380 lines
9.9 KiB
Markdown
380 lines
9.9 KiB
Markdown
# TensorRT Model Repository
|
|
|
|
Efficient TensorRT model management with context pooling, deduplication, and GPU-to-GPU inference.
|
|
|
|
## Architecture
|
|
|
|
### Key Features
|
|
|
|
1. **Model Deduplication by File Hash**
|
|
- Multiple model IDs can point to the same model file
|
|
- Only one engine loaded in VRAM per unique file
|
|
- Example: 100 cameras with same model = 1 engine (not 100!)
|
|
|
|
2. **Context Pooling for Load Balancing**
|
|
- Each unique engine has N execution contexts (configurable)
|
|
- Contexts borrowed/returned via mutex-based queue
|
|
- Enables concurrent inference without context-per-model overhead
|
|
- Example: 100 cameras sharing 4 contexts efficiently
|
|
|
|
3. **GPU-to-GPU Inference**
|
|
- All inputs/outputs stay in VRAM (zero CPU transfers)
|
|
- Integrates seamlessly with StreamDecoder (frames already on GPU)
|
|
- Maximum performance for video inference pipelines
|
|
|
|
4. **Thread-Safe Concurrent Inference**
|
|
- Mutex-based context acquisition (TensorRT best practice)
|
|
- No shared IExecutionContext across threads (safe)
|
|
- Multiple threads can infer concurrently (limited by pool size)
|
|
|
|
## Design Rationale
|
|
|
|
### Why Context Pooling?
|
|
|
|
**Without pooling** (naive approach):
|
|
```
|
|
100 cameras → 100 model IDs → 100 execution contexts
|
|
```
|
|
- Problem: Each context consumes VRAM (layers, workspace, etc.)
|
|
- Problem: Context creation overhead per camera
|
|
- Problem: Doesn't scale to hundreds of cameras
|
|
|
|
**With pooling** (our approach):
|
|
```
|
|
100 cameras → 100 model IDs → 1 shared engine → 4 contexts (pool)
|
|
```
|
|
- Solution: Contexts shared across all cameras using same model
|
|
- Solution: Borrow/return mechanism with mutex queue
|
|
- Solution: Scales to any number of cameras with fixed context count
|
|
|
|
### Memory Savings Example
|
|
|
|
YOLOv8n model (~6MB engine file):
|
|
|
|
| Approach | Model IDs | Engines | Contexts | Approx VRAM |
|
|
|----------|-----------|---------|----------|-------------|
|
|
| Naive | 100 | 100 | 100 | ~1.5 GB |
|
|
| **Ours (pooled)** | **100** | **1** | **4** | **~30 MB** |
|
|
|
|
**50x memory savings!**
|
|
|
|
## Usage
|
|
|
|
### Basic Usage
|
|
|
|
```python
|
|
from services.model_repository import TensorRTModelRepository
|
|
|
|
# Initialize repository
|
|
repo = TensorRTModelRepository(
|
|
gpu_id=0,
|
|
default_num_contexts=4 # 4 contexts per unique engine
|
|
)
|
|
|
|
# Load model for camera 1
|
|
repo.load_model(
|
|
model_id="camera_1",
|
|
file_path="models/yolov8n.trt"
|
|
)
|
|
|
|
# Load same model for camera 2 (deduplication happens automatically)
|
|
repo.load_model(
|
|
model_id="camera_2",
|
|
file_path="models/yolov8n.trt" # Same file → shares engine and contexts!
|
|
)
|
|
|
|
# Run inference (GPU-to-GPU)
|
|
import torch
|
|
input_tensor = torch.rand(1, 3, 640, 640, device='cuda:0')
|
|
|
|
outputs = repo.infer(
|
|
model_id="camera_1",
|
|
inputs={"images": input_tensor},
|
|
synchronize=True,
|
|
timeout=5.0 # Wait up to 5s for available context
|
|
)
|
|
|
|
# Outputs stay on GPU
|
|
for name, tensor in outputs.items():
|
|
print(f"{name}: {tensor.shape} on {tensor.device}")
|
|
```
|
|
|
|
### Multi-Camera Scenario
|
|
|
|
```python
|
|
# Setup multiple cameras
|
|
cameras = [f"camera_{i}" for i in range(100)]
|
|
|
|
# Load same model for all cameras
|
|
for camera_id in cameras:
|
|
repo.load_model(
|
|
model_id=camera_id,
|
|
file_path="models/yolov8n.trt" # Same file for all
|
|
)
|
|
|
|
# Check efficiency
|
|
stats = repo.get_stats()
|
|
print(f"Model IDs: {stats['total_model_ids']}") # 100
|
|
print(f"Unique engines: {stats['unique_engines']}") # 1
|
|
print(f"Total contexts: {stats['total_contexts']}") # 4
|
|
```
|
|
|
|
### Integration with RTSP Decoder
|
|
|
|
```python
|
|
from services.stream_decoder import StreamDecoderFactory
|
|
from services.model_repository import TensorRTModelRepository
|
|
|
|
# Setup
|
|
decoder_factory = StreamDecoderFactory(gpu_id=0)
|
|
model_repo = TensorRTModelRepository(gpu_id=0)
|
|
|
|
# Create decoder for camera
|
|
decoder = decoder_factory.create_decoder("rtsp://camera.ip/stream")
|
|
decoder.start()
|
|
|
|
# Load inference model
|
|
model_repo.load_model("camera_main", "models/yolov8n.trt")
|
|
|
|
# Process frames (everything on GPU)
|
|
frame_gpu = decoder.get_latest_frame(rgb=True) # torch.Tensor on CUDA
|
|
|
|
# Preprocess (stays on GPU)
|
|
frame_gpu = frame_gpu.float() / 255.0
|
|
frame_gpu = frame_gpu.unsqueeze(0) # Add batch dim
|
|
|
|
# Inference (GPU-to-GPU, zero copy)
|
|
outputs = model_repo.infer(
|
|
model_id="camera_main",
|
|
inputs={"images": frame_gpu}
|
|
)
|
|
|
|
# Post-process outputs (can stay on GPU)
|
|
# ... NMS, bounding boxes, etc.
|
|
```
|
|
|
|
### Concurrent Inference
|
|
|
|
```python
|
|
import threading
|
|
|
|
def process_camera(camera_id: str, model_id: str):
|
|
# Get frame from decoder (on GPU)
|
|
frame = decoder.get_latest_frame(rgb=True)
|
|
|
|
# Inference automatically borrows/returns context from pool
|
|
outputs = repo.infer(
|
|
model_id=model_id,
|
|
inputs={"images": frame},
|
|
timeout=10.0 # Wait for available context
|
|
)
|
|
|
|
# Process outputs...
|
|
|
|
# Multiple threads can infer concurrently
|
|
threads = []
|
|
for i in range(10): # 10 threads
|
|
t = threading.Thread(
|
|
target=process_camera,
|
|
args=(f"camera_{i}", f"camera_{i}")
|
|
)
|
|
threads.append(t)
|
|
t.start()
|
|
|
|
for t in threads:
|
|
t.join()
|
|
|
|
# With 4 contexts: up to 4 inferences run in parallel
|
|
# Others wait in queue, contexts auto-balanced
|
|
```
|
|
|
|
## API Reference
|
|
|
|
### TensorRTModelRepository
|
|
|
|
#### `__init__(gpu_id=0, default_num_contexts=4)`
|
|
Initialize the repository.
|
|
|
|
**Args:**
|
|
- `gpu_id`: GPU device ID
|
|
- `default_num_contexts`: Default context pool size per engine
|
|
|
|
#### `load_model(model_id, file_path, num_contexts=None, force_reload=False)`
|
|
Load a TensorRT model.
|
|
|
|
**Args:**
|
|
- `model_id`: Unique identifier (e.g., "camera_1")
|
|
- `file_path`: Path to .trt/.engine file
|
|
- `num_contexts`: Context pool size (None = use default)
|
|
- `force_reload`: Reload if model_id exists
|
|
|
|
**Returns:** `ModelMetadata`
|
|
|
|
**Deduplication:** If file hash matches existing model, reuses engine + contexts.
|
|
|
|
#### `infer(model_id, inputs, synchronize=True, timeout=5.0)`
|
|
Run inference.
|
|
|
|
**Args:**
|
|
- `model_id`: Model identifier
|
|
- `inputs`: Dict mapping input names to CUDA tensors
|
|
- `synchronize`: Wait for completion
|
|
- `timeout`: Max wait time for context (seconds)
|
|
|
|
**Returns:** Dict mapping output names to CUDA tensors
|
|
|
|
**Thread-safe:** Borrows context from pool, returns after inference.
|
|
|
|
#### `unload_model(model_id)`
|
|
Unload a model.
|
|
|
|
If last reference to engine, fully unloads from VRAM.
|
|
|
|
#### `get_metadata(model_id)`
|
|
Get model metadata.
|
|
|
|
**Returns:** `ModelMetadata` or `None`
|
|
|
|
#### `get_model_info(model_id)`
|
|
Get detailed model information.
|
|
|
|
**Returns:** Dict with engine references, context pool size, shared model IDs, etc.
|
|
|
|
#### `get_stats()`
|
|
Get repository statistics.
|
|
|
|
**Returns:** Dict with total models, unique engines, contexts, memory efficiency.
|
|
|
|
## Best Practices
|
|
|
|
### 1. Set Appropriate Context Pool Size
|
|
|
|
```python
|
|
# For 10 cameras with same model, 4 contexts is usually enough
|
|
repo = TensorRTModelRepository(default_num_contexts=4)
|
|
|
|
# For high concurrency, increase pool size
|
|
repo = TensorRTModelRepository(default_num_contexts=8)
|
|
```
|
|
|
|
**Rule of thumb:** Start with 4 contexts, increase if you see timeout errors.
|
|
|
|
### 2. Always Use GPU Tensors
|
|
|
|
```python
|
|
# ✅ Good: Input on GPU
|
|
input_gpu = torch.rand(1, 3, 640, 640, device='cuda:0')
|
|
outputs = repo.infer(model_id, {"images": input_gpu})
|
|
|
|
# ❌ Bad: Input on CPU (will cause error)
|
|
input_cpu = torch.rand(1, 3, 640, 640)
|
|
outputs = repo.infer(model_id, {"images": input_cpu}) # ValueError!
|
|
```
|
|
|
|
### 3. Handle Timeout Gracefully
|
|
|
|
```python
|
|
try:
|
|
outputs = repo.infer(
|
|
model_id="camera_1",
|
|
inputs=inputs,
|
|
timeout=5.0
|
|
)
|
|
except RuntimeError as e:
|
|
# All contexts busy, increase pool size or add backpressure
|
|
print(f"Inference timeout: {e}")
|
|
```
|
|
|
|
### 4. Use Same File for Deduplication
|
|
|
|
```python
|
|
# ✅ Good: Same file path → deduplication
|
|
repo.load_model("cam1", "/models/yolo.trt")
|
|
repo.load_model("cam2", "/models/yolo.trt") # Shares engine!
|
|
|
|
# ❌ Bad: Different paths (even if same content) → no deduplication
|
|
repo.load_model("cam1", "/models/yolo.trt")
|
|
repo.load_model("cam2", "/models/yolo_copy.trt") # Separate engine
|
|
```
|
|
|
|
## TensorRT Best Practices Implemented
|
|
|
|
Based on NVIDIA documentation and web search findings:
|
|
|
|
1. **Separate IExecutionContext per concurrent stream** ✅
|
|
- Each context has its own CUDA stream
|
|
- Contexts never shared across threads simultaneously
|
|
|
|
2. **Mutex-based context management** ✅
|
|
- Queue-based borrowing with locks
|
|
- Thread-safe acquire/release pattern
|
|
|
|
3. **GPU memory reuse** ✅
|
|
- Engines shared by file hash
|
|
- Contexts pooled and reused
|
|
|
|
4. **Zero-copy operations** ✅
|
|
- All data stays in VRAM
|
|
- DLPack integration with PyTorch
|
|
|
|
## Troubleshooting
|
|
|
|
### "No execution context available within timeout"
|
|
|
|
**Cause:** All contexts busy with concurrent inferences.
|
|
|
|
**Solutions:**
|
|
1. Increase context pool size:
|
|
```python
|
|
repo.load_model(model_id, file_path, num_contexts=8)
|
|
```
|
|
2. Increase timeout:
|
|
```python
|
|
outputs = repo.infer(model_id, inputs, timeout=30.0)
|
|
```
|
|
3. Add backpressure/throttling to limit concurrent requests
|
|
|
|
### Out of Memory (OOM)
|
|
|
|
**Cause:** Too many unique engines or large context pools.
|
|
|
|
**Solutions:**
|
|
1. Ensure deduplication working (same file paths)
|
|
2. Reduce context pool sizes
|
|
3. Use smaller models or quantization (INT8/FP16)
|
|
|
|
### Import Error: "tensorrt could not be resolved"
|
|
|
|
**Solution:** Install TensorRT:
|
|
```bash
|
|
pip install tensorrt
|
|
# Or use NVIDIA's wheel for your CUDA version
|
|
```
|
|
|
|
## Performance Tips
|
|
|
|
1. **Batch Processing:** Process multiple frames before synchronizing
|
|
```python
|
|
outputs = repo.infer(model_id, inputs, synchronize=False)
|
|
# ... more inferences ...
|
|
torch.cuda.synchronize() # Sync once at end
|
|
```
|
|
|
|
2. **Async Inference:** Don't synchronize if not needed immediately
|
|
```python
|
|
outputs = repo.infer(model_id, inputs, synchronize=False)
|
|
# GPU continues working, CPU continues
|
|
# Synchronize later when you need results
|
|
```
|
|
|
|
3. **Monitor Context Utilization:**
|
|
```python
|
|
stats = repo.get_stats()
|
|
print(f"Contexts: {stats['total_contexts']}")
|
|
|
|
# If timeouts occur frequently, increase pool size
|
|
```
|
|
|
|
## License
|
|
|
|
Part of python-rtsp-worker project.
|