# TensorFlow and tf.keras import tensorflow as tf from tensorflow.keras.applications.imagenet_utils import decode_predictions # Helper libraries import numpy as np import cv2 # load an image Testing_img_path ="D:\ISE\Internet of Things\RPi_Lab 3\cat2.jpg" input_image = cv2.imread(Testing_img_path) # Preprae data input_image = cv2.resize(input_image, (224, 224)) input_image = np.expand_dims(input_image, axis=0) # Change the shape of image array like input image when trained # Load the ResNet50 model loadpath = "Resnet50.h5" resnet_model = tf.keras.models.load_model(loadpath) # get the predicted probabilities for each class predictions = resnet_model.predict(input_image) print("Predicted Top 3 is:", decode_predictions(predictions, top=3)[0]) Answer = decode_predictions(predictions, top=1)[0][0][1] print("Predicted = ", Answer) # Visualize, check the answer img = cv2.imread(Testing_img_path) cv2.waitKey(0) cv2.destroyAllWindows()