Parallel classification** - Concurrent brand and body type classification
 | 
				
			||||||
 | 
					6. **Branch synchronization** - Wait for all classification branches to complete
 | 
				
			||||||
 | 
					7. **Database update** - Combined update with all classification results
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Branch Configuration
 | 
					### Enhanced Branch Configuration
 | 
				
			||||||
```json
 | 
					```json
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  "modelId": "detector-v1",
 | 
					  "modelId": "car_frontal_detection_v1",
 | 
				
			||||||
  "modelFile": "detector.pt",
 | 
					  "modelFile": "car_frontal_detection_v1.pt",
 | 
				
			||||||
  "triggerClasses": ["car", "truck"],
 | 
					  "multiClass": true,
 | 
				
			||||||
  "minConfidence": 0.5,
 | 
					  "expectedClasses": ["Car", "Frontal"],
 | 
				
			||||||
  "branches": [{
 | 
					  "triggerClasses": ["Car", "Frontal"],
 | 
				
			||||||
    "modelId": "classifier-v1", 
 | 
					  "minConfidence": 0.8,
 | 
				
			||||||
    "modelFile": "classifier.pt",
 | 
					  "actions": [
 | 
				
			||||||
    "crop": true,
 | 
					    {
 | 
				
			||||||
    "triggerClasses": ["car"],
 | 
					      "type": "redis_save_image",
 | 
				
			||||||
    "minConfidence": 0.3,
 | 
					      "region": "Frontal",
 | 
				
			||||||
    "actions": [...]
 | 
					      "key": "inference:{display_id}:{timestamp}:{session_id}:{filename}",
 | 
				
			||||||
  }]
 | 
					      "expire_seconds": 600
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  ],
 | 
				
			||||||
 | 
					  "branches": [
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      "modelId": "car_brand_cls_v1",
 | 
				
			||||||
 | 
					      "modelFile": "car_brand_cls_v1.pt",
 | 
				
			||||||
 | 
					      "parallel": true,
 | 
				
			||||||
 | 
					      "crop": true,
 | 
				
			||||||
 | 
					      "cropClass": "Frontal",
 | 
				
			||||||
 | 
					      "triggerClasses": ["Frontal"],
 | 
				
			||||||
 | 
					      "minConfidence": 0.85
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  ],
 | 
				
			||||||
 | 
					  "parallelActions": [
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					      "type": "postgresql_update_combined",
 | 
				
			||||||
 | 
					      "table": "car_frontal_info",
 | 
				
			||||||
 | 
					      "key_field": "session_id",
 | 
				
			||||||
 | 
					      "waitForBranches": ["car_brand_cls_v1", "car_bodytype_cls_v1"],
 | 
				
			||||||
 | 
					      "fields": {
 | 
				
			||||||
 | 
					        "car_brand": "{car_brand_cls_v1.brand}",
 | 
				
			||||||
 | 
					        "car_body_type": "{car_bodytype_cls_v1.body_type}"
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  ]
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -173,6 +222,9 @@ docker run -p 8000:8000 -v ./models:/app/models detector-worker
 | 
				
			||||||
- **opencv-python**: Computer vision operations
 | 
					- **opencv-python**: Computer vision operations
 | 
				
			||||||
- **websockets**: WebSocket client/server
 | 
					- **websockets**: WebSocket client/server
 | 
				
			||||||
- **redis**: Redis client for action execution
 | 
					- **redis**: Redis client for action execution
 | 
				
			||||||
 | 
					- **psycopg2-binary**: PostgreSQL database adapter
 | 
				
			||||||
 | 
					- **scipy**: Scientific computing for advanced algorithms
 | 
				
			||||||
 | 
					- **filterpy**: Kalman filtering and state estimation
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Security Considerations
 | 
					## Security Considerations
 | 
				
			||||||
- Model files are loaded from trusted sources only
 | 
					- Model files are loaded from trusted sources only
 | 
				
			||||||
| 
						 | 
					@ -180,9 +232,46 @@ docker run -p 8000:8000 -v ./models:/app/models detector-worker
 | 
				
			||||||
- WebSocket connections handle disconnects gracefully
 | 
					- WebSocket connections handle disconnects gracefully
 | 
				
			||||||
- Resource usage is monitored to prevent DoS
 | 
					- Resource usage is monitored to prevent DoS
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Database Integration
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### Schema Management
 | 
				
			||||||
 | 
					The system automatically creates and manages PostgreSQL tables:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```sql
 | 
				
			||||||
 | 
					CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
 | 
				
			||||||
 | 
					    display_id VARCHAR(255),
 | 
				
			||||||
 | 
					    captured_timestamp VARCHAR(255),
 | 
				
			||||||
 | 
					    session_id VARCHAR(255) PRIMARY KEY,
 | 
				
			||||||
 | 
					    license_character VARCHAR(255) DEFAULT NULL,
 | 
				
			||||||
 | 
					    license_type VARCHAR(255) DEFAULT 'No model available',
 | 
				
			||||||
 | 
					    car_brand VARCHAR(255) DEFAULT NULL,
 | 
				
			||||||
 | 
					    car_model VARCHAR(255) DEFAULT NULL,
 | 
				
			||||||
 | 
					    car_body_type VARCHAR(255) DEFAULT NULL,
 | 
				
			||||||
 | 
					    created_at TIMESTAMP DEFAULT NOW(),
 | 
				
			||||||
 | 
					    updated_at TIMESTAMP DEFAULT NOW()
 | 
				
			||||||
 | 
					);
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### Workflow
 | 
				
			||||||
 | 
					1. **Detection**: When both "Car" and "Frontal" are detected, create initial database record with UUID session_id
 | 
				
			||||||
 | 
					2. **Redis Storage**: Save cropped frontal image to Redis with session_id in key
 | 
				
			||||||
 | 
					3. **Parallel Processing**: Run brand and body type classification concurrently
 | 
				
			||||||
 | 
					4. **Synchronization**: Wait for all branches to complete using `waitForBranches`
 | 
				
			||||||
 | 
					5. **Database Update**: Update record with combined classification results using field mapping
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### Field Mapping
 | 
				
			||||||
 | 
					Templates like `{car_brand_cls_v1.brand}` are resolved to actual classification results:
 | 
				
			||||||
 | 
					- `car_brand_cls_v1.brand` → "Honda"
 | 
				
			||||||
 | 
					- `car_bodytype_cls_v1.body_type` → "Sedan"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Performance Optimizations
 | 
					## Performance Optimizations
 | 
				
			||||||
- GPU acceleration when CUDA is available
 | 
					- GPU acceleration when CUDA is available
 | 
				
			||||||
- Shared camera streams reduce resource usage
 | 
					- Shared camera streams reduce resource usage
 | 
				
			||||||
- Frame queue optimization (single latest frame)
 | 
					- Frame queue optimization (single latest frame)
 | 
				
			||||||
- Model caching across subscriptions
 | 
					- Model caching across subscriptions
 | 
				
			||||||
- Trigger class filtering for faster inference
 | 
					- Trigger class filtering for faster inference
 | 
				
			||||||
 | 
					- Parallel processing with ThreadPoolExecutor for classification branches
 | 
				
			||||||
 | 
					- Multi-class detection reduces inference passes
 | 
				
			||||||
 | 
					- Region-based cropping minimizes processing overhead
 | 
				
			||||||
 | 
					- Database connection pooling and prepared statements
 | 
				
			||||||
 | 
					- Redis image storage with automatic expiration
 | 
				
			||||||
							
								
								
									
										22
									
								
								Dockerfile
									
										
									
									
									
								
							
							
						
						
									
										22
									
								
								Dockerfile
									
										
									
									
									
								
							| 
						 | 
					@ -1,20 +1,12 @@
 | 
				
			||||||
# Use newer, more secure base image
 | 
					# Use our pre-built base image with ML dependencies
 | 
				
			||||||
FROM python:3.13-alpine
 | 
					FROM git.siwatsystem.com/adsist-cms/worker-base:latest
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Update system packages first
 | 
					# Copy and install application requirements (frequently changing dependencies)
 | 
				
			||||||
RUN apk update && apk upgrade
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# Install minimal dependencies
 | 
					 | 
				
			||||||
RUN apk add --no-cache mesa-gl
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# Use specific package versions
 | 
					 | 
				
			||||||
COPY requirements.txt .
 | 
					COPY requirements.txt .
 | 
				
			||||||
RUN pip install --no-cache-dir --upgrade pip && \
 | 
					RUN pip install --no-cache-dir -r requirements.txt
 | 
				
			||||||
    pip install --no-cache-dir -r requirements.txt
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# Run as non-root user
 | 
					 | 
				
			||||||
RUN adduser -D -s /bin/sh appuser
 | 
					 | 
				
			||||||
USER appuser
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Copy the application code
 | 
				
			||||||
COPY . .
 | 
					COPY . .
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Run the application
 | 
				
			||||||
CMD ["python3", "-m", "fastapi", "run", "--host", "0.0.0.0", "--port", "8000"]
 | 
					CMD ["python3", "-m", "fastapi", "run", "--host", "0.0.0.0", "--port", "8000"]
 | 
				
			||||||
							
								
								
									
										15
									
								
								Dockerfile.base
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										15
									
								
								Dockerfile.base
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,15 @@
 | 
				
			||||||
 | 
					# Base image with all ML dependencies
 | 
				
			||||||
 | 
					FROM python:3.13-bookworm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Install system dependencies
 | 
				
			||||||
 | 
					RUN apt update && apt install -y libgl1 && rm -rf /var/lib/apt/lists/*
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Copy and install base requirements (ML dependencies that rarely change)
 | 
				
			||||||
 | 
					COPY requirements.base.txt .
 | 
				
			||||||
 | 
					RUN pip install --no-cache-dir -r requirements.base.txt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Set working directory
 | 
				
			||||||
 | 
					WORKDIR /app
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# This base image will be reused for all worker builds
 | 
				
			||||||
 | 
					CMD ["python3", "-m", "fastapi", "run", "--host", "0.0.0.0", "--port", "8000"]
 | 
				
			||||||
							
								
								
									
										108
									
								
								app.py
									
										
									
									
									
								
							
							
						
						
									
										108
									
								
								app.py
									
										
									
									
									
								
							| 
						 | 
					@ -35,6 +35,8 @@ session_ids: Dict[str, int] = {}
 | 
				
			||||||
camera_streams: Dict[str, Dict[str, Any]] = {}
 | 
					camera_streams: Dict[str, Dict[str, Any]] = {}
 | 
				
			||||||
# Map subscriptions to their camera URL
 | 
					# Map subscriptions to their camera URL
 | 
				
			||||||
subscription_to_camera: Dict[str, str] = {}
 | 
					subscription_to_camera: Dict[str, str] = {}
 | 
				
			||||||
 | 
					# Store latest frames for REST API access (separate from processing buffer)
 | 
				
			||||||
 | 
					latest_frames: Dict[str, Any] = {}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
with open("config.json", "r") as f:
 | 
					with open("config.json", "r") as f:
 | 
				
			||||||
    config = json.load(f)
 | 
					    config = json.load(f)
 | 
				
			||||||
| 
						 | 
					@ -109,20 +111,60 @@ def download_mpta(url: str, dest_path: str) -> str:
 | 
				
			||||||
# Add helper to fetch snapshot image from HTTP/HTTPS URL
 | 
					# Add helper to fetch snapshot image from HTTP/HTTPS URL
 | 
				
			||||||
def fetch_snapshot(url: str):
 | 
					def fetch_snapshot(url: str):
 | 
				
			||||||
    try:
 | 
					    try:
 | 
				
			||||||
        response = requests.get(url, timeout=10)
 | 
					        from requests.auth import HTTPBasicAuth, HTTPDigestAuth
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # Parse URL to extract credentials
 | 
				
			||||||
 | 
					        parsed = urlparse(url)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # Prepare headers - some cameras require User-Agent
 | 
				
			||||||
 | 
					        headers = {
 | 
				
			||||||
 | 
					            'User-Agent': 'Mozilla/5.0 (compatible; DetectorWorker/1.0)'
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # Reconstruct URL without credentials
 | 
				
			||||||
 | 
					        clean_url = f"{parsed.scheme}://{parsed.hostname}"
 | 
				
			||||||
 | 
					        if parsed.port:
 | 
				
			||||||
 | 
					            clean_url += f":{parsed.port}"
 | 
				
			||||||
 | 
					        clean_url += parsed.path
 | 
				
			||||||
 | 
					        if parsed.query:
 | 
				
			||||||
 | 
					            clean_url += f"?{parsed.query}"
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        auth = None
 | 
				
			||||||
 | 
					        if parsed.username and parsed.password:
 | 
				
			||||||
 | 
					            # Try HTTP Digest authentication first (common for IP cameras)
 | 
				
			||||||
 | 
					            try:
 | 
				
			||||||
 | 
					                auth = HTTPDigestAuth(parsed.username, parsed.password)
 | 
				
			||||||
 | 
					                response = requests.get(clean_url, auth=auth, headers=headers, timeout=10)
 | 
				
			||||||
 | 
					                if response.status_code == 200:
 | 
				
			||||||
 | 
					                    logger.debug(f"Successfully authenticated using HTTP Digest for {clean_url}")
 | 
				
			||||||
 | 
					                elif response.status_code == 401:
 | 
				
			||||||
 | 
					                    # If Digest fails, try Basic auth
 | 
				
			||||||
 | 
					                    logger.debug(f"HTTP Digest failed, trying Basic auth for {clean_url}")
 | 
				
			||||||
 | 
					                    auth = HTTPBasicAuth(parsed.username, parsed.password)
 | 
				
			||||||
 | 
					                    response = requests.get(clean_url, auth=auth, headers=headers, timeout=10)
 | 
				
			||||||
 | 
					                    if response.status_code == 200:
 | 
				
			||||||
 | 
					                        logger.debug(f"Successfully authenticated using HTTP Basic for {clean_url}")
 | 
				
			||||||
 | 
					            except Exception as auth_error:
 | 
				
			||||||
 | 
					                logger.debug(f"Authentication setup error: {auth_error}")
 | 
				
			||||||
 | 
					                # Fallback to original URL with embedded credentials
 | 
				
			||||||
 | 
					                response = requests.get(url, headers=headers, timeout=10)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            # No credentials in URL, make request as-is
 | 
				
			||||||
 | 
					            response = requests.get(url, headers=headers, timeout=10)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
        if response.status_code == 200:
 | 
					        if response.status_code == 200:
 | 
				
			||||||
            # Convert response content to numpy array
 | 
					            # Convert response content to numpy array
 | 
				
			||||||
            nparr = np.frombuffer(response.content, np.uint8)
 | 
					            nparr = np.frombuffer(response.content, np.uint8)
 | 
				
			||||||
            # Decode image
 | 
					            # Decode image
 | 
				
			||||||
            frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
 | 
					            frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
 | 
				
			||||||
            if frame is not None:
 | 
					            if frame is not None:
 | 
				
			||||||
                logger.debug(f"Successfully fetched snapshot from {url}, shape: {frame.shape}")
 | 
					                logger.debug(f"Successfully fetched snapshot from {clean_url}, shape: {frame.shape}")
 | 
				
			||||||
                return frame
 | 
					                return frame
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                logger.error(f"Failed to decode image from snapshot URL: {url}")
 | 
					                logger.error(f"Failed to decode image from snapshot URL: {clean_url}")
 | 
				
			||||||
                return None
 | 
					                return None
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            logger.error(f"Failed to fetch snapshot (status code {response.status_code}): {url}")
 | 
					            logger.error(f"Failed to fetch snapshot (status code {response.status_code}): {clean_url}")
 | 
				
			||||||
            return None
 | 
					            return None
 | 
				
			||||||
    except Exception as e:
 | 
					    except Exception as e:
 | 
				
			||||||
        logger.error(f"Exception fetching snapshot from {url}: {str(e)}")
 | 
					        logger.error(f"Exception fetching snapshot from {url}: {str(e)}")
 | 
				
			||||||
| 
						 | 
					@ -146,26 +188,24 @@ async def get_camera_image(camera_id: str):
 | 
				
			||||||
    Get the current frame from a camera as JPEG image
 | 
					    Get the current frame from a camera as JPEG image
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    try:
 | 
					    try:
 | 
				
			||||||
 | 
					        # URL decode the camera_id to handle encoded characters like %3B for semicolon
 | 
				
			||||||
 | 
					        from urllib.parse import unquote
 | 
				
			||||||
 | 
					        original_camera_id = camera_id
 | 
				
			||||||
 | 
					        camera_id = unquote(camera_id)
 | 
				
			||||||
 | 
					        logger.debug(f"REST API request: original='{original_camera_id}', decoded='{camera_id}'")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
        with streams_lock:
 | 
					        with streams_lock:
 | 
				
			||||||
            if camera_id not in streams:
 | 
					            if camera_id not in streams:
 | 
				
			||||||
                logger.warning(f"Camera ID '{camera_id}' not found in streams. Current streams: {list(streams.keys())}")
 | 
					                logger.warning(f"Camera ID '{camera_id}' not found in streams. Current streams: {list(streams.keys())}")
 | 
				
			||||||
                raise HTTPException(status_code=404, detail=f"Camera {camera_id} not found or not active")
 | 
					                raise HTTPException(status_code=404, detail=f"Camera {camera_id} not found or not active")
 | 
				
			||||||
            
 | 
					            
 | 
				
			||||||
            stream = streams[camera_id]
 | 
					            # Check if we have a cached frame for this camera
 | 
				
			||||||
            buffer = stream["buffer"]
 | 
					            if camera_id not in latest_frames:
 | 
				
			||||||
            logger.debug(f"Camera '{camera_id}' buffer size: {buffer.qsize()}, buffer empty: {buffer.empty()}")
 | 
					                logger.warning(f"No cached frame available for camera '{camera_id}'.")
 | 
				
			||||||
            logger.debug(f"Buffer queue contents: {getattr(buffer, 'queue', None)}")
 | 
					 | 
				
			||||||
            
 | 
					 | 
				
			||||||
            if buffer.empty():
 | 
					 | 
				
			||||||
                logger.warning(f"No frame available for camera '{camera_id}'. Buffer is empty.")
 | 
					 | 
				
			||||||
                raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
 | 
					                raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
 | 
				
			||||||
            
 | 
					            
 | 
				
			||||||
            # Get the latest frame (non-blocking)
 | 
					            frame = latest_frames[camera_id]
 | 
				
			||||||
            try:
 | 
					            logger.debug(f"Retrieved cached frame for camera '{camera_id}', frame shape: {frame.shape}")
 | 
				
			||||||
                frame = buffer.queue[-1]  # Get the most recent frame without removing it
 | 
					 | 
				
			||||||
            except IndexError:
 | 
					 | 
				
			||||||
                logger.warning(f"Buffer queue is empty for camera '{camera_id}' when trying to access last frame.")
 | 
					 | 
				
			||||||
                raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
 | 
					 | 
				
			||||||
        # Encode frame as JPEG
 | 
					        # Encode frame as JPEG
 | 
				
			||||||
        success, buffer_img = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 85])
 | 
					        success, buffer_img = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 85])
 | 
				
			||||||
        if not success:
 | 
					        if not success:
 | 
				
			||||||
| 
						 | 
					@ -199,7 +239,20 @@ async def detect(websocket: WebSocket):
 | 
				
			||||||
            
 | 
					            
 | 
				
			||||||
            logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}")
 | 
					            logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}")
 | 
				
			||||||
            start_time = time.time()
 | 
					            start_time = time.time()
 | 
				
			||||||
            detection_result = run_pipeline(cropped_frame, model_tree)
 | 
					            
 | 
				
			||||||
 | 
					            # Extract display identifier for session ID lookup
 | 
				
			||||||
 | 
					            subscription_parts = stream["subscriptionIdentifier"].split(';')
 | 
				
			||||||
 | 
					            display_identifier = subscription_parts[0] if subscription_parts else None
 | 
				
			||||||
 | 
					            session_id = session_ids.get(display_identifier) if display_identifier else None
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # Create context for pipeline execution
 | 
				
			||||||
 | 
					            pipeline_context = {
 | 
				
			||||||
 | 
					                "camera_id": camera_id,
 | 
				
			||||||
 | 
					                "display_id": display_identifier,
 | 
				
			||||||
 | 
					                "session_id": session_id
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            detection_result = run_pipeline(cropped_frame, model_tree, context=pipeline_context)
 | 
				
			||||||
            process_time = (time.time() - start_time) * 1000
 | 
					            process_time = (time.time() - start_time) * 1000
 | 
				
			||||||
            logger.debug(f"Detection for camera {camera_id} completed in {process_time:.2f}ms")
 | 
					            logger.debug(f"Detection for camera {camera_id} completed in {process_time:.2f}ms")
 | 
				
			||||||
            
 | 
					            
 | 
				
			||||||
| 
						 | 
					@ -258,11 +311,6 @@ async def detect(websocket: WebSocket):
 | 
				
			||||||
                    if key not in ["box", "id"]:  # Skip internal fields
 | 
					                    if key not in ["box", "id"]:  # Skip internal fields
 | 
				
			||||||
                        detection_dict[key] = value
 | 
					                        detection_dict[key] = value
 | 
				
			||||||
            
 | 
					            
 | 
				
			||||||
            # Extract display identifier for session ID lookup
 | 
					 | 
				
			||||||
            subscription_parts = stream["subscriptionIdentifier"].split(';')
 | 
					 | 
				
			||||||
            display_identifier = subscription_parts[0] if subscription_parts else None
 | 
					 | 
				
			||||||
            session_id = session_ids.get(display_identifier) if display_identifier else None
 | 
					 | 
				
			||||||
            
 | 
					 | 
				
			||||||
            detection_data = {
 | 
					            detection_data = {
 | 
				
			||||||
                "type": "imageDetection",
 | 
					                "type": "imageDetection",
 | 
				
			||||||
                "subscriptionIdentifier": stream["subscriptionIdentifier"],
 | 
					                "subscriptionIdentifier": stream["subscriptionIdentifier"],
 | 
				
			||||||
| 
						 | 
					@ -282,9 +330,6 @@ async def detect(websocket: WebSocket):
 | 
				
			||||||
                logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {highest_confidence_detection['confidence']:.2f} using model {stream['modelName']}")
 | 
					                logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {highest_confidence_detection['confidence']:.2f} using model {stream['modelName']}")
 | 
				
			||||||
                
 | 
					                
 | 
				
			||||||
                # Log session ID if available
 | 
					                # Log session ID if available
 | 
				
			||||||
                subscription_parts = stream["subscriptionIdentifier"].split(';')
 | 
					 | 
				
			||||||
                display_identifier = subscription_parts[0] if subscription_parts else None
 | 
					 | 
				
			||||||
                session_id = session_ids.get(display_identifier) if display_identifier else None
 | 
					 | 
				
			||||||
                if session_id:
 | 
					                if session_id:
 | 
				
			||||||
                    logger.debug(f"Detection associated with session ID: {session_id}")
 | 
					                    logger.debug(f"Detection associated with session ID: {session_id}")
 | 
				
			||||||
            
 | 
					            
 | 
				
			||||||
| 
						 | 
					@ -476,6 +521,10 @@ async def detect(websocket: WebSocket):
 | 
				
			||||||
                    logger.debug(f"Got frame from buffer for camera {camera_id}")
 | 
					                    logger.debug(f"Got frame from buffer for camera {camera_id}")
 | 
				
			||||||
                    frame = buffer.get()
 | 
					                    frame = buffer.get()
 | 
				
			||||||
                    
 | 
					                    
 | 
				
			||||||
 | 
					                    # Cache the frame for REST API access
 | 
				
			||||||
 | 
					                    latest_frames[camera_id] = frame.copy()
 | 
				
			||||||
 | 
					                    logger.debug(f"Cached frame for REST API access for camera {camera_id}")
 | 
				
			||||||
 | 
					                    
 | 
				
			||||||
                    with models_lock:
 | 
					                    with models_lock:
 | 
				
			||||||
                        model_tree = models.get(camera_id, {}).get(stream["modelId"])
 | 
					                        model_tree = models.get(camera_id, {}).get(stream["modelId"])
 | 
				
			||||||
                        if not model_tree:
 | 
					                        if not model_tree:
 | 
				
			||||||
| 
						 | 
					@ -647,7 +696,7 @@ async def detect(websocket: WebSocket):
 | 
				
			||||||
                                    
 | 
					                                    
 | 
				
			||||||
                                    if snapshot_url and snapshot_interval:
 | 
					                                    if snapshot_url and snapshot_interval:
 | 
				
			||||||
                                        logger.info(f"Creating new snapshot stream for camera {camera_id}: {snapshot_url}")
 | 
					                                        logger.info(f"Creating new snapshot stream for camera {camera_id}: {snapshot_url}")
 | 
				
			||||||
                                        thread = threading.Thread(target=snapshot_reader, args=(camera_identifier, snapshot_url, snapshot_interval, buffer, stop_event))
 | 
					                                        thread = threading.Thread(target=snapshot_reader, args=(camera_id, snapshot_url, snapshot_interval, buffer, stop_event))
 | 
				
			||||||
                                        thread.daemon = True
 | 
					                                        thread.daemon = True
 | 
				
			||||||
                                        thread.start()
 | 
					                                        thread.start()
 | 
				
			||||||
                                        mode = "snapshot"
 | 
					                                        mode = "snapshot"
 | 
				
			||||||
| 
						 | 
					@ -670,7 +719,7 @@ async def detect(websocket: WebSocket):
 | 
				
			||||||
                                        if not cap.isOpened():
 | 
					                                        if not cap.isOpened():
 | 
				
			||||||
                                            logger.error(f"Failed to open RTSP stream for camera {camera_id}")
 | 
					                                            logger.error(f"Failed to open RTSP stream for camera {camera_id}")
 | 
				
			||||||
                                            continue
 | 
					                                            continue
 | 
				
			||||||
                                        thread = threading.Thread(target=frame_reader, args=(camera_identifier, cap, buffer, stop_event))
 | 
					                                        thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
 | 
				
			||||||
                                        thread.daemon = True
 | 
					                                        thread.daemon = True
 | 
				
			||||||
                                        thread.start()
 | 
					                                        thread.start()
 | 
				
			||||||
                                        mode = "rtsp"
 | 
					                                        mode = "rtsp"
 | 
				
			||||||
| 
						 | 
					@ -744,6 +793,8 @@ async def detect(websocket: WebSocket):
 | 
				
			||||||
                                else:
 | 
					                                else:
 | 
				
			||||||
                                    logger.info(f"Shared stream for {camera_url} still has {shared_stream['ref_count']} references")
 | 
					                                    logger.info(f"Shared stream for {camera_url} still has {shared_stream['ref_count']} references")
 | 
				
			||||||
                            
 | 
					                            
 | 
				
			||||||
 | 
					                            # Clean up cached frame
 | 
				
			||||||
 | 
					                            latest_frames.pop(camera_id, None)
 | 
				
			||||||
                            logger.info(f"Unsubscribed from camera {camera_id}")
 | 
					                            logger.info(f"Unsubscribed from camera {camera_id}")
 | 
				
			||||||
                            # Note: Keep models in memory for potential reuse
 | 
					                            # Note: Keep models in memory for potential reuse
 | 
				
			||||||
                elif msg_type == "requestState":
 | 
					                elif msg_type == "requestState":
 | 
				
			||||||
| 
						 | 
					@ -847,5 +898,6 @@ async def detect(websocket: WebSocket):
 | 
				
			||||||
            subscription_to_camera.clear()
 | 
					            subscription_to_camera.clear()
 | 
				
			||||||
        with models_lock:
 | 
					        with models_lock:
 | 
				
			||||||
            models.clear()
 | 
					            models.clear()
 | 
				
			||||||
 | 
					        latest_frames.clear()
 | 
				
			||||||
        session_ids.clear()
 | 
					        session_ids.clear()
 | 
				
			||||||
        logger.info("WebSocket connection closed")
 | 
					        logger.info("WebSocket connection closed")
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										173
									
								
								pympta.md
									
										
									
									
									
								
							
							
						
						
									
										173
									
								
								pympta.md
									
										
									
									
									
								
							| 
						 | 
					@ -32,14 +32,15 @@ This modular structure allows for creating complex and efficient inference logic
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## `pipeline.json` Specification
 | 
					## `pipeline.json` Specification
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This file defines the entire pipeline logic. The root object contains a `pipeline` key for the pipeline definition and an optional `redis` key for Redis configuration.
 | 
					This file defines the entire pipeline logic. The root object contains a `pipeline` key for the pipeline definition, optional `redis` key for Redis configuration, and optional `postgresql` key for database integration.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Top-Level Object Structure
 | 
					### Top-Level Object Structure
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| Key        | Type   | Required | Description                                             |
 | 
					| Key          | Type   | Required | Description                                             |
 | 
				
			||||||
| ---------- | ------ | -------- | ------------------------------------------------------- |
 | 
					| ------------ | ------ | -------- | ------------------------------------------------------- |
 | 
				
			||||||
| `pipeline` | Object | Yes      | The root node object of the pipeline.                   |
 | 
					| `pipeline`   | Object | Yes      | The root node object of the pipeline.                   |
 | 
				
			||||||
| `redis`    | Object | No       | Configuration for connecting to a Redis server.         |
 | 
					| `redis`      | Object | No       | Configuration for connecting to a Redis server.         |
 | 
				
			||||||
 | 
					| `postgresql` | Object | No       | Configuration for connecting to a PostgreSQL database.  |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Redis Configuration (`redis`)
 | 
					### Redis Configuration (`redis`)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -50,6 +51,16 @@ This file defines the entire pipeline logic. The root object contains a `pipelin
 | 
				
			||||||
| `password` | String | No       | The password for Redis authentication.                  |
 | 
					| `password` | String | No       | The password for Redis authentication.                  |
 | 
				
			||||||
| `db`       | Number | No       | The Redis database number to use. Defaults to `0`.      |
 | 
					| `db`       | Number | No       | The Redis database number to use. Defaults to `0`.      |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### PostgreSQL Configuration (`postgresql`)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Key        | Type   | Required | Description                                             |
 | 
				
			||||||
 | 
					| ---------- | ------ | -------- | ------------------------------------------------------- |
 | 
				
			||||||
 | 
					| `host`     | String | Yes      | The hostname or IP address of the PostgreSQL server.    |
 | 
				
			||||||
 | 
					| `port`     | Number | Yes      | The port number of the PostgreSQL server.              |
 | 
				
			||||||
 | 
					| `database` | String | Yes      | The database name to connect to.                       |
 | 
				
			||||||
 | 
					| `username` | String | Yes      | The username for database authentication.              |
 | 
				
			||||||
 | 
					| `password` | String | Yes      | The password for database authentication.              |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Node Object Structure
 | 
					### Node Object Structure
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| Key                 | Type          | Required | Description                                                                                                                            |
 | 
					| Key                 | Type          | Required | Description                                                                                                                            |
 | 
				
			||||||
| 
						 | 
					@ -59,12 +70,17 @@ This file defines the entire pipeline logic. The root object contains a `pipelin
 | 
				
			||||||
| `minConfidence`     | Float         | Yes      | The minimum confidence score (0.0 to 1.0) required for a detection to be considered valid and potentially trigger a branch.              |
 | 
					| `minConfidence`     | Float         | Yes      | The minimum confidence score (0.0 to 1.0) required for a detection to be considered valid and potentially trigger a branch.              |
 | 
				
			||||||
| `triggerClasses`    | Array<String> | Yes      | A list of class names that, when detected by the parent, can trigger this node. For the root node, this lists all classes of interest. |
 | 
					| `triggerClasses`    | Array<String> | Yes      | A list of class names that, when detected by the parent, can trigger this node. For the root node, this lists all classes of interest. |
 | 
				
			||||||
| `crop`              | Boolean       | No       | If `true`, the image is cropped to the parent's detection bounding box before being passed to this node's model. Defaults to `false`.    |
 | 
					| `crop`              | Boolean       | No       | If `true`, the image is cropped to the parent's detection bounding box before being passed to this node's model. Defaults to `false`.    |
 | 
				
			||||||
 | 
					| `cropClass`         | String        | No       | The specific class to use for cropping (e.g., "Frontal" for frontal view cropping).                                                   |
 | 
				
			||||||
 | 
					| `multiClass`        | Boolean       | No       | If `true`, enables multi-class detection mode where multiple classes can be detected simultaneously.                                   |
 | 
				
			||||||
 | 
					| `expectedClasses`   | Array<String> | No       | When `multiClass` is true, defines which classes are expected. At least one must be detected for processing to continue.              |
 | 
				
			||||||
 | 
					| `parallel`          | Boolean       | No       | If `true`, this branch will be processed in parallel with other parallel branches.                                                    |
 | 
				
			||||||
| `branches`          | Array<Node>   | No       | A list of child node objects that can be triggered by this node's detections.                                                          |
 | 
					| `branches`          | Array<Node>   | No       | A list of child node objects that can be triggered by this node's detections.                                                          |
 | 
				
			||||||
| `actions`           | Array<Action> | No       | A list of actions to execute upon a successful detection in this node.                                                                 |
 | 
					| `actions`           | Array<Action> | No       | A list of actions to execute upon a successful detection in this node.                                                                 |
 | 
				
			||||||
 | 
					| `parallelActions`   | Array<Action> | No       | A list of actions to execute after all specified branches have completed.                                                             |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Action Object Structure
 | 
					### Action Object Structure
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Actions allow the pipeline to interact with Redis. They are executed sequentially for a given detection.
 | 
					Actions allow the pipeline to interact with Redis and PostgreSQL databases. They are executed sequentially for a given detection.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### Action Context & Dynamic Keys
 | 
					#### Action Context & Dynamic Keys
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -72,7 +88,12 @@ All actions have access to a dynamic context for formatting keys and messages. T
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- All key-value pairs from the detection result (e.g., `class`, `confidence`, `id`).
 | 
					- All key-value pairs from the detection result (e.g., `class`, `confidence`, `id`).
 | 
				
			||||||
- `{timestamp_ms}`: The current Unix timestamp in milliseconds.
 | 
					- `{timestamp_ms}`: The current Unix timestamp in milliseconds.
 | 
				
			||||||
 | 
					- `{timestamp}`: Formatted timestamp string (YYYY-MM-DDTHH-MM-SS).
 | 
				
			||||||
- `{uuid}`: A unique identifier (UUID4) for the detection event.
 | 
					- `{uuid}`: A unique identifier (UUID4) for the detection event.
 | 
				
			||||||
 | 
					- `{filename}`: Generated filename with UUID.
 | 
				
			||||||
 | 
					- `{camera_id}`: Full camera subscription identifier.
 | 
				
			||||||
 | 
					- `{display_id}`: Display identifier extracted from subscription.
 | 
				
			||||||
 | 
					- `{session_id}`: Session ID for database operations.
 | 
				
			||||||
- `{image_key}`: If a `redis_save_image` action has already been executed for this event, this placeholder will be replaced with the key where the image was stored.
 | 
					- `{image_key}`: If a `redis_save_image` action has already been executed for this event, this placeholder will be replaced with the key where the image was stored.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### `redis_save_image`
 | 
					#### `redis_save_image`
 | 
				
			||||||
| 
						 | 
					@ -83,6 +104,9 @@ Saves the current image frame (or cropped sub-image) to a Redis key.
 | 
				
			||||||
| ---------------- | ------ | -------- | ------------------------------------------------------------------------------------------------------- |
 | 
					| ---------------- | ------ | -------- | ------------------------------------------------------------------------------------------------------- |
 | 
				
			||||||
| `type`           | String | Yes      | Must be `"redis_save_image"`.                                                                           |
 | 
					| `type`           | String | Yes      | Must be `"redis_save_image"`.                                                                           |
 | 
				
			||||||
| `key`            | String | Yes      | The Redis key to save the image to. Can contain any of the dynamic placeholders.                        |
 | 
					| `key`            | String | Yes      | The Redis key to save the image to. Can contain any of the dynamic placeholders.                        |
 | 
				
			||||||
 | 
					| `region`         | String | No       | Specific detected region to crop and save (e.g., "Frontal").                                           |
 | 
				
			||||||
 | 
					| `format`         | String | No       | Image format: "jpeg" or "png". Defaults to "jpeg".                                                     |
 | 
				
			||||||
 | 
					| `quality`        | Number | No       | JPEG quality (1-100). Defaults to 90.                                                                  |
 | 
				
			||||||
| `expire_seconds` | Number | No       | If provided, sets an expiration time (in seconds) for the Redis key.                                    |
 | 
					| `expire_seconds` | Number | No       | If provided, sets an expiration time (in seconds) for the Redis key.                                    |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### `redis_publish`
 | 
					#### `redis_publish`
 | 
				
			||||||
| 
						 | 
					@ -95,35 +119,98 @@ Publishes a message to a Redis channel.
 | 
				
			||||||
| `channel` | String | Yes      | The Redis channel to publish the message to.                                                            |
 | 
					| `channel` | String | Yes      | The Redis channel to publish the message to.                                                            |
 | 
				
			||||||
| `message` | String | Yes      | The message to publish. Can contain any of the dynamic placeholders, including `{image_key}`.           |
 | 
					| `message` | String | Yes      | The message to publish. Can contain any of the dynamic placeholders, including `{image_key}`.           |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### Example `pipeline.json` with Redis
 | 
					#### `postgresql_update_combined`
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This example demonstrates a pipeline that detects vehicles, saves a uniquely named image of each detection that expires in one hour, and then publishes a notification with the image key.
 | 
					Updates PostgreSQL database with results from multiple branches after they complete.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| Key                | Type          | Required | Description                                                                                             |
 | 
				
			||||||
 | 
					| ------------------ | ------------- | -------- | ------------------------------------------------------------------------------------------------------- |
 | 
				
			||||||
 | 
					| `type`             | String        | Yes      | Must be `"postgresql_update_combined"`.                                                                 |
 | 
				
			||||||
 | 
					| `table`            | String        | Yes      | The database table name (will be prefixed with `gas_station_1.` schema).                              |
 | 
				
			||||||
 | 
					| `key_field`        | String        | Yes      | The field to use as the update key (typically "session_id").                                           |
 | 
				
			||||||
 | 
					| `key_value`        | String        | Yes      | Template for the key value (e.g., "{session_id}").                                                     |
 | 
				
			||||||
 | 
					| `waitForBranches`  | Array<String> | Yes      | List of branch model IDs to wait for completion before executing update.                               |
 | 
				
			||||||
 | 
					| `fields`           | Object        | Yes      | Field mapping object where keys are database columns and values are templates (e.g., "{branch.field}").|
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### Complete Example `pipeline.json`
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This example demonstrates a comprehensive pipeline for vehicle detection with parallel classification and database integration:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```json
 | 
					```json
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
  "redis": {
 | 
					  "redis": {
 | 
				
			||||||
    "host": "redis.local",
 | 
					    "host": "10.100.1.3",
 | 
				
			||||||
    "port": 6379,
 | 
					    "port": 6379,
 | 
				
			||||||
    "password": "your-super-secret-password"
 | 
					    "password": "your-redis-password",
 | 
				
			||||||
 | 
					    "db": 0
 | 
				
			||||||
 | 
					  },
 | 
				
			||||||
 | 
					  "postgresql": {
 | 
				
			||||||
 | 
					    "host": "10.100.1.3",
 | 
				
			||||||
 | 
					    "port": 5432,
 | 
				
			||||||
 | 
					    "database": "inference",
 | 
				
			||||||
 | 
					    "username": "root",
 | 
				
			||||||
 | 
					    "password": "your-db-password"
 | 
				
			||||||
  },
 | 
					  },
 | 
				
			||||||
  "pipeline": {
 | 
					  "pipeline": {
 | 
				
			||||||
    "modelId": "vehicle-detector",
 | 
					    "modelId": "car_frontal_detection_v1",
 | 
				
			||||||
    "modelFile": "vehicle_model.pt",
 | 
					    "modelFile": "car_frontal_detection_v1.pt",
 | 
				
			||||||
    "minConfidence": 0.6,
 | 
					    "crop": false,
 | 
				
			||||||
    "triggerClasses": ["car", "truck"],
 | 
					    "triggerClasses": ["Car", "Frontal"],
 | 
				
			||||||
 | 
					    "minConfidence": 0.8,
 | 
				
			||||||
 | 
					    "multiClass": true,
 | 
				
			||||||
 | 
					    "expectedClasses": ["Car", "Frontal"],
 | 
				
			||||||
    "actions": [
 | 
					    "actions": [
 | 
				
			||||||
      {
 | 
					      {
 | 
				
			||||||
        "type": "redis_save_image",
 | 
					        "type": "redis_save_image",
 | 
				
			||||||
        "key": "detections:{class}:{timestamp_ms}:{uuid}",
 | 
					        "region": "Frontal",
 | 
				
			||||||
        "expire_seconds": 3600
 | 
					        "key": "inference:{display_id}:{timestamp}:{session_id}:{filename}",
 | 
				
			||||||
 | 
					        "expire_seconds": 600,
 | 
				
			||||||
 | 
					        "format": "jpeg",
 | 
				
			||||||
 | 
					        "quality": 90
 | 
				
			||||||
      },
 | 
					      },
 | 
				
			||||||
      {
 | 
					      {
 | 
				
			||||||
        "type": "redis_publish",
 | 
					        "type": "redis_publish",
 | 
				
			||||||
        "channel": "vehicle_events",
 | 
					        "channel": "car_detections",
 | 
				
			||||||
        "message": "{\"event\":\"new_detection\",\"class\":\"{class}\",\"confidence\":{confidence},\"image_key\":\"{image_key}\"}"
 | 
					        "message": "{\"event\":\"frontal_detected\"}"
 | 
				
			||||||
      }
 | 
					      }
 | 
				
			||||||
    ],
 | 
					    ],
 | 
				
			||||||
    "branches": []
 | 
					    "branches": [
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        "modelId": "car_brand_cls_v1",
 | 
				
			||||||
 | 
					        "modelFile": "car_brand_cls_v1.pt",
 | 
				
			||||||
 | 
					        "crop": true,
 | 
				
			||||||
 | 
					        "cropClass": "Frontal",
 | 
				
			||||||
 | 
					        "resizeTarget": [224, 224],
 | 
				
			||||||
 | 
					        "triggerClasses": ["Frontal"],
 | 
				
			||||||
 | 
					        "minConfidence": 0.85,
 | 
				
			||||||
 | 
					        "parallel": true,
 | 
				
			||||||
 | 
					        "branches": []
 | 
				
			||||||
 | 
					      },
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        "modelId": "car_bodytype_cls_v1",
 | 
				
			||||||
 | 
					        "modelFile": "car_bodytype_cls_v1.pt",
 | 
				
			||||||
 | 
					        "crop": true,
 | 
				
			||||||
 | 
					        "cropClass": "Car",
 | 
				
			||||||
 | 
					        "resizeTarget": [224, 224],
 | 
				
			||||||
 | 
					        "triggerClasses": ["Car"],
 | 
				
			||||||
 | 
					        "minConfidence": 0.85,
 | 
				
			||||||
 | 
					        "parallel": true,
 | 
				
			||||||
 | 
					        "branches": []
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    ],
 | 
				
			||||||
 | 
					    "parallelActions": [
 | 
				
			||||||
 | 
					      {
 | 
				
			||||||
 | 
					        "type": "postgresql_update_combined",
 | 
				
			||||||
 | 
					        "table": "car_frontal_info",
 | 
				
			||||||
 | 
					        "key_field": "session_id",
 | 
				
			||||||
 | 
					        "key_value": "{session_id}",
 | 
				
			||||||
 | 
					        "waitForBranches": ["car_brand_cls_v1", "car_bodytype_cls_v1"],
 | 
				
			||||||
 | 
					        "fields": {
 | 
				
			||||||
 | 
					          "car_brand": "{car_brand_cls_v1.brand}",
 | 
				
			||||||
 | 
					          "car_body_type": "{car_bodytype_cls_v1.body_type}"
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    ]
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
| 
						 | 
					@ -134,7 +221,7 @@ The `pympta` module exposes two main functions.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### `load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict`
 | 
					### `load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict`
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Loads, extracts, and parses an `.mpta` file to build a pipeline tree in memory. It also establishes a Redis connection if configured in `pipeline.json`.
 | 
					Loads, extracts, and parses an `.mpta` file to build a pipeline tree in memory. It also establishes Redis and PostgreSQL connections if configured in `pipeline.json`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- **Parameters:**
 | 
					- **Parameters:**
 | 
				
			||||||
  - `zip_source` (str): The file path to the local `.mpta` zip archive.
 | 
					  - `zip_source` (str): The file path to the local `.mpta` zip archive.
 | 
				
			||||||
| 
						 | 
					@ -142,7 +229,7 @@ Loads, extracts, and parses an `.mpta` file to build a pipeline tree in memory.
 | 
				
			||||||
- **Returns:**
 | 
					- **Returns:**
 | 
				
			||||||
  - A dictionary representing the root node of the pipeline, ready to be used with `run_pipeline`. Returns `None` if loading fails.
 | 
					  - A dictionary representing the root node of the pipeline, ready to be used with `run_pipeline`. Returns `None` if loading fails.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### `run_pipeline(frame, node: dict, return_bbox: bool = False)`
 | 
					### `run_pipeline(frame, node: dict, return_bbox: bool = False, context: dict = None)`
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Executes the inference pipeline on a single image frame.
 | 
					Executes the inference pipeline on a single image frame.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -150,12 +237,43 @@ Executes the inference pipeline on a single image frame.
 | 
				
			||||||
  - `frame`: The input image frame (e.g., a NumPy array from OpenCV).
 | 
					  - `frame`: The input image frame (e.g., a NumPy array from OpenCV).
 | 
				
			||||||
  - `node` (dict): The pipeline node to execute (typically the root node returned by `load_pipeline_from_zip`).
 | 
					  - `node` (dict): The pipeline node to execute (typically the root node returned by `load_pipeline_from_zip`).
 | 
				
			||||||
  - `return_bbox` (bool): If `True`, the function returns a tuple `(detection, bounding_box)`. Otherwise, it returns only the `detection`.
 | 
					  - `return_bbox` (bool): If `True`, the function returns a tuple `(detection, bounding_box)`. Otherwise, it returns only the `detection`.
 | 
				
			||||||
 | 
					  - `context` (dict): Optional context dictionary containing camera_id, display_id, session_id for action formatting.
 | 
				
			||||||
- **Returns:**
 | 
					- **Returns:**
 | 
				
			||||||
  - The final detection result from the last executed node in the chain. A detection is a dictionary like `{'class': 'car', 'confidence': 0.95, 'id': 1}`. If no detection meets the criteria, it returns `None` (or `(None, None)` if `return_bbox` is `True`).
 | 
					  - The final detection result from the last executed node in the chain. A detection is a dictionary like `{'class': 'car', 'confidence': 0.95, 'id': 1}`. If no detection meets the criteria, it returns `None` (or `(None, None)` if `return_bbox` is `True`).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Database Integration
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The pipeline system includes automatic PostgreSQL database management:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### Table Schema (`gas_station_1.car_frontal_info`)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The system automatically creates and manages the following table structure:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```sql
 | 
				
			||||||
 | 
					CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
 | 
				
			||||||
 | 
					    display_id VARCHAR(255),
 | 
				
			||||||
 | 
					    captured_timestamp VARCHAR(255),
 | 
				
			||||||
 | 
					    session_id VARCHAR(255) PRIMARY KEY,
 | 
				
			||||||
 | 
					    license_character VARCHAR(255) DEFAULT NULL,
 | 
				
			||||||
 | 
					    license_type VARCHAR(255) DEFAULT 'No model available',
 | 
				
			||||||
 | 
					    car_brand VARCHAR(255) DEFAULT NULL,
 | 
				
			||||||
 | 
					    car_model VARCHAR(255) DEFAULT NULL,
 | 
				
			||||||
 | 
					    car_body_type VARCHAR(255) DEFAULT NULL,
 | 
				
			||||||
 | 
					    created_at TIMESTAMP DEFAULT NOW(),
 | 
				
			||||||
 | 
					    updated_at TIMESTAMP DEFAULT NOW()
 | 
				
			||||||
 | 
					);
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### Workflow
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					1. **Initial Record Creation**: When both "Car" and "Frontal" are detected, an initial database record is created with a UUID session_id.
 | 
				
			||||||
 | 
					2. **Redis Storage**: Vehicle images are stored in Redis with keys containing the session_id.
 | 
				
			||||||
 | 
					3. **Parallel Classification**: Brand and body type classification run concurrently.
 | 
				
			||||||
 | 
					4. **Database Update**: After all branches complete, the database record is updated with classification results.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Usage Example
 | 
					## Usage Example
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This snippet, inspired by `pipeline_webcam.py`, shows how to use `pympta` to load a pipeline and process an image from a webcam.
 | 
					This snippet shows how to use `pympta` with the enhanced features:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```python
 | 
					```python
 | 
				
			||||||
import cv2
 | 
					import cv2
 | 
				
			||||||
| 
						 | 
					@ -181,9 +299,14 @@ while True:
 | 
				
			||||||
    if not ret:
 | 
					    if not ret:
 | 
				
			||||||
        break
 | 
					        break
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # 4. Run the pipeline on the current frame
 | 
					    # 4. Run the pipeline on the current frame with context
 | 
				
			||||||
    # The function will handle the entire logic tree (e.g., find a car, then find its license plate).
 | 
					    context = {
 | 
				
			||||||
    detection_result, bounding_box = run_pipeline(frame, model_tree, return_bbox=True)
 | 
					        "camera_id": "display-001;cam-001",
 | 
				
			||||||
 | 
					        "display_id": "display-001", 
 | 
				
			||||||
 | 
					        "session_id": None  # Will be generated automatically
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    detection_result, bounding_box = run_pipeline(frame, model_tree, return_bbox=True, context=context)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # 5. Display the results
 | 
					    # 5. Display the results
 | 
				
			||||||
    if detection_result:
 | 
					    if detection_result:
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										7
									
								
								requirements.base.txt
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										7
									
								
								requirements.base.txt
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,7 @@
 | 
				
			||||||
 | 
					torch
 | 
				
			||||||
 | 
					torchvision
 | 
				
			||||||
 | 
					ultralytics
 | 
				
			||||||
 | 
					opencv-python
 | 
				
			||||||
 | 
					scipy
 | 
				
			||||||
 | 
					filterpy
 | 
				
			||||||
 | 
					psycopg2-binary
 | 
				
			||||||
| 
						 | 
					@ -1,66 +1,6 @@
 | 
				
			||||||
fastapi
 | 
					fastapi
 | 
				
			||||||
uvicorn
 | 
					uvicorn
 | 
				
			||||||
# torch
 | 
					 | 
				
			||||||
# torchvision
 | 
					 | 
				
			||||||
# ultralytics
 | 
					 | 
				
			||||||
# opencv-python
 | 
					 | 
				
			||||||
websockets
 | 
					websockets
 | 
				
			||||||
fastapi[standard]
 | 
					fastapi[standard]
 | 
				
			||||||
redis
 | 
					redis
 | 
				
			||||||
 | 
					urllib3<2.0.0
 | 
				
			||||||
# Trackers Environment
 | 
					 | 
				
			||||||
# pip install -r requirements.txt
 | 
					 | 
				
			||||||
ultralytics==8.0.20
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# Base ----------------------------------------
 | 
					 | 
				
			||||||
gitpython
 | 
					 | 
				
			||||||
ipython  # interactive notebook
 | 
					 | 
				
			||||||
matplotlib>=3.2.2
 | 
					 | 
				
			||||||
numpy==1.23.1
 | 
					 | 
				
			||||||
opencv-python>=4.1.1
 | 
					 | 
				
			||||||
Pillow>=7.1.2
 | 
					 | 
				
			||||||
psutil  # system resources
 | 
					 | 
				
			||||||
PyYAML>=5.3.1
 | 
					 | 
				
			||||||
requests>=2.23.0
 | 
					 | 
				
			||||||
scipy>=1.4.1
 | 
					 | 
				
			||||||
thop>=0.1.1  # FLOPs computation
 | 
					 | 
				
			||||||
torch>=1.7.0,<=2.5.1  # see https://pytorch.org/get-started/locally (recommended)
 | 
					 | 
				
			||||||
torchvision>=0.8.1,<=0.20.1
 | 
					 | 
				
			||||||
tqdm>=4.64.0
 | 
					 | 
				
			||||||
# protobuf<=3.20.1  # https://github.com/ultralytics/yolov5/issues/8012
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# Logging ---------------------------------------------------------------------
 | 
					 | 
				
			||||||
tensorboard>=2.4.1
 | 
					 | 
				
			||||||
# clearml>=1.2.0
 | 
					 | 
				
			||||||
# comet
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# Plotting --------------------------------------------------------------------
 | 
					 | 
				
			||||||
pandas>=1.1.4
 | 
					 | 
				
			||||||
seaborn>=0.11.0
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# StrongSORT ------------------------------------------------------------------
 | 
					 | 
				
			||||||
easydict
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# torchreid -------------------------------------------------------------------
 | 
					 | 
				
			||||||
gdown
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# ByteTrack -------------------------------------------------------------------
 | 
					 | 
				
			||||||
lap
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# OCSORT ----------------------------------------------------------------------
 | 
					 | 
				
			||||||
filterpy
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# Export ----------------------------------------------------------------------
 | 
					 | 
				
			||||||
# onnx>=1.9.0               # ONNX export
 | 
					 | 
				
			||||||
# onnx-simplifier>=0.4.1    # ONNX simplifier
 | 
					 | 
				
			||||||
# nvidia-pyindex            # TensorRT export
 | 
					 | 
				
			||||||
# nvidia-tensorrt           # TensorRT export
 | 
					 | 
				
			||||||
# openvino-dev              # OpenVINO export
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# Hyperparam search -----------------------------------------------------------
 | 
					 | 
				
			||||||
# optuna
 | 
					 | 
				
			||||||
# plotly                    # for hp importance and pareto front plots
 | 
					 | 
				
			||||||
# kaleido
 | 
					 | 
				
			||||||
# joblib
 | 
					 | 
				
			||||||
pyzmq
 | 
					 | 
				
			||||||
loguru
 | 
					 | 
				
			||||||
							
								
								
									
										211
									
								
								siwatsystem/database.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										211
									
								
								siwatsystem/database.py
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,211 @@
 | 
				
			||||||
 | 
					import psycopg2
 | 
				
			||||||
 | 
					import psycopg2.extras
 | 
				
			||||||
 | 
					from typing import Optional, Dict, Any
 | 
				
			||||||
 | 
					import logging
 | 
				
			||||||
 | 
					import uuid
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					logger = logging.getLogger(__name__)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class DatabaseManager:
 | 
				
			||||||
 | 
					    def __init__(self, config: Dict[str, Any]):
 | 
				
			||||||
 | 
					        self.config = config
 | 
				
			||||||
 | 
					        self.connection: Optional[psycopg2.extensions.connection] = None
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					    def connect(self) -> bool:
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            self.connection = psycopg2.connect(
 | 
				
			||||||
 | 
					                host=self.config['host'],
 | 
				
			||||||
 | 
					                port=self.config['port'],
 | 
				
			||||||
 | 
					                database=self.config['database'],
 | 
				
			||||||
 | 
					                user=self.config['username'],
 | 
				
			||||||
 | 
					                password=self.config['password']
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					            logger.info("PostgreSQL connection established successfully")
 | 
				
			||||||
 | 
					            return True
 | 
				
			||||||
 | 
					        except Exception as e:
 | 
				
			||||||
 | 
					            logger.error(f"Failed to connect to PostgreSQL: {e}")
 | 
				
			||||||
 | 
					            return False
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    def disconnect(self):
 | 
				
			||||||
 | 
					        if self.connection:
 | 
				
			||||||
 | 
					            self.connection.close()
 | 
				
			||||||
 | 
					            self.connection = None
 | 
				
			||||||
 | 
					            logger.info("PostgreSQL connection closed")
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    def is_connected(self) -> bool:
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            if self.connection and not self.connection.closed:
 | 
				
			||||||
 | 
					                cur = self.connection.cursor()
 | 
				
			||||||
 | 
					                cur.execute("SELECT 1")
 | 
				
			||||||
 | 
					                cur.fetchone()
 | 
				
			||||||
 | 
					                cur.close()
 | 
				
			||||||
 | 
					                return True
 | 
				
			||||||
 | 
					        except:
 | 
				
			||||||
 | 
					            pass
 | 
				
			||||||
 | 
					        return False
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    def update_car_info(self, session_id: str, brand: str, model: str, body_type: str) -> bool:
 | 
				
			||||||
 | 
					        if not self.is_connected():
 | 
				
			||||||
 | 
					            if not self.connect():
 | 
				
			||||||
 | 
					                return False
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            cur = self.connection.cursor()
 | 
				
			||||||
 | 
					            query = """
 | 
				
			||||||
 | 
					            INSERT INTO car_frontal_info (session_id, car_brand, car_model, car_body_type, updated_at)
 | 
				
			||||||
 | 
					            VALUES (%s, %s, %s, %s, NOW())
 | 
				
			||||||
 | 
					            ON CONFLICT (session_id) 
 | 
				
			||||||
 | 
					            DO UPDATE SET 
 | 
				
			||||||
 | 
					                car_brand = EXCLUDED.car_brand,
 | 
				
			||||||
 | 
					                car_model = EXCLUDED.car_model,
 | 
				
			||||||
 | 
					                car_body_type = EXCLUDED.car_body_type,
 | 
				
			||||||
 | 
					                updated_at = NOW()
 | 
				
			||||||
 | 
					            """
 | 
				
			||||||
 | 
					            cur.execute(query, (session_id, brand, model, body_type))
 | 
				
			||||||
 | 
					            self.connection.commit()
 | 
				
			||||||
 | 
					            cur.close()
 | 
				
			||||||
 | 
					            logger.info(f"Updated car info for session {session_id}: {brand} {model} ({body_type})")
 | 
				
			||||||
 | 
					            return True
 | 
				
			||||||
 | 
					        except Exception as e:
 | 
				
			||||||
 | 
					            logger.error(f"Failed to update car info: {e}")
 | 
				
			||||||
 | 
					            if self.connection:
 | 
				
			||||||
 | 
					                self.connection.rollback()
 | 
				
			||||||
 | 
					            return False
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    def execute_update(self, table: str, key_field: str, key_value: str, fields: Dict[str, str]) -> bool:
 | 
				
			||||||
 | 
					        if not self.is_connected():
 | 
				
			||||||
 | 
					            if not self.connect():
 | 
				
			||||||
 | 
					                return False
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            cur = self.connection.cursor()
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # Build the UPDATE query dynamically
 | 
				
			||||||
 | 
					            set_clauses = []
 | 
				
			||||||
 | 
					            values = []
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            for field, value in fields.items():
 | 
				
			||||||
 | 
					                if value == "NOW()":
 | 
				
			||||||
 | 
					                    set_clauses.append(f"{field} = NOW()")
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    set_clauses.append(f"{field} = %s")
 | 
				
			||||||
 | 
					                    values.append(value)
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # Add schema prefix if table doesn't already have it
 | 
				
			||||||
 | 
					            full_table_name = table if '.' in table else f"gas_station_1.{table}"
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            query = f"""
 | 
				
			||||||
 | 
					            INSERT INTO {full_table_name} ({key_field}, {', '.join(fields.keys())})
 | 
				
			||||||
 | 
					            VALUES (%s, {', '.join(['%s'] * len(fields))})
 | 
				
			||||||
 | 
					            ON CONFLICT ({key_field})
 | 
				
			||||||
 | 
					            DO UPDATE SET {', '.join(set_clauses)}
 | 
				
			||||||
 | 
					            """
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # Add key_value to the beginning of values list
 | 
				
			||||||
 | 
					            all_values = [key_value] + list(fields.values()) + values
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            cur.execute(query, all_values)
 | 
				
			||||||
 | 
					            self.connection.commit()
 | 
				
			||||||
 | 
					            cur.close()
 | 
				
			||||||
 | 
					            logger.info(f"Updated {table} for {key_field}={key_value}")
 | 
				
			||||||
 | 
					            return True
 | 
				
			||||||
 | 
					        except Exception as e:
 | 
				
			||||||
 | 
					            logger.error(f"Failed to execute update on {table}: {e}")
 | 
				
			||||||
 | 
					            if self.connection:
 | 
				
			||||||
 | 
					                self.connection.rollback()
 | 
				
			||||||
 | 
					            return False
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    def create_car_frontal_info_table(self) -> bool:
 | 
				
			||||||
 | 
					        """Create the car_frontal_info table in gas_station_1 schema if it doesn't exist."""
 | 
				
			||||||
 | 
					        if not self.is_connected():
 | 
				
			||||||
 | 
					            if not self.connect():
 | 
				
			||||||
 | 
					                return False
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            cur = self.connection.cursor()
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # Create schema if it doesn't exist
 | 
				
			||||||
 | 
					            cur.execute("CREATE SCHEMA IF NOT EXISTS gas_station_1")
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # Create table if it doesn't exist
 | 
				
			||||||
 | 
					            create_table_query = """
 | 
				
			||||||
 | 
					            CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
 | 
				
			||||||
 | 
					                display_id VARCHAR(255),
 | 
				
			||||||
 | 
					                captured_timestamp VARCHAR(255),
 | 
				
			||||||
 | 
					                session_id VARCHAR(255) PRIMARY KEY,
 | 
				
			||||||
 | 
					                license_character VARCHAR(255) DEFAULT NULL,
 | 
				
			||||||
 | 
					                license_type VARCHAR(255) DEFAULT 'No model available',
 | 
				
			||||||
 | 
					                car_brand VARCHAR(255) DEFAULT NULL,
 | 
				
			||||||
 | 
					                car_model VARCHAR(255) DEFAULT NULL,
 | 
				
			||||||
 | 
					                car_body_type VARCHAR(255) DEFAULT NULL,
 | 
				
			||||||
 | 
					                updated_at TIMESTAMP DEFAULT NOW()
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					            """
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            cur.execute(create_table_query)
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # Add columns if they don't exist (for existing tables)
 | 
				
			||||||
 | 
					            alter_queries = [
 | 
				
			||||||
 | 
					                "ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_brand VARCHAR(255) DEFAULT NULL",
 | 
				
			||||||
 | 
					                "ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_model VARCHAR(255) DEFAULT NULL", 
 | 
				
			||||||
 | 
					                "ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS car_body_type VARCHAR(255) DEFAULT NULL",
 | 
				
			||||||
 | 
					                "ALTER TABLE gas_station_1.car_frontal_info ADD COLUMN IF NOT EXISTS updated_at TIMESTAMP DEFAULT NOW()"
 | 
				
			||||||
 | 
					            ]
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            for alter_query in alter_queries:
 | 
				
			||||||
 | 
					                try:
 | 
				
			||||||
 | 
					                    cur.execute(alter_query)
 | 
				
			||||||
 | 
					                    logger.debug(f"Executed: {alter_query}")
 | 
				
			||||||
 | 
					                except Exception as e:
 | 
				
			||||||
 | 
					                    # Ignore errors if column already exists (for older PostgreSQL versions)
 | 
				
			||||||
 | 
					                    if "already exists" in str(e).lower():
 | 
				
			||||||
 | 
					                        logger.debug(f"Column already exists, skipping: {alter_query}")
 | 
				
			||||||
 | 
					                    else:
 | 
				
			||||||
 | 
					                        logger.warning(f"Error in ALTER TABLE: {e}")
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            self.connection.commit()
 | 
				
			||||||
 | 
					            cur.close()
 | 
				
			||||||
 | 
					            logger.info("Successfully created/verified car_frontal_info table with all required columns")
 | 
				
			||||||
 | 
					            return True
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					        except Exception as e:
 | 
				
			||||||
 | 
					            logger.error(f"Failed to create car_frontal_info table: {e}")
 | 
				
			||||||
 | 
					            if self.connection:
 | 
				
			||||||
 | 
					                self.connection.rollback()
 | 
				
			||||||
 | 
					            return False
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    def insert_initial_detection(self, display_id: str, captured_timestamp: str, session_id: str = None) -> str:
 | 
				
			||||||
 | 
					        """Insert initial detection record and return the session_id."""
 | 
				
			||||||
 | 
					        if not self.is_connected():
 | 
				
			||||||
 | 
					            if not self.connect():
 | 
				
			||||||
 | 
					                return None
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # Generate session_id if not provided
 | 
				
			||||||
 | 
					        if not session_id:
 | 
				
			||||||
 | 
					            session_id = str(uuid.uuid4())
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            # Ensure table exists
 | 
				
			||||||
 | 
					            if not self.create_car_frontal_info_table():
 | 
				
			||||||
 | 
					                logger.error("Failed to create/verify table before insertion")
 | 
				
			||||||
 | 
					                return None
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            cur = self.connection.cursor()
 | 
				
			||||||
 | 
					            insert_query = """
 | 
				
			||||||
 | 
					            INSERT INTO gas_station_1.car_frontal_info 
 | 
				
			||||||
 | 
					            (display_id, captured_timestamp, session_id, license_character, license_type, car_brand, car_model, car_body_type)
 | 
				
			||||||
 | 
					            VALUES (%s, %s, %s, NULL, 'No model available', NULL, NULL, NULL)
 | 
				
			||||||
 | 
					            ON CONFLICT (session_id) DO NOTHING
 | 
				
			||||||
 | 
					            """
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            cur.execute(insert_query, (display_id, captured_timestamp, session_id))
 | 
				
			||||||
 | 
					            self.connection.commit()
 | 
				
			||||||
 | 
					            cur.close()
 | 
				
			||||||
 | 
					            logger.info(f"Inserted initial detection record with session_id: {session_id}")
 | 
				
			||||||
 | 
					            return session_id
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					        except Exception as e:
 | 
				
			||||||
 | 
					            logger.error(f"Failed to insert initial detection record: {e}")
 | 
				
			||||||
 | 
					            if self.connection:
 | 
				
			||||||
 | 
					                self.connection.rollback()
 | 
				
			||||||
 | 
					            return None
 | 
				
			||||||
| 
						 | 
					@ -3,20 +3,72 @@ import json
 | 
				
			||||||
import logging
 | 
					import logging
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
import cv2
 | 
					import cv2
 | 
				
			||||||
import requests
 | 
					 | 
				
			||||||
import zipfile
 | 
					import zipfile
 | 
				
			||||||
import shutil
 | 
					import shutil
 | 
				
			||||||
import traceback
 | 
					import traceback
 | 
				
			||||||
import redis
 | 
					import redis
 | 
				
			||||||
import time
 | 
					import time
 | 
				
			||||||
import uuid
 | 
					import uuid
 | 
				
			||||||
 | 
					import concurrent.futures
 | 
				
			||||||
from ultralytics import YOLO
 | 
					from ultralytics import YOLO
 | 
				
			||||||
from urllib.parse import urlparse
 | 
					from urllib.parse import urlparse
 | 
				
			||||||
 | 
					from .database import DatabaseManager
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Create a logger specifically for this module
 | 
					# Create a logger specifically for this module
 | 
				
			||||||
logger = logging.getLogger("detector_worker.pympta")
 | 
					logger = logging.getLogger("detector_worker.pympta")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client) -> dict:
 | 
					def validate_redis_config(redis_config: dict) -> bool:
 | 
				
			||||||
 | 
					    """Validate Redis configuration parameters."""
 | 
				
			||||||
 | 
					    required_fields = ["host", "port"]
 | 
				
			||||||
 | 
					    for field in required_fields:
 | 
				
			||||||
 | 
					        if field not in redis_config:
 | 
				
			||||||
 | 
					            logger.error(f"Missing required Redis config field: {field}")
 | 
				
			||||||
 | 
					            return False
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    if not isinstance(redis_config["port"], int) or redis_config["port"] <= 0:
 | 
				
			||||||
 | 
					        logger.error(f"Invalid Redis port: {redis_config['port']}")
 | 
				
			||||||
 | 
					        return False
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    return True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def validate_postgresql_config(pg_config: dict) -> bool:
 | 
				
			||||||
 | 
					    """Validate PostgreSQL configuration parameters."""
 | 
				
			||||||
 | 
					    required_fields = ["host", "port", "database", "username", "password"]
 | 
				
			||||||
 | 
					    for field in required_fields:
 | 
				
			||||||
 | 
					        if field not in pg_config:
 | 
				
			||||||
 | 
					            logger.error(f"Missing required PostgreSQL config field: {field}")
 | 
				
			||||||
 | 
					            return False
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    if not isinstance(pg_config["port"], int) or pg_config["port"] <= 0:
 | 
				
			||||||
 | 
					        logger.error(f"Invalid PostgreSQL port: {pg_config['port']}")
 | 
				
			||||||
 | 
					        return False
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    return True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def crop_region_by_class(frame, regions_dict, class_name):
 | 
				
			||||||
 | 
					    """Crop a specific region from frame based on detected class."""
 | 
				
			||||||
 | 
					    if class_name not in regions_dict:
 | 
				
			||||||
 | 
					        logger.warning(f"Class '{class_name}' not found in detected regions")
 | 
				
			||||||
 | 
					        return None
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    bbox = regions_dict[class_name]['bbox']
 | 
				
			||||||
 | 
					    x1, y1, x2, y2 = bbox
 | 
				
			||||||
 | 
					    cropped = frame[y1:y2, x1:x2]
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    if cropped.size == 0:
 | 
				
			||||||
 | 
					        logger.warning(f"Empty crop for class '{class_name}' with bbox {bbox}")
 | 
				
			||||||
 | 
					        return None
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    return cropped
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def format_action_context(base_context, additional_context=None):
 | 
				
			||||||
 | 
					    """Format action context with dynamic values."""
 | 
				
			||||||
 | 
					    context = {**base_context}
 | 
				
			||||||
 | 
					    if additional_context:
 | 
				
			||||||
 | 
					        context.update(additional_context)
 | 
				
			||||||
 | 
					    return context
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client, db_manager=None) -> dict:
 | 
				
			||||||
    # Recursively load a model node from configuration.
 | 
					    # Recursively load a model node from configuration.
 | 
				
			||||||
    model_path = os.path.join(mpta_dir, node_config["modelFile"])
 | 
					    model_path = os.path.join(mpta_dir, node_config["modelFile"])
 | 
				
			||||||
    if not os.path.exists(model_path):
 | 
					    if not os.path.exists(model_path):
 | 
				
			||||||
| 
						 | 
					@ -46,16 +98,22 @@ def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client) -> dict:
 | 
				
			||||||
        "triggerClasses": trigger_classes,
 | 
					        "triggerClasses": trigger_classes,
 | 
				
			||||||
        "triggerClassIndices": trigger_class_indices,
 | 
					        "triggerClassIndices": trigger_class_indices,
 | 
				
			||||||
        "crop": node_config.get("crop", False),
 | 
					        "crop": node_config.get("crop", False),
 | 
				
			||||||
 | 
					        "cropClass": node_config.get("cropClass"),
 | 
				
			||||||
        "minConfidence": node_config.get("minConfidence", None),
 | 
					        "minConfidence": node_config.get("minConfidence", None),
 | 
				
			||||||
 | 
					        "multiClass": node_config.get("multiClass", False),
 | 
				
			||||||
 | 
					        "expectedClasses": node_config.get("expectedClasses", []),
 | 
				
			||||||
 | 
					        "parallel": node_config.get("parallel", False),
 | 
				
			||||||
        "actions": node_config.get("actions", []),
 | 
					        "actions": node_config.get("actions", []),
 | 
				
			||||||
 | 
					        "parallelActions": node_config.get("parallelActions", []),
 | 
				
			||||||
        "model": model,
 | 
					        "model": model,
 | 
				
			||||||
        "branches": [],
 | 
					        "branches": [],
 | 
				
			||||||
        "redis_client": redis_client
 | 
					        "redis_client": redis_client,
 | 
				
			||||||
 | 
					        "db_manager": db_manager
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
 | 
					    logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
 | 
				
			||||||
    for child in node_config.get("branches", []):
 | 
					    for child in node_config.get("branches", []):
 | 
				
			||||||
        logger.debug(f"Loading branch for parent node {node_config['modelId']}")
 | 
					        logger.debug(f"Loading branch for parent node {node_config['modelId']}")
 | 
				
			||||||
        node["branches"].append(load_pipeline_node(child, mpta_dir, redis_client))
 | 
					        node["branches"].append(load_pipeline_node(child, mpta_dir, redis_client, db_manager))
 | 
				
			||||||
    return node
 | 
					    return node
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
 | 
					def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
 | 
				
			||||||
| 
						 | 
					@ -183,21 +241,42 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
 | 
				
			||||||
        redis_client = None
 | 
					        redis_client = None
 | 
				
			||||||
        if "redis" in pipeline_config:
 | 
					        if "redis" in pipeline_config:
 | 
				
			||||||
            redis_config = pipeline_config["redis"]
 | 
					            redis_config = pipeline_config["redis"]
 | 
				
			||||||
            try:
 | 
					            if not validate_redis_config(redis_config):
 | 
				
			||||||
                redis_client = redis.Redis(
 | 
					                logger.error("Invalid Redis configuration, skipping Redis connection")
 | 
				
			||||||
                    host=redis_config["host"],
 | 
					            else:
 | 
				
			||||||
                    port=redis_config["port"],
 | 
					                try:
 | 
				
			||||||
                    password=redis_config.get("password"),
 | 
					                    redis_client = redis.Redis(
 | 
				
			||||||
                    db=redis_config.get("db", 0),
 | 
					                        host=redis_config["host"],
 | 
				
			||||||
                    decode_responses=True
 | 
					                        port=redis_config["port"],
 | 
				
			||||||
                )
 | 
					                        password=redis_config.get("password"),
 | 
				
			||||||
                redis_client.ping()
 | 
					                        db=redis_config.get("db", 0),
 | 
				
			||||||
                logger.info(f"Successfully connected to Redis at {redis_config['host']}:{redis_config['port']}")
 | 
					                        decode_responses=True
 | 
				
			||||||
            except redis.exceptions.ConnectionError as e:
 | 
					                    )
 | 
				
			||||||
                logger.error(f"Failed to connect to Redis: {e}")
 | 
					                    redis_client.ping()
 | 
				
			||||||
                redis_client = None
 | 
					                    logger.info(f"Successfully connected to Redis at {redis_config['host']}:{redis_config['port']}")
 | 
				
			||||||
 | 
					                except redis.exceptions.ConnectionError as e:
 | 
				
			||||||
 | 
					                    logger.error(f"Failed to connect to Redis: {e}")
 | 
				
			||||||
 | 
					                    redis_client = None
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
        return load_pipeline_node(pipeline_config["pipeline"], mpta_dir, redis_client)
 | 
					        # Establish PostgreSQL connection if configured
 | 
				
			||||||
 | 
					        db_manager = None
 | 
				
			||||||
 | 
					        if "postgresql" in pipeline_config:
 | 
				
			||||||
 | 
					            pg_config = pipeline_config["postgresql"]
 | 
				
			||||||
 | 
					            if not validate_postgresql_config(pg_config):
 | 
				
			||||||
 | 
					                logger.error("Invalid PostgreSQL configuration, skipping database connection")
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                try:
 | 
				
			||||||
 | 
					                    db_manager = DatabaseManager(pg_config)
 | 
				
			||||||
 | 
					                    if db_manager.connect():
 | 
				
			||||||
 | 
					                        logger.info(f"Successfully connected to PostgreSQL at {pg_config['host']}:{pg_config['port']}")
 | 
				
			||||||
 | 
					                    else:
 | 
				
			||||||
 | 
					                        logger.error("Failed to connect to PostgreSQL")
 | 
				
			||||||
 | 
					                        db_manager = None
 | 
				
			||||||
 | 
					                except Exception as e:
 | 
				
			||||||
 | 
					                    logger.error(f"Error initializing PostgreSQL connection: {e}")
 | 
				
			||||||
 | 
					                    db_manager = None
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        return load_pipeline_node(pipeline_config["pipeline"], mpta_dir, redis_client, db_manager)
 | 
				
			||||||
    except json.JSONDecodeError as e:
 | 
					    except json.JSONDecodeError as e:
 | 
				
			||||||
        logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
 | 
					        logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
 | 
				
			||||||
        return None
 | 
					        return None
 | 
				
			||||||
| 
						 | 
					@ -208,22 +287,53 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
 | 
				
			||||||
        logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
 | 
					        logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
 | 
				
			||||||
        return None
 | 
					        return None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def execute_actions(node, frame, detection_result):
 | 
					def execute_actions(node, frame, detection_result, regions_dict=None):
 | 
				
			||||||
    if not node["redis_client"] or not node["actions"]:
 | 
					    if not node["redis_client"] or not node["actions"]:
 | 
				
			||||||
        return
 | 
					        return
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Create a dynamic context for this detection event
 | 
					    # Create a dynamic context for this detection event
 | 
				
			||||||
 | 
					    from datetime import datetime
 | 
				
			||||||
    action_context = {
 | 
					    action_context = {
 | 
				
			||||||
        **detection_result,
 | 
					        **detection_result,
 | 
				
			||||||
        "timestamp_ms": int(time.time() * 1000),
 | 
					        "timestamp_ms": int(time.time() * 1000),
 | 
				
			||||||
        "uuid": str(uuid.uuid4()),
 | 
					        "uuid": str(uuid.uuid4()),
 | 
				
			||||||
 | 
					        "timestamp": datetime.now().strftime("%Y-%m-%dT%H-%M-%S"),
 | 
				
			||||||
 | 
					        "filename": f"{uuid.uuid4()}.jpg"
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for action in node["actions"]:
 | 
					    for action in node["actions"]:
 | 
				
			||||||
        try:
 | 
					        try:
 | 
				
			||||||
            if action["type"] == "redis_save_image":
 | 
					            if action["type"] == "redis_save_image":
 | 
				
			||||||
                key = action["key"].format(**action_context)
 | 
					                key = action["key"].format(**action_context)
 | 
				
			||||||
                _, buffer = cv2.imencode('.jpg', frame)
 | 
					                
 | 
				
			||||||
 | 
					                # Check if we need to crop a specific region
 | 
				
			||||||
 | 
					                region_name = action.get("region")
 | 
				
			||||||
 | 
					                image_to_save = frame
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					                if region_name and regions_dict:
 | 
				
			||||||
 | 
					                    cropped_image = crop_region_by_class(frame, regions_dict, region_name)
 | 
				
			||||||
 | 
					                    if cropped_image is not None:
 | 
				
			||||||
 | 
					                        image_to_save = cropped_image
 | 
				
			||||||
 | 
					                        logger.debug(f"Cropped region '{region_name}' for redis_save_image")
 | 
				
			||||||
 | 
					                    else:
 | 
				
			||||||
 | 
					                        logger.warning(f"Could not crop region '{region_name}', saving full frame instead")
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					                # Encode image with specified format and quality (default to JPEG)
 | 
				
			||||||
 | 
					                img_format = action.get("format", "jpeg").lower()
 | 
				
			||||||
 | 
					                quality = action.get("quality", 90)
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					                if img_format == "jpeg":
 | 
				
			||||||
 | 
					                    encode_params = [cv2.IMWRITE_JPEG_QUALITY, quality]
 | 
				
			||||||
 | 
					                    success, buffer = cv2.imencode('.jpg', image_to_save, encode_params)
 | 
				
			||||||
 | 
					                elif img_format == "png":
 | 
				
			||||||
 | 
					                    success, buffer = cv2.imencode('.png', image_to_save)
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    success, buffer = cv2.imencode('.jpg', image_to_save, [cv2.IMWRITE_JPEG_QUALITY, quality])
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					                if not success:
 | 
				
			||||||
 | 
					                    logger.error(f"Failed to encode image for redis_save_image")
 | 
				
			||||||
 | 
					                    continue
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
                expire_seconds = action.get("expire_seconds")
 | 
					                expire_seconds = action.get("expire_seconds")
 | 
				
			||||||
                if expire_seconds:
 | 
					                if expire_seconds:
 | 
				
			||||||
                    node["redis_client"].setex(key, expire_seconds, buffer.tobytes())
 | 
					                    node["redis_client"].setex(key, expire_seconds, buffer.tobytes())
 | 
				
			||||||
| 
						 | 
					@ -231,60 +341,244 @@ def execute_actions(node, frame, detection_result):
 | 
				
			||||||
                else:
 | 
					                else:
 | 
				
			||||||
                    node["redis_client"].set(key, buffer.tobytes())
 | 
					                    node["redis_client"].set(key, buffer.tobytes())
 | 
				
			||||||
                    logger.info(f"Saved image to Redis with key: {key}")
 | 
					                    logger.info(f"Saved image to Redis with key: {key}")
 | 
				
			||||||
                # Add the generated key to the context for subsequent actions
 | 
					 | 
				
			||||||
                action_context["image_key"] = key
 | 
					                action_context["image_key"] = key
 | 
				
			||||||
            elif action["type"] == "redis_publish":
 | 
					            elif action["type"] == "redis_publish":
 | 
				
			||||||
                channel = action["channel"]
 | 
					                channel = action["channel"]
 | 
				
			||||||
                message = action["message"].format(**action_context)
 | 
					                try:
 | 
				
			||||||
                node["redis_client"].publish(channel, message)
 | 
					                    # Handle JSON message format by creating it programmatically
 | 
				
			||||||
                logger.info(f"Published message to Redis channel '{channel}': {message}")
 | 
					                    message_template = action["message"]
 | 
				
			||||||
 | 
					                    
 | 
				
			||||||
 | 
					                    # Check if the message is JSON-like (starts and ends with braces)
 | 
				
			||||||
 | 
					                    if message_template.strip().startswith('{') and message_template.strip().endswith('}'):
 | 
				
			||||||
 | 
					                        # Create JSON data programmatically to avoid formatting issues
 | 
				
			||||||
 | 
					                        json_data = {}
 | 
				
			||||||
 | 
					                        
 | 
				
			||||||
 | 
					                        # Add common fields
 | 
				
			||||||
 | 
					                        json_data["event"] = "frontal_detected"
 | 
				
			||||||
 | 
					                        json_data["display_id"] = action_context.get("display_id", "unknown")
 | 
				
			||||||
 | 
					                        json_data["session_id"] = action_context.get("session_id")
 | 
				
			||||||
 | 
					                        json_data["timestamp"] = action_context.get("timestamp", "")
 | 
				
			||||||
 | 
					                        json_data["image_key"] = action_context.get("image_key", "")
 | 
				
			||||||
 | 
					                        
 | 
				
			||||||
 | 
					                        # Convert to JSON string
 | 
				
			||||||
 | 
					                        message = json.dumps(json_data)
 | 
				
			||||||
 | 
					                    else:
 | 
				
			||||||
 | 
					                        # Use regular string formatting for non-JSON messages
 | 
				
			||||||
 | 
					                        message = message_template.format(**action_context)
 | 
				
			||||||
 | 
					                    
 | 
				
			||||||
 | 
					                    # Publish to Redis
 | 
				
			||||||
 | 
					                    if not node["redis_client"]:
 | 
				
			||||||
 | 
					                        logger.error("Redis client is None, cannot publish message")
 | 
				
			||||||
 | 
					                        continue
 | 
				
			||||||
 | 
					                        
 | 
				
			||||||
 | 
					                    # Test Redis connection
 | 
				
			||||||
 | 
					                    try:
 | 
				
			||||||
 | 
					                        node["redis_client"].ping()
 | 
				
			||||||
 | 
					                        logger.debug("Redis connection is active")
 | 
				
			||||||
 | 
					                    except Exception as ping_error:
 | 
				
			||||||
 | 
					                        logger.error(f"Redis connection test failed: {ping_error}")
 | 
				
			||||||
 | 
					                        continue
 | 
				
			||||||
 | 
					                    
 | 
				
			||||||
 | 
					                    result = node["redis_client"].publish(channel, message)
 | 
				
			||||||
 | 
					                    logger.info(f"Published message to Redis channel '{channel}': {message}")
 | 
				
			||||||
 | 
					                    logger.info(f"Redis publish result (subscribers count): {result}")
 | 
				
			||||||
 | 
					                    
 | 
				
			||||||
 | 
					                    # Additional debug info
 | 
				
			||||||
 | 
					                    if result == 0:
 | 
				
			||||||
 | 
					                        logger.warning(f"No subscribers listening to channel '{channel}'")
 | 
				
			||||||
 | 
					                    else:
 | 
				
			||||||
 | 
					                        logger.info(f"Message delivered to {result} subscriber(s)")
 | 
				
			||||||
 | 
					                    
 | 
				
			||||||
 | 
					                except KeyError as e:
 | 
				
			||||||
 | 
					                    logger.error(f"Missing key in redis_publish message template: {e}")
 | 
				
			||||||
 | 
					                    logger.debug(f"Available context keys: {list(action_context.keys())}")
 | 
				
			||||||
 | 
					                except Exception as e:
 | 
				
			||||||
 | 
					                    logger.error(f"Error in redis_publish action: {e}")
 | 
				
			||||||
 | 
					                    logger.debug(f"Message template: {action['message']}")
 | 
				
			||||||
 | 
					                    logger.debug(f"Available context keys: {list(action_context.keys())}")
 | 
				
			||||||
 | 
					                    import traceback
 | 
				
			||||||
 | 
					                    logger.debug(f"Full traceback: {traceback.format_exc()}")
 | 
				
			||||||
        except Exception as e:
 | 
					        except Exception as e:
 | 
				
			||||||
            logger.error(f"Error executing action {action['type']}: {e}")
 | 
					            logger.error(f"Error executing action {action['type']}: {e}")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def run_pipeline(frame, node: dict, return_bbox: bool=False):
 | 
					def execute_parallel_actions(node, frame, detection_result, regions_dict):
 | 
				
			||||||
 | 
					    """Execute parallel actions after all required branches have completed."""
 | 
				
			||||||
 | 
					    if not node.get("parallelActions"):
 | 
				
			||||||
 | 
					        return
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    logger.debug("Executing parallel actions...")
 | 
				
			||||||
 | 
					    branch_results = detection_result.get("branch_results", {})
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    for action in node["parallelActions"]:
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            action_type = action.get("type")
 | 
				
			||||||
 | 
					            logger.debug(f"Processing parallel action: {action_type}")
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            if action_type == "postgresql_update_combined":
 | 
				
			||||||
 | 
					                # Check if all required branches have completed
 | 
				
			||||||
 | 
					                wait_for_branches = action.get("waitForBranches", [])
 | 
				
			||||||
 | 
					                missing_branches = [branch for branch in wait_for_branches if branch not in branch_results]
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					                if missing_branches:
 | 
				
			||||||
 | 
					                    logger.warning(f"Cannot execute postgresql_update_combined: missing branch results for {missing_branches}")
 | 
				
			||||||
 | 
					                    continue
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					                logger.info(f"All required branches completed: {wait_for_branches}")
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					                # Execute the database update
 | 
				
			||||||
 | 
					                execute_postgresql_update_combined(node, action, detection_result, branch_results)
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                logger.warning(f"Unknown parallel action type: {action_type}")
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					        except Exception as e:
 | 
				
			||||||
 | 
					            logger.error(f"Error executing parallel action {action.get('type', 'unknown')}: {e}")
 | 
				
			||||||
 | 
					            import traceback
 | 
				
			||||||
 | 
					            logger.debug(f"Full traceback: {traceback.format_exc()}")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def execute_postgresql_update_combined(node, action, detection_result, branch_results):
 | 
				
			||||||
 | 
					    """Execute a PostgreSQL update with combined branch results."""
 | 
				
			||||||
 | 
					    if not node.get("db_manager"):
 | 
				
			||||||
 | 
					        logger.error("No database manager available for postgresql_update_combined action")
 | 
				
			||||||
 | 
					        return
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					    try:
 | 
				
			||||||
 | 
					        table = action["table"]
 | 
				
			||||||
 | 
					        key_field = action["key_field"]
 | 
				
			||||||
 | 
					        key_value_template = action["key_value"]
 | 
				
			||||||
 | 
					        fields = action["fields"]
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # Create context for key value formatting
 | 
				
			||||||
 | 
					        action_context = {**detection_result}
 | 
				
			||||||
 | 
					        key_value = key_value_template.format(**action_context)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        logger.info(f"Executing database update: table={table}, {key_field}={key_value}")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # Process field mappings
 | 
				
			||||||
 | 
					        mapped_fields = {}
 | 
				
			||||||
 | 
					        for db_field, value_template in fields.items():
 | 
				
			||||||
 | 
					            try:
 | 
				
			||||||
 | 
					                mapped_value = resolve_field_mapping(value_template, branch_results, action_context)
 | 
				
			||||||
 | 
					                if mapped_value is not None:
 | 
				
			||||||
 | 
					                    mapped_fields[db_field] = mapped_value
 | 
				
			||||||
 | 
					                    logger.debug(f"Mapped field: {db_field} = {mapped_value}")
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    logger.warning(f"Could not resolve field mapping for {db_field}: {value_template}")
 | 
				
			||||||
 | 
					            except Exception as e:
 | 
				
			||||||
 | 
					                logger.error(f"Error mapping field {db_field} with template '{value_template}': {e}")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        if not mapped_fields:
 | 
				
			||||||
 | 
					            logger.warning("No fields mapped successfully, skipping database update")
 | 
				
			||||||
 | 
					            return
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					        # Execute the database update
 | 
				
			||||||
 | 
					        success = node["db_manager"].execute_update(table, key_field, key_value, mapped_fields)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        if success:
 | 
				
			||||||
 | 
					            logger.info(f"Successfully updated database: {table} with {len(mapped_fields)} fields")
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            logger.error(f"Failed to update database: {table}")
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					    except KeyError as e:
 | 
				
			||||||
 | 
					        logger.error(f"Missing required field in postgresql_update_combined action: {e}")
 | 
				
			||||||
 | 
					    except Exception as e:
 | 
				
			||||||
 | 
					        logger.error(f"Error in postgresql_update_combined action: {e}")
 | 
				
			||||||
 | 
					        import traceback
 | 
				
			||||||
 | 
					        logger.debug(f"Full traceback: {traceback.format_exc()}")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def resolve_field_mapping(value_template, branch_results, action_context):
 | 
				
			||||||
 | 
					    """Resolve field mapping templates like {car_brand_cls_v1.brand}."""
 | 
				
			||||||
 | 
					    try:
 | 
				
			||||||
 | 
					        # Handle simple context variables first (non-branch references)
 | 
				
			||||||
 | 
					        if not '.' in value_template:
 | 
				
			||||||
 | 
					            return value_template.format(**action_context)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # Handle branch result references like {model_id.field}
 | 
				
			||||||
 | 
					        import re
 | 
				
			||||||
 | 
					        branch_refs = re.findall(r'\{([^}]+\.[^}]+)\}', value_template)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        resolved_template = value_template
 | 
				
			||||||
 | 
					        for ref in branch_refs:
 | 
				
			||||||
 | 
					            try:
 | 
				
			||||||
 | 
					                model_id, field_name = ref.split('.', 1)
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					                if model_id in branch_results:
 | 
				
			||||||
 | 
					                    branch_data = branch_results[model_id]
 | 
				
			||||||
 | 
					                    if field_name in branch_data:
 | 
				
			||||||
 | 
					                        field_value = branch_data[field_name]
 | 
				
			||||||
 | 
					                        resolved_template = resolved_template.replace(f'{{{ref}}}', str(field_value))
 | 
				
			||||||
 | 
					                        logger.debug(f"Resolved {ref} to {field_value}")
 | 
				
			||||||
 | 
					                    else:
 | 
				
			||||||
 | 
					                        logger.warning(f"Field '{field_name}' not found in branch '{model_id}' results. Available fields: {list(branch_data.keys())}")
 | 
				
			||||||
 | 
					                        return None
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    logger.warning(f"Branch '{model_id}' not found in results. Available branches: {list(branch_results.keys())}")
 | 
				
			||||||
 | 
					                    return None
 | 
				
			||||||
 | 
					            except ValueError as e:
 | 
				
			||||||
 | 
					                logger.error(f"Invalid branch reference format: {ref}")
 | 
				
			||||||
 | 
					                return None
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # Format any remaining simple variables
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            final_value = resolved_template.format(**action_context)
 | 
				
			||||||
 | 
					            return final_value
 | 
				
			||||||
 | 
					        except KeyError as e:
 | 
				
			||||||
 | 
					            logger.warning(f"Could not resolve context variable in template: {e}")
 | 
				
			||||||
 | 
					            return resolved_template
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					    except Exception as e:
 | 
				
			||||||
 | 
					        logger.error(f"Error resolving field mapping '{value_template}': {e}")
 | 
				
			||||||
 | 
					        return None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def run_pipeline(frame, node: dict, return_bbox: bool=False, context=None):
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    - For detection nodes (task != 'classify'):
 | 
					    Enhanced pipeline that supports:
 | 
				
			||||||
        • runs `track(..., classes=triggerClassIndices)`
 | 
					    - Multi-class detection (detecting multiple classes simultaneously)
 | 
				
			||||||
        • picks top box ≥ minConfidence
 | 
					    - Parallel branch processing
 | 
				
			||||||
        • optionally crops & resizes → recurse into child
 | 
					    - Region-based actions and cropping
 | 
				
			||||||
        • else returns (det_dict, bbox)
 | 
					    - Context passing for session/camera information
 | 
				
			||||||
    - For classify nodes:
 | 
					 | 
				
			||||||
        • runs `predict()`
 | 
					 | 
				
			||||||
        • returns top (class,confidence) and no bbox
 | 
					 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    try:
 | 
					    try:
 | 
				
			||||||
        task = getattr(node["model"], "task", None)
 | 
					        task = getattr(node["model"], "task", None)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # ─── Classification stage ───────────────────────────────────
 | 
					        # ─── Classification stage ───────────────────────────────────
 | 
				
			||||||
        if task == "classify":
 | 
					        if task == "classify":
 | 
				
			||||||
            # run the classifier and grab its top-1 directly via the Probs API
 | 
					 | 
				
			||||||
            results = node["model"].predict(frame, stream=False)
 | 
					            results = node["model"].predict(frame, stream=False)
 | 
				
			||||||
            # nothing returned?
 | 
					 | 
				
			||||||
            if not results:
 | 
					            if not results:
 | 
				
			||||||
                return (None, None) if return_bbox else None
 | 
					                return (None, None) if return_bbox else None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            # take the first result's probs object
 | 
					            r = results[0]
 | 
				
			||||||
            r     = results[0]
 | 
					 | 
				
			||||||
            probs = r.probs
 | 
					            probs = r.probs
 | 
				
			||||||
            if probs is None:
 | 
					            if probs is None:
 | 
				
			||||||
                return (None, None) if return_bbox else None
 | 
					                return (None, None) if return_bbox else None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            # get the top-1 class index and its confidence
 | 
					            top1_idx = int(probs.top1)
 | 
				
			||||||
            top1_idx  = int(probs.top1)
 | 
					 | 
				
			||||||
            top1_conf = float(probs.top1conf)
 | 
					            top1_conf = float(probs.top1conf)
 | 
				
			||||||
 | 
					            class_name = node["model"].names[top1_idx]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            det = {
 | 
					            det = {
 | 
				
			||||||
                "class": node["model"].names[top1_idx],
 | 
					                "class": class_name,
 | 
				
			||||||
                "confidence": top1_conf,
 | 
					                "confidence": top1_conf,
 | 
				
			||||||
                "id": None
 | 
					                "id": None,
 | 
				
			||||||
 | 
					                class_name: class_name  # Add class name as key for backward compatibility
 | 
				
			||||||
            }
 | 
					            }
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # Add specific field mappings for database operations based on model type
 | 
				
			||||||
 | 
					            model_id = node.get("modelId", "").lower()
 | 
				
			||||||
 | 
					            if "brand" in model_id or "brand_cls" in model_id:
 | 
				
			||||||
 | 
					                det["brand"] = class_name
 | 
				
			||||||
 | 
					            elif "bodytype" in model_id or "body" in model_id:
 | 
				
			||||||
 | 
					                det["body_type"] = class_name
 | 
				
			||||||
 | 
					            elif "color" in model_id:
 | 
				
			||||||
 | 
					                det["color"] = class_name
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
            execute_actions(node, frame, det)
 | 
					            execute_actions(node, frame, det)
 | 
				
			||||||
            return (det, None) if return_bbox else det
 | 
					            return (det, None) if return_bbox else det
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # ─── Detection stage - Multi-class support ──────────────────
 | 
				
			||||||
        # ─── Detection stage ────────────────────────────────────────
 | 
					 | 
				
			||||||
        # only look for your triggerClasses
 | 
					 | 
				
			||||||
        tk = node["triggerClassIndices"]
 | 
					        tk = node["triggerClassIndices"]
 | 
				
			||||||
 | 
					        logger.debug(f"Running detection for node {node['modelId']} with trigger classes: {node.get('triggerClasses', [])} (indices: {tk})")
 | 
				
			||||||
 | 
					        logger.debug(f"Node configuration: minConfidence={node['minConfidence']}, multiClass={node.get('multiClass', False)}")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
        res = node["model"].track(
 | 
					        res = node["model"].track(
 | 
				
			||||||
            frame,
 | 
					            frame,
 | 
				
			||||||
            stream=False,
 | 
					            stream=False,
 | 
				
			||||||
| 
						 | 
					@ -292,48 +586,228 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False):
 | 
				
			||||||
            **({"classes": tk} if tk else {})
 | 
					            **({"classes": tk} if tk else {})
 | 
				
			||||||
        )[0]
 | 
					        )[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        dets, boxes = [], []
 | 
					        # Collect all detections above confidence threshold
 | 
				
			||||||
        for box in res.boxes:
 | 
					        all_detections = []
 | 
				
			||||||
 | 
					        all_boxes = []
 | 
				
			||||||
 | 
					        regions_dict = {}
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        logger.debug(f"Raw detection results from model: {len(res.boxes) if res.boxes is not None else 0} detections")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        for i, box in enumerate(res.boxes):
 | 
				
			||||||
            conf = float(box.cpu().conf[0])
 | 
					            conf = float(box.cpu().conf[0])
 | 
				
			||||||
            cid  = int(box.cpu().cls[0])
 | 
					            cid = int(box.cpu().cls[0])
 | 
				
			||||||
            name = node["model"].names[cid]
 | 
					            name = node["model"].names[cid]
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            logger.debug(f"Detection {i}: class='{name}' (id={cid}), confidence={conf:.3f}, threshold={node['minConfidence']}")
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
            if conf < node["minConfidence"]:
 | 
					            if conf < node["minConfidence"]:
 | 
				
			||||||
 | 
					                logger.debug(f"  -> REJECTED: confidence {conf:.3f} < threshold {node['minConfidence']}")
 | 
				
			||||||
                continue
 | 
					                continue
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
            xy = box.cpu().xyxy[0]
 | 
					            xy = box.cpu().xyxy[0]
 | 
				
			||||||
            x1,y1,x2,y2 = map(int, xy)
 | 
					            x1, y1, x2, y2 = map(int, xy)
 | 
				
			||||||
            dets.append({"class": name, "confidence": conf,
 | 
					            bbox = (x1, y1, x2, y2)
 | 
				
			||||||
                         "id": box.id.item() if hasattr(box, "id") else None})
 | 
					            
 | 
				
			||||||
            boxes.append((x1, y1, x2, y2))
 | 
					            detection = {
 | 
				
			||||||
 | 
					                "class": name,
 | 
				
			||||||
 | 
					                "confidence": conf,
 | 
				
			||||||
 | 
					                "id": box.id.item() if hasattr(box, "id") else None,
 | 
				
			||||||
 | 
					                "bbox": bbox
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            all_detections.append(detection)
 | 
				
			||||||
 | 
					            all_boxes.append(bbox)
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            logger.debug(f"  -> ACCEPTED: {name} with confidence {conf:.3f}, bbox={bbox}")
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # Store highest confidence detection for each class
 | 
				
			||||||
 | 
					            if name not in regions_dict or conf > regions_dict[name]["confidence"]:
 | 
				
			||||||
 | 
					                regions_dict[name] = {
 | 
				
			||||||
 | 
					                    "bbox": bbox,
 | 
				
			||||||
 | 
					                    "confidence": conf,
 | 
				
			||||||
 | 
					                    "detection": detection
 | 
				
			||||||
 | 
					                }
 | 
				
			||||||
 | 
					                logger.debug(f"  -> Updated regions_dict['{name}'] with confidence {conf:.3f}")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if not dets:
 | 
					        logger.info(f"Detection summary: {len(all_detections)} accepted detections from {len(res.boxes) if res.boxes is not None else 0} total")
 | 
				
			||||||
 | 
					        logger.info(f"Detected classes: {list(regions_dict.keys())}")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if not all_detections:
 | 
				
			||||||
 | 
					            logger.warning("No detections above confidence threshold - returning null")
 | 
				
			||||||
            return (None, None) if return_bbox else None
 | 
					            return (None, None) if return_bbox else None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # take highest‐confidence
 | 
					        # ─── Multi-class validation ─────────────────────────────────
 | 
				
			||||||
        best_idx = max(range(len(dets)), key=lambda i: dets[i]["confidence"])
 | 
					        if node.get("multiClass", False) and node.get("expectedClasses"):
 | 
				
			||||||
        best_det = dets[best_idx]
 | 
					            expected_classes = node["expectedClasses"]
 | 
				
			||||||
        best_box = boxes[best_idx]
 | 
					            detected_classes = list(regions_dict.keys())
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            logger.info(f"Multi-class validation: expected={expected_classes}, detected={detected_classes}")
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # Check if at least one expected class is detected (flexible mode)
 | 
				
			||||||
 | 
					            matching_classes = [cls for cls in expected_classes if cls in detected_classes]
 | 
				
			||||||
 | 
					            missing_classes = [cls for cls in expected_classes if cls not in detected_classes]
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            logger.debug(f"Matching classes: {matching_classes}, Missing classes: {missing_classes}")
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            if not matching_classes:
 | 
				
			||||||
 | 
					                # No expected classes found at all
 | 
				
			||||||
 | 
					                logger.warning(f"PIPELINE REJECTED: No expected classes detected. Expected: {expected_classes}, Detected: {detected_classes}")
 | 
				
			||||||
 | 
					                return (None, None) if return_bbox else None
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            if missing_classes:
 | 
				
			||||||
 | 
					                logger.info(f"Partial multi-class detection: {matching_classes} found, {missing_classes} missing")
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                logger.info(f"Complete multi-class detection success: {detected_classes}")
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            logger.debug("No multi-class validation - proceeding with all detections")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # ─── Branch (classification) ───────────────────────────────
 | 
					        # ─── Execute actions with region information ────────────────
 | 
				
			||||||
        for br in node["branches"]:
 | 
					        detection_result = {
 | 
				
			||||||
            if (best_det["class"] in br["triggerClasses"]
 | 
					            "detections": all_detections,
 | 
				
			||||||
                    and best_det["confidence"] >= br["minConfidence"]):
 | 
					            "regions": regions_dict,
 | 
				
			||||||
                # crop if requested
 | 
					            **(context or {})
 | 
				
			||||||
                sub = frame
 | 
					        }
 | 
				
			||||||
                if br["crop"]:
 | 
					        
 | 
				
			||||||
                    x1,y1,x2,y2 = best_box
 | 
					        # ─── Create initial database record when Car+Frontal detected ────
 | 
				
			||||||
                    sub = frame[y1:y2, x1:x2]
 | 
					        if node.get("db_manager") and node.get("multiClass", False):
 | 
				
			||||||
                    sub = cv2.resize(sub, (224, 224))
 | 
					            # Only create database record if we have both Car and Frontal
 | 
				
			||||||
 | 
					            has_car = "Car" in regions_dict
 | 
				
			||||||
 | 
					            has_frontal = "Frontal" in regions_dict
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            if has_car and has_frontal:
 | 
				
			||||||
 | 
					                # Generate UUID session_id since client session is None for now
 | 
				
			||||||
 | 
					                import uuid as uuid_lib
 | 
				
			||||||
 | 
					                from datetime import datetime
 | 
				
			||||||
 | 
					                generated_session_id = str(uuid_lib.uuid4())
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					                # Insert initial detection record
 | 
				
			||||||
 | 
					                display_id = detection_result.get("display_id", "unknown")
 | 
				
			||||||
 | 
					                timestamp = datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					                inserted_session_id = node["db_manager"].insert_initial_detection(
 | 
				
			||||||
 | 
					                    display_id=display_id,
 | 
				
			||||||
 | 
					                    captured_timestamp=timestamp,
 | 
				
			||||||
 | 
					                    session_id=generated_session_id
 | 
				
			||||||
 | 
					                )
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					                if inserted_session_id:
 | 
				
			||||||
 | 
					                    # Update detection_result with the generated session_id for actions and branches
 | 
				
			||||||
 | 
					                    detection_result["session_id"] = inserted_session_id
 | 
				
			||||||
 | 
					                    detection_result["timestamp"] = timestamp  # Update with proper timestamp
 | 
				
			||||||
 | 
					                    logger.info(f"Created initial database record with session_id: {inserted_session_id}")
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                logger.debug(f"Database record not created - missing required classes. Has Car: {has_car}, Has Frontal: {has_frontal}")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        execute_actions(node, frame, detection_result, regions_dict)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                det2, _ = run_pipeline(sub, br, return_bbox=True)
 | 
					        # ─── Parallel branch processing ─────────────────────────────
 | 
				
			||||||
                if det2:
 | 
					        if node["branches"]:
 | 
				
			||||||
                    # return classification result + original bbox
 | 
					            branch_results = {}
 | 
				
			||||||
                    execute_actions(br, sub, det2)
 | 
					            
 | 
				
			||||||
                    return (det2, best_box) if return_bbox else det2
 | 
					            # Filter branches that should be triggered
 | 
				
			||||||
 | 
					            active_branches = []
 | 
				
			||||||
 | 
					            for br in node["branches"]:
 | 
				
			||||||
 | 
					                trigger_classes = br.get("triggerClasses", [])
 | 
				
			||||||
 | 
					                min_conf = br.get("minConfidence", 0)
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					                logger.debug(f"Evaluating branch {br['modelId']}: trigger_classes={trigger_classes}, min_conf={min_conf}")
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					                # Check if any detected class matches branch trigger
 | 
				
			||||||
 | 
					                branch_triggered = False
 | 
				
			||||||
 | 
					                for det_class in regions_dict:
 | 
				
			||||||
 | 
					                    det_confidence = regions_dict[det_class]["confidence"]
 | 
				
			||||||
 | 
					                    logger.debug(f"  Checking detected class '{det_class}' (confidence={det_confidence:.3f}) against triggers {trigger_classes}")
 | 
				
			||||||
 | 
					                    
 | 
				
			||||||
 | 
					                    if (det_class in trigger_classes and det_confidence >= min_conf):
 | 
				
			||||||
 | 
					                        active_branches.append(br)
 | 
				
			||||||
 | 
					                        branch_triggered = True
 | 
				
			||||||
 | 
					                        logger.info(f"Branch {br['modelId']} activated by class '{det_class}' (conf={det_confidence:.3f} >= {min_conf})")
 | 
				
			||||||
 | 
					                        break
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					                if not branch_triggered:
 | 
				
			||||||
 | 
					                    logger.debug(f"Branch {br['modelId']} not triggered - no matching classes or insufficient confidence")
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            if active_branches:
 | 
				
			||||||
 | 
					                if node.get("parallel", False) or any(br.get("parallel", False) for br in active_branches):
 | 
				
			||||||
 | 
					                    # Run branches in parallel
 | 
				
			||||||
 | 
					                    with concurrent.futures.ThreadPoolExecutor(max_workers=len(active_branches)) as executor:
 | 
				
			||||||
 | 
					                        futures = {}
 | 
				
			||||||
 | 
					                        
 | 
				
			||||||
 | 
					                        for br in active_branches:
 | 
				
			||||||
 | 
					                            crop_class = br.get("cropClass", br.get("triggerClasses", [])[0] if br.get("triggerClasses") else None)
 | 
				
			||||||
 | 
					                            sub_frame = frame
 | 
				
			||||||
 | 
					                            
 | 
				
			||||||
 | 
					                            logger.info(f"Starting parallel branch: {br['modelId']}, crop_class: {crop_class}")
 | 
				
			||||||
 | 
					                            
 | 
				
			||||||
 | 
					                            if br.get("crop", False) and crop_class:
 | 
				
			||||||
 | 
					                                cropped = crop_region_by_class(frame, regions_dict, crop_class)
 | 
				
			||||||
 | 
					                                if cropped is not None:
 | 
				
			||||||
 | 
					                                    sub_frame = cv2.resize(cropped, (224, 224))
 | 
				
			||||||
 | 
					                                    logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']}")
 | 
				
			||||||
 | 
					                                else:
 | 
				
			||||||
 | 
					                                    logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
 | 
				
			||||||
 | 
					                                    continue
 | 
				
			||||||
 | 
					                            
 | 
				
			||||||
 | 
					                            future = executor.submit(run_pipeline, sub_frame, br, True, context)
 | 
				
			||||||
 | 
					                            futures[future] = br
 | 
				
			||||||
 | 
					                        
 | 
				
			||||||
 | 
					                        # Collect results
 | 
				
			||||||
 | 
					                        for future in concurrent.futures.as_completed(futures):
 | 
				
			||||||
 | 
					                            br = futures[future]
 | 
				
			||||||
 | 
					                            try:
 | 
				
			||||||
 | 
					                                result, _ = future.result()
 | 
				
			||||||
 | 
					                                if result:
 | 
				
			||||||
 | 
					                                    branch_results[br["modelId"]] = result
 | 
				
			||||||
 | 
					                                    logger.info(f"Branch {br['modelId']} completed: {result}")
 | 
				
			||||||
 | 
					                            except Exception as e:
 | 
				
			||||||
 | 
					                                logger.error(f"Branch {br['modelId']} failed: {e}")
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    # Run branches sequentially  
 | 
				
			||||||
 | 
					                    for br in active_branches:
 | 
				
			||||||
 | 
					                        crop_class = br.get("cropClass", br.get("triggerClasses", [])[0] if br.get("triggerClasses") else None)
 | 
				
			||||||
 | 
					                        sub_frame = frame
 | 
				
			||||||
 | 
					                        
 | 
				
			||||||
 | 
					                        logger.info(f"Starting sequential branch: {br['modelId']}, crop_class: {crop_class}")
 | 
				
			||||||
 | 
					                        
 | 
				
			||||||
 | 
					                        if br.get("crop", False) and crop_class:
 | 
				
			||||||
 | 
					                            cropped = crop_region_by_class(frame, regions_dict, crop_class)
 | 
				
			||||||
 | 
					                            if cropped is not None:
 | 
				
			||||||
 | 
					                                sub_frame = cv2.resize(cropped, (224, 224))
 | 
				
			||||||
 | 
					                                logger.debug(f"Successfully cropped {crop_class} region for {br['modelId']}")
 | 
				
			||||||
 | 
					                            else:
 | 
				
			||||||
 | 
					                                logger.warning(f"Failed to crop {crop_class} region for {br['modelId']}, skipping branch")
 | 
				
			||||||
 | 
					                                continue
 | 
				
			||||||
 | 
					                        
 | 
				
			||||||
 | 
					                        try:
 | 
				
			||||||
 | 
					                            result, _ = run_pipeline(sub_frame, br, True, context)
 | 
				
			||||||
 | 
					                            if result:
 | 
				
			||||||
 | 
					                                branch_results[br["modelId"]] = result
 | 
				
			||||||
 | 
					                                logger.info(f"Branch {br['modelId']} completed: {result}")
 | 
				
			||||||
 | 
					                            else:
 | 
				
			||||||
 | 
					                                logger.warning(f"Branch {br['modelId']} returned no result")
 | 
				
			||||||
 | 
					                        except Exception as e:
 | 
				
			||||||
 | 
					                            logger.error(f"Error in sequential branch {br['modelId']}: {e}")
 | 
				
			||||||
 | 
					                            import traceback
 | 
				
			||||||
 | 
					                            logger.debug(f"Branch error traceback: {traceback.format_exc()}")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # ─── No branch matched → return this detection ─────────────
 | 
					            # Store branch results in detection_result for parallel actions
 | 
				
			||||||
        execute_actions(node, frame, best_det)
 | 
					            detection_result["branch_results"] = branch_results
 | 
				
			||||||
        return (best_det, best_box) if return_bbox else best_det
 | 
					
 | 
				
			||||||
 | 
					        # ─── Execute Parallel Actions ───────────────────────────────
 | 
				
			||||||
 | 
					        if node.get("parallelActions") and "branch_results" in detection_result:
 | 
				
			||||||
 | 
					            execute_parallel_actions(node, frame, detection_result, regions_dict)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # ─── Return detection result ────────────────────────────────
 | 
				
			||||||
 | 
					        primary_detection = max(all_detections, key=lambda x: x["confidence"])
 | 
				
			||||||
 | 
					        primary_bbox = primary_detection["bbox"]
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # Add branch results to primary detection for compatibility
 | 
				
			||||||
 | 
					        if "branch_results" in detection_result:
 | 
				
			||||||
 | 
					            primary_detection["branch_results"] = detection_result["branch_results"]
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        return (primary_detection, primary_bbox) if return_bbox else primary_detection
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    except Exception as e:
 | 
					    except Exception as e:
 | 
				
			||||||
        logging.error(f"Error in node {node.get('modelId')}: {e}")
 | 
					        logger.error(f"Error in node {node.get('modelId')}: {e}")
 | 
				
			||||||
 | 
					        traceback.print_exc()
 | 
				
			||||||
        return (None, None) if return_bbox else None
 | 
					        return (None, None) if return_bbox else None
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										76
									
								
								worker.md
									
										
									
									
									
								
							
							
						
						
									
										76
									
								
								worker.md
									
										
									
									
									
								
							| 
						 | 
					@ -2,6 +2,12 @@
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This document outlines the WebSocket-based communication protocol between the CMS backend and a detector worker. As a worker developer, your primary responsibility is to implement a WebSocket server that adheres to this protocol.
 | 
					This document outlines the WebSocket-based communication protocol between the CMS backend and a detector worker. As a worker developer, your primary responsibility is to implement a WebSocket server that adheres to this protocol.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The current Python Detector Worker implementation supports advanced computer vision pipelines with:
 | 
				
			||||||
 | 
					- Multi-class YOLO detection with parallel processing
 | 
				
			||||||
 | 
					- PostgreSQL database integration with automatic schema management
 | 
				
			||||||
 | 
					- Redis integration for image storage and pub/sub messaging
 | 
				
			||||||
 | 
					- Hierarchical pipeline execution with detection → classification branching
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## 1. Connection
 | 
					## 1. Connection
 | 
				
			||||||
 | 
					
 | 
				
			||||||
The worker must run a WebSocket server, preferably on port `8000`. The backend system, which is managed by a container orchestration service, will automatically discover and establish a WebSocket connection to your worker.
 | 
					The worker must run a WebSocket server, preferably on port `8000`. The backend system, which is managed by a container orchestration service, will automatically discover and establish a WebSocket connection to your worker.
 | 
				
			||||||
| 
						 | 
					@ -25,14 +31,34 @@ To enable modularity and dynamic configuration, the backend will send you a URL
 | 
				
			||||||
2. Extracting its contents.
 | 
					2. Extracting its contents.
 | 
				
			||||||
3. Interpreting the contents to configure its internal pipeline.
 | 
					3. Interpreting the contents to configure its internal pipeline.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
**The contents of the `.mpta` file are entirely up to the user who configures the model in the CMS.** This allows for maximum flexibility. For example, the archive could contain:
 | 
					**The current implementation supports comprehensive pipeline configurations including:**
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- AI/ML Models: Pre-trained models for libraries like TensorFlow, PyTorch, or ONNX.
 | 
					- **AI/ML Models**: YOLO models (.pt files) for detection and classification
 | 
				
			||||||
- Configuration Files: A `config.json` or `pipeline.yaml` that defines a sequence of operations, specifies model paths, or sets detection thresholds.
 | 
					- **Pipeline Configuration**: `pipeline.json` defining hierarchical detection→classification workflows
 | 
				
			||||||
- Scripts: Custom Python scripts for pre-processing or post-processing.
 | 
					- **Multi-class Detection**: Simultaneous detection of multiple object classes (e.g., Car + Frontal)
 | 
				
			||||||
- API Integration Details: A JSON file with endpoint information and credentials for interacting with third-party detection services.
 | 
					- **Parallel Processing**: Concurrent execution of classification branches with ThreadPoolExecutor
 | 
				
			||||||
 | 
					- **Database Integration**: PostgreSQL configuration for automatic table creation and updates
 | 
				
			||||||
 | 
					- **Redis Actions**: Image storage with region cropping and pub/sub messaging
 | 
				
			||||||
 | 
					- **Dynamic Field Mapping**: Template-based field resolution for database operations
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Essentially, the `.mpta` file is a self-contained package that tells your worker *how* to process the video stream for a given subscription.
 | 
					**Enhanced MPTA Structure:**
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					pipeline.mpta/
 | 
				
			||||||
 | 
					├── pipeline.json          # Main configuration with redis/postgresql settings
 | 
				
			||||||
 | 
					├── car_detection.pt       # Primary YOLO detection model
 | 
				
			||||||
 | 
					├── brand_classifier.pt    # Classification model for car brands
 | 
				
			||||||
 | 
					├── bodytype_classifier.pt # Classification model for body types
 | 
				
			||||||
 | 
					└── ...
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The `pipeline.json` now supports advanced features like:
 | 
				
			||||||
 | 
					- Multi-class detection with `expectedClasses` validation
 | 
				
			||||||
 | 
					- Parallel branch processing with `parallel: true`
 | 
				
			||||||
 | 
					- Database actions with `postgresql_update_combined`
 | 
				
			||||||
 | 
					- Redis actions with region-specific image cropping
 | 
				
			||||||
 | 
					- Branch synchronization with `waitForBranches`
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Essentially, the `.mpta` file is a self-contained package that tells your worker *how* to process the video stream for a given subscription, including complex multi-stage AI pipelines with database persistence.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## 4. Messages from Worker to Backend
 | 
					## 4. Messages from Worker to Backend
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -79,6 +105,15 @@ Sent when the worker detects a relevant object. The `detection` object should be
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- **Type:** `imageDetection`
 | 
					- **Type:** `imageDetection`
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					**Enhanced Detection Capabilities:**
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The current implementation supports multi-class detection with parallel classification processing. When a vehicle is detected, the system:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					1. **Multi-Class Detection**: Simultaneously detects "Car" and "Frontal" classes
 | 
				
			||||||
 | 
					2. **Parallel Processing**: Runs brand and body type classification concurrently
 | 
				
			||||||
 | 
					3. **Database Integration**: Automatically creates and updates PostgreSQL records
 | 
				
			||||||
 | 
					4. **Redis Storage**: Saves cropped frontal images with expiration
 | 
				
			||||||
 | 
					
 | 
				
			||||||
**Payload Example:**
 | 
					**Payload Example:**
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```json
 | 
					```json
 | 
				
			||||||
| 
						 | 
					@ -88,19 +123,38 @@ Sent when the worker detects a relevant object. The `detection` object should be
 | 
				
			||||||
  "timestamp": "2025-07-14T12:34:56.789Z",
 | 
					  "timestamp": "2025-07-14T12:34:56.789Z",
 | 
				
			||||||
  "data": {
 | 
					  "data": {
 | 
				
			||||||
    "detection": {
 | 
					    "detection": {
 | 
				
			||||||
      "carModel": "Civic",
 | 
					      "class": "Car",
 | 
				
			||||||
 | 
					      "confidence": 0.92,
 | 
				
			||||||
      "carBrand": "Honda",
 | 
					      "carBrand": "Honda",
 | 
				
			||||||
      "carYear": 2023,
 | 
					      "carModel": "Civic",
 | 
				
			||||||
      "bodyType": "Sedan",
 | 
					      "bodyType": "Sedan",
 | 
				
			||||||
      "licensePlateText": "ABCD1234",
 | 
					      "branch_results": {
 | 
				
			||||||
      "licensePlateConfidence": 0.95
 | 
					        "car_brand_cls_v1": {
 | 
				
			||||||
 | 
					          "class": "Honda",
 | 
				
			||||||
 | 
					          "confidence": 0.89,
 | 
				
			||||||
 | 
					          "brand": "Honda"
 | 
				
			||||||
 | 
					        },
 | 
				
			||||||
 | 
					        "car_bodytype_cls_v1": {
 | 
				
			||||||
 | 
					          "class": "Sedan", 
 | 
				
			||||||
 | 
					          "confidence": 0.85,
 | 
				
			||||||
 | 
					          "body_type": "Sedan"
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
    },
 | 
					    },
 | 
				
			||||||
    "modelId": 101,
 | 
					    "modelId": 101,
 | 
				
			||||||
    "modelName": "US-LPR-and-Vehicle-ID"
 | 
					    "modelName": "Car Frontal Detection V1"
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					**Database Integration:**
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Each detection automatically:
 | 
				
			||||||
 | 
					- Creates a record in `gas_station_1.car_frontal_info` table
 | 
				
			||||||
 | 
					- Generates a unique `session_id` for tracking
 | 
				
			||||||
 | 
					- Updates the record with classification results after parallel processing completes
 | 
				
			||||||
 | 
					- Stores cropped frontal images in Redis with the session_id as key
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 4.3. Patch Session
 | 
					### 4.3. Patch Session
 | 
				
			||||||
 | 
					
 | 
				
			||||||
> **Note:** Patch messages are only used when the worker can't keep up and needs to retroactively send detections. Normally, detections should be sent in real-time using `imageDetection` messages. Use `patchSession` only to update session data after the fact.
 | 
					> **Note:** Patch messages are only used when the worker can't keep up and needs to retroactively send detections. Normally, detections should be sent in real-time using `imageDetection` messages. Use `patchSession` only to update session data after the fact.
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue