working face identify function

This commit is contained in:
Siwat Sirichai 2023-09-25 01:30:29 +07:00
parent 5bd4b4c100
commit 3ee1e00519
18 changed files with 9516 additions and 9334 deletions

View file

@ -59,18 +59,12 @@ UART_HandleTypeDef huart2;
/* Definitions for mainTask */
osThreadId_t mainTaskHandle;
const osThreadAttr_t mainTask_attributes = {
.name = "mainTask",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityNormal,
};
const osThreadAttr_t mainTask_attributes = { .name = "mainTask", .stack_size =
128 * 4, .priority = (osPriority_t) osPriorityNormal, };
/* Definitions for doorHandler */
osThreadId_t doorHandlerHandle;
const osThreadAttr_t doorHandler_attributes = {
.name = "doorHandler",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityLow,
};
const osThreadAttr_t doorHandler_attributes = { .name = "doorHandler",
.stack_size = 128 * 4, .priority = (osPriority_t) osPriorityLow, };
/* USER CODE BEGIN PV */
uint8_t uart_buffer[10];
uint8_t uart_index = 0;
@ -101,207 +95,201 @@ void startDoorHandleTask(void *argument);
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
* @brief The application entry point.
* @retval int
*/
int main(void) {
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
memset(uart_buffer, 0, 10);
/* USER CODE END 2 */
/* USER CODE END 2 */
/* Init scheduler */
osKernelInitialize();
/* Init scheduler */
osKernelInitialize();
/* USER CODE BEGIN RTOS_MUTEX */
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* USER CODE END RTOS_TIMERS */
/* USER CODE BEGIN RTOS_QUEUES */
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* creation of mainTask */
mainTaskHandle = osThreadNew(StartMainTask, NULL, &mainTask_attributes);
/* Create the thread(s) */
/* creation of mainTask */
mainTaskHandle = osThreadNew(StartMainTask, NULL, &mainTask_attributes);
/* creation of doorHandler */
doorHandlerHandle = osThreadNew(startDoorHandleTask, NULL, &doorHandler_attributes);
/* creation of doorHandler */
doorHandlerHandle = osThreadNew(startDoorHandleTask, NULL,
&doorHandler_attributes);
/* USER CODE BEGIN RTOS_THREADS */
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
/* USER CODE END RTOS_THREADS */
/* USER CODE BEGIN RTOS_EVENTS */
/* USER CODE BEGIN RTOS_EVENTS */
/* add events, ... */
/* USER CODE END RTOS_EVENTS */
/* USER CODE END RTOS_EVENTS */
/* Start scheduler */
osKernelStart();
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1) {
}
/* USER CODE END WHILE */
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
/* USER CODE BEGIN 3 */
/* USER CODE END 3 */
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct = { 0 };
RCC_ClkInitTypeDef RCC_ClkInitStruct = { 0 };
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) {
Error_Handler();
}
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void) {
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 9600;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 9600;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = { 0 };
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, LD2_Pin|Door_Lock_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, LD2_Pin | Door_Lock_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : LD2_Pin Door_Lock_Pin */
GPIO_InitStruct.Pin = LD2_Pin|Door_Lock_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : LD2_Pin Door_Lock_Pin */
GPIO_InitStruct.Pin = LD2_Pin | Door_Lock_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : Door_Sensor_Pin */
GPIO_InitStruct.Pin = Door_Sensor_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(Door_Sensor_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : Door_Sensor_Pin */
GPIO_InitStruct.Pin = Door_Sensor_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(Door_Sensor_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
@ -315,9 +303,8 @@ static void MX_GPIO_Init(void)
* @retval None
*/
/* USER CODE END Header_StartMainTask */
void StartMainTask(void *argument)
{
/* USER CODE BEGIN 5 */
void StartMainTask(void *argument) {
/* USER CODE BEGIN 5 */
memset(uart_buffer, 0, 10);
/* USER CODE END 2 */
@ -346,14 +333,14 @@ void StartMainTask(void *argument)
}
uart_index = 0;
memset(uart_buffer, 0, 10);
} else if (uart_index > sizeof(uart_buffer)-1) {
} else if (uart_index > sizeof(uart_buffer) - 1) {
memset(uart_buffer, 0, 10);
uart_index=0;
uart_index = 0;
}
}
vTaskDelay(1);
}
/* USER CODE END 5 */
/* USER CODE END 5 */
}
/* USER CODE BEGIN Header_startDoorHandleTask */
@ -363,9 +350,8 @@ void StartMainTask(void *argument)
* @retval None
*/
/* USER CODE END Header_startDoorHandleTask */
void startDoorHandleTask(void *argument)
{
/* USER CODE BEGIN startDoorHandleTask */
void startDoorHandleTask(void *argument) {
/* USER CODE BEGIN startDoorHandleTask */
/* Infinite loop */
for (;;) {
door_state = HAL_GPIO_ReadPin(DOOR_SENSOR_BANK, DOOR_SENSOR_PIN);
@ -374,6 +360,7 @@ void startDoorHandleTask(void *argument)
if (door_state == DOOR_STATE_CLOSED) {
HAL_GPIO_WritePin(DOOR_LOCK_PIN, DOOR_LOCK_BANK, 1);
door_lock_state = DOOR_LOCK_LOCKED;
door_lock_waiting = false;
} else {
if (!door_lock_waiting) {
door_lock_command_time = HAL_GetTick();
@ -387,6 +374,7 @@ void startDoorHandleTask(void *argument)
}
} else {
HAL_GPIO_WritePin(DOOR_LOCK_PIN, DOOR_LOCK_BANK, 1);
door_lock_waiting = false;
door_lock_state = DOOR_LOCK_LOCKED;
}
}
@ -394,49 +382,58 @@ void startDoorHandleTask(void *argument)
} else if (door_lock_state_command == DOOR_LOCK_UNLOCKED) {
HAL_GPIO_WritePin(DOOR_LOCK_PIN, DOOR_LOCK_BANK, 0);
door_lock_state = DOOR_LOCK_UNLOCKED;
door_lock_waiting = false;
}
}
if(!door_lock_state_command && door_lock_waiting) {
door_lock_waiting = false;
}
if (alarm_active && !door_lock_state_command) {
HAL_GPIO_WritePin(ALARM_BANK, ALARM_PIN, 0);
alarm_active = false;
}
if (!door_state && door_lock_state) {
HAL_GPIO_WritePin(ALARM_BANK, ALARM_PIN, 1);
alarm_active = true;
}
//HAL_GPIO_WritePin(DOOR_LOCK_PIN, DOOR_LOCK_BANK, uart_buffer[1]);
vTaskDelay(100);
vTaskDelay(50);
}
/* USER CODE END startDoorHandleTask */
/* USER CODE END startDoorHandleTask */
}
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM1 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM1 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM1) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM1) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void) {
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1) {
}
/* USER CODE END Error_Handler_Debug */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT