31 lines
948 B
Python
31 lines
948 B
Python
# TensorFlow and tf.keras
|
|
import tensorflow as tf
|
|
from tensorflow.keras.applications.imagenet_utils import decode_predictions
|
|
# Helper libraries
|
|
import numpy as np
|
|
import cv2
|
|
|
|
# load an image
|
|
Testing_img_path ="D:\ISE\Internet of Things\RPi_Lab 3\cat2.jpg"
|
|
input_image = cv2.imread(Testing_img_path)
|
|
|
|
# Preprae data
|
|
input_image = cv2.resize(input_image, (224, 224))
|
|
input_image = np.expand_dims(input_image, axis=0) # Change the shape of image array like input image when trained
|
|
|
|
# Load the ResNet50 model
|
|
loadpath = "Resnet50.h5"
|
|
resnet_model = tf.keras.models.load_model(loadpath)
|
|
|
|
# get the predicted probabilities for each class
|
|
predictions = resnet_model.predict(input_image)
|
|
print("Predicted Top 3 is:", decode_predictions(predictions, top=3)[0])
|
|
Answer = decode_predictions(predictions, top=1)[0][0][1]
|
|
print("Predicted = ", Answer)
|
|
|
|
|
|
# Visualize, check the answer
|
|
img = cv2.imread(Testing_img_path)
|
|
|
|
cv2.waitKey(0)
|
|
cv2.destroyAllWindows() |