ESPMegaPRO-v3-SDK/ESPMegaPRO-firmware/lib/ESPMegaPRO/ClimateCard.cpp

278 lines
7.3 KiB
C++
Raw Normal View History

2023-12-30 06:49:37 +00:00
#include <ClimateCard.hpp>
2023-12-30 17:25:07 +00:00
ClimateCard::ClimateCard(uint8_t ir_pin, AirConditioner ac, uint8_t sensor_type, uint8_t sensor_pin)
2023-12-30 06:49:37 +00:00
{
this->ir_pin = ir_pin;
2023-12-30 17:25:07 +00:00
this->ac = ac;
this->sensor_type = sensor_type;
this->sensor_pin = sensor_pin;
2023-12-30 06:49:37 +00:00
// Initialize Pointers
this->dht = nullptr;
this->ds18b20 = nullptr;
this->fram = nullptr;
// Initialize Variables
this->fram_address = 0;
this->fram_auto_save = false;
this->state.ac_temperature = 0;
this->state.ac_mode = 0;
this->state.ac_fan_speed = 0;
this->humidity = 0;
this->room_temperature = 0;
// Initialize state
this->state.ac_temperature = 25;
this->state.ac_mode = 0;
this->state.ac_fan_speed = 0;
2023-12-30 11:27:39 +00:00
// Initialize callbacks
this->callbacks = std::vector<std::function<void(uint8_t, uint8_t, uint8_t)>>();
2023-12-30 17:25:07 +00:00
}
ClimateCard::ClimateCard(uint8_t ir_pin, AirConditioner ac) : ClimateCard(ir_pin, ac, AC_SENSOR_TYPE_NONE, 0)
{
2023-12-30 06:49:37 +00:00
}
ClimateCard::~ClimateCard()
{
delete dht;
delete ds18b20;
2023-12-30 08:39:16 +00:00
rmt_driver_uninstall(RMT_TX_CHANNEL);
2023-12-30 06:49:37 +00:00
}
2023-12-30 17:25:07 +00:00
bool ClimateCard::begin()
2023-12-30 06:49:37 +00:00
{
switch (sensor_type)
{
case AC_SENSOR_TYPE_DHT22:
dht = new DHTNEW(sensor_pin);
break;
case AC_SENSOR_TYPE_DS18B20:
OneWire oneWire(sensor_pin);
ds18b20 = new DS18B20(&oneWire);
break;
}
updateAirConditioner();
return true;
2023-12-30 17:25:07 +00:00
if (sensor_pin != 0)
{
// Initialize RMT
gpio_num_t gpio_num = gpio_num_t(ir_pin);
rmt_config_t rmt_tx = RMT_DEFAULT_CONFIG_TX(gpio_num, RMT_TX_CHANNEL);
rmt_tx.clk_div = 80; // 1MHz clock
rmt_config(&rmt_tx);
rmt_driver_install(rmt_tx.channel, 0, 0);
}
2023-12-30 06:49:37 +00:00
}
void ClimateCard::loop()
{
static uint32_t last_sensor_update = 0;
if (millis() - last_sensor_update >= AC_SENSOR_READ_INTERVAL)
{
last_sensor_update = millis();
updateSensor();
}
}
void ClimateCard::bindFRAM(FRAM *fram, uint16_t fram_address)
{
this->fram = fram;
this->fram_address = fram_address;
}
void ClimateCard::setFRAMAutoSave(bool autoSave)
{
this->fram_auto_save = autoSave;
}
void ClimateCard::saveStateToFRAM()
{
2023-12-30 19:59:25 +00:00
fram->write8(fram_address, state.ac_temperature);
fram->write8(fram_address + 1, state.ac_mode);
fram->write8(fram_address + 2, state.ac_fan_speed);
2023-12-30 19:18:57 +00:00
Serial.println("Saved state to FRAM");
Serial.write(0xFF);
Serial.write(0xFF);
Serial.write(0xFF);
2023-12-30 06:49:37 +00:00
}
void ClimateCard::loadStateFromFRAM()
{
2023-12-30 19:59:25 +00:00
Serial.print("Loading temperature from FRAM at address ");
Serial.print(fram_address);
Serial.print(": ");
Serial.println(fram->read8(fram_address));
state.ac_temperature = fram->read8(fram_address);
Serial.print("Loading mode from FRAM at address ");
Serial.print(fram_address + 1);
Serial.print(": ");
Serial.println(fram->read8(fram_address + 1));
state.ac_mode = fram->read8(fram_address + 1);
Serial.print("Loading fan speed from FRAM at address ");
Serial.print(fram_address + 2);
Serial.print(": ");
Serial.println(fram->read8(fram_address + 2));
state.ac_fan_speed = fram->read8(fram_address + 2);
Serial.write(0xFF);
Serial.write(0xFF);
Serial.write(0xFF);
2023-12-30 19:18:57 +00:00
// if (state.ac_temperature > ac.max_temperature)
// state.ac_temperature = ac.max_temperature;
// else if (state.ac_temperature < ac.min_temperature)
// state.ac_temperature = ac.min_temperature;
// // If mode is out of range, set to 0
// if (state.ac_mode > ac.modes)
// state.ac_mode = 0;
// // If fan speed is out of range, set to 0
// if (state.ac_fan_speed > ac.fan_speeds)
// state.ac_fan_speed = 0;
2023-12-30 17:37:50 +00:00
updateAirConditioner();
2023-12-30 19:18:57 +00:00
for (uint8_t i = 0; i < callbacks.size(); i++)
{
callbacks[i](this->state.ac_mode, this->state.ac_fan_speed, this->state.ac_temperature);
}
2023-12-30 06:49:37 +00:00
}
void ClimateCard::setTemperature(uint8_t temperature)
{
2023-12-30 17:25:07 +00:00
// If temperature is out of range, set to its respective maximum or minimum
if (temperature > ac.max_temperature)
temperature = ac.max_temperature;
else if (temperature < ac.min_temperature)
temperature = ac.min_temperature;
2023-12-30 06:49:37 +00:00
this->state.ac_temperature = temperature;
updateAirConditioner();
2023-12-30 06:52:32 +00:00
if (fram_auto_save)
saveStateToFRAM();
2023-12-30 06:49:37 +00:00
}
void ClimateCard::setMode(uint8_t mode)
{
this->state.ac_mode = mode;
updateAirConditioner();
2023-12-30 06:52:32 +00:00
if (fram_auto_save)
saveStateToFRAM();
2023-12-30 06:49:37 +00:00
}
void ClimateCard::setFanSpeed(uint8_t fan_speed)
{
this->state.ac_fan_speed = fan_speed;
updateAirConditioner();
2023-12-30 06:52:32 +00:00
if (fram_auto_save)
saveStateToFRAM();
2023-12-30 06:49:37 +00:00
}
2023-12-30 07:32:40 +00:00
void ClimateCard::registerChangeCallback(std::function<void(uint8_t, uint8_t, uint8_t)> callback)
2023-12-30 06:49:37 +00:00
{
2023-12-30 19:18:57 +00:00
Serial.print("Registering callback");
Serial.write(0xFF);
Serial.write(0xFF);
Serial.write(0xFF);
2023-12-30 06:49:37 +00:00
callbacks.push_back(callback);
}
uint8_t ClimateCard::getType()
{
return CARD_TYPE_CLIMATE;
}
void ClimateCard::updateSensor()
{
2023-12-30 07:32:40 +00:00
if (sensor_type == AC_SENSOR_TYPE_NONE)
return;
2023-12-30 06:49:37 +00:00
// Read sensor data and update variables
switch (sensor_type)
{
case AC_SENSOR_TYPE_DHT22:
if (millis() - dht->lastRead() < AC_SENSOR_READ_INTERVAL)
return;
dht->read();
room_temperature = dht->getTemperature();
humidity = dht->getHumidity();
break;
case AC_SENSOR_TYPE_DS18B20:
ds18b20->requestTemperatures();
uint32_t start = millis();
while (!ds18b20->isConversionComplete())
{
if (millis() - start >= AC_SENSOR_READ_TIMEOUT)
{
return;
}
}
room_temperature = ds18b20->getTempC();
break;
}
2023-12-30 07:32:40 +00:00
for (uint8_t i = 0; i < sensor_callbacks.size(); i++)
{
sensor_callbacks[i](room_temperature, humidity);
}
2023-12-30 06:49:37 +00:00
}
void ClimateCard::updateAirConditioner()
{
2023-12-30 17:25:07 +00:00
// const uint16_t* ir_code_ptr = nullptr;
// size_t itemCount = (*(this->ac.getInfraredCode))(this->state.ac_mode, this->state.ac_fan_speed, this->state.ac_temperature, &ir_code_ptr);
// if (ir_code_ptr == nullptr)
// return;
// rmt_item32_t items[itemCount];
// // Convert IR timing array to RMT items
// for (size_t i = 0; i < itemCount; i+=2)
// {
// items[i].level0 = 1;
// items[i].duration0 = ir_code_ptr[i];
// items[i].level1 = 0;
// items[i].duration1 = ir_code_ptr[i+1];
// }
// // Send IR signal
// rmt_write_items(RMT_TX_CHANNEL, items, itemCount, true);
// rmt_wait_tx_done(RMT_TX_CHANNEL, portMAX_DELAY);
// // Publish state
2023-12-30 19:18:57 +00:00
Serial.print("Callbacks: ");
Serial.println(callbacks.size());
Serial.write(0xFF);
Serial.write(0xFF);
Serial.write(0xFF);
for (uint8_t i = 0; i < callbacks.size(); i++)
{
callbacks[i](this->state.ac_mode, this->state.ac_fan_speed, this->state.ac_temperature);
}
2023-12-30 06:49:37 +00:00
}
2023-12-30 07:32:40 +00:00
uint8_t ClimateCard::getSensorType()
{
return sensor_type;
}
2023-12-30 06:49:37 +00:00
float ClimateCard::getRoomTemperature()
{
return room_temperature;
}
float ClimateCard::getHumidity()
{
return humidity;
}
uint8_t ClimateCard::getTemperature()
{
return state.ac_temperature;
}
uint8_t ClimateCard::getMode()
{
return state.ac_mode;
}
uint8_t ClimateCard::getFanSpeed()
{
return state.ac_fan_speed;
2023-12-30 07:32:40 +00:00
}
void ClimateCard::registerSensorCallback(std::function<void(float, float)> callback)
{
sensor_callbacks.push_back(callback);
2023-12-30 17:25:07 +00:00
}