All checks were successful
Build Worker Base and Application Images / check-base-changes (push) Successful in 8s
Build Worker Base and Application Images / build-base (push) Has been skipped
Build Worker Base and Application Images / build-docker (push) Successful in 2m52s
Build Worker Base and Application Images / deploy-stack (push) Successful in 13s
776 lines
No EOL
32 KiB
Python
776 lines
No EOL
32 KiB
Python
"""
|
|
Frame readers for RTSP streams and HTTP snapshots.
|
|
Optimized for 1280x720@6fps RTSP and 2560x1440 HTTP snapshots.
|
|
"""
|
|
import cv2
|
|
import logging
|
|
import time
|
|
import threading
|
|
import requests
|
|
import numpy as np
|
|
import os
|
|
import subprocess
|
|
from typing import Optional, Callable
|
|
from watchdog.observers import Observer
|
|
from watchdog.events import FileSystemEventHandler
|
|
|
|
# Suppress FFMPEG/H.264 error messages if needed
|
|
# Set this environment variable to reduce noise from decoder errors
|
|
os.environ["OPENCV_LOG_LEVEL"] = "ERROR"
|
|
os.environ["OPENCV_FFMPEG_LOGLEVEL"] = "-8" # Suppress FFMPEG warnings
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Suppress noisy watchdog debug logs
|
|
logging.getLogger('watchdog.observers.inotify_buffer').setLevel(logging.CRITICAL)
|
|
|
|
|
|
class FrameFileHandler(FileSystemEventHandler):
|
|
"""File system event handler for frame file changes."""
|
|
|
|
def __init__(self, callback):
|
|
self.callback = callback
|
|
self.last_modified = 0
|
|
|
|
def on_modified(self, event):
|
|
if event.is_directory:
|
|
return
|
|
# Debounce rapid file changes
|
|
current_time = time.time()
|
|
if current_time - self.last_modified > 0.01: # 10ms debounce
|
|
self.last_modified = current_time
|
|
self.callback()
|
|
|
|
|
|
class FFmpegRTSPReader:
|
|
"""RTSP stream reader using subprocess FFmpeg with CUDA hardware acceleration and file watching."""
|
|
|
|
def __init__(self, camera_id: str, rtsp_url: str, max_retries: int = 3):
|
|
self.camera_id = camera_id
|
|
self.rtsp_url = rtsp_url
|
|
self.max_retries = max_retries
|
|
self.process = None
|
|
self.stop_event = threading.Event()
|
|
self.thread = None
|
|
self.frame_callback: Optional[Callable] = None
|
|
self.observer = None
|
|
self.frame_ready_event = threading.Event()
|
|
|
|
# Stream specs
|
|
self.width = 1280
|
|
self.height = 720
|
|
|
|
def set_frame_callback(self, callback: Callable[[str, np.ndarray], None]):
|
|
"""Set callback function to handle captured frames."""
|
|
self.frame_callback = callback
|
|
|
|
def start(self):
|
|
"""Start the FFmpeg subprocess reader."""
|
|
if self.thread and self.thread.is_alive():
|
|
logger.warning(f"FFmpeg reader for {self.camera_id} already running")
|
|
return
|
|
|
|
self.stop_event.clear()
|
|
self.thread = threading.Thread(target=self._read_frames, daemon=True)
|
|
self.thread.start()
|
|
logger.info(f"Started FFmpeg reader for camera {self.camera_id}")
|
|
|
|
def stop(self):
|
|
"""Stop the FFmpeg subprocess reader."""
|
|
self.stop_event.set()
|
|
if self.process:
|
|
self.process.terminate()
|
|
try:
|
|
self.process.wait(timeout=5)
|
|
except subprocess.TimeoutExpired:
|
|
self.process.kill()
|
|
if self.thread:
|
|
self.thread.join(timeout=5.0)
|
|
logger.info(f"Stopped FFmpeg reader for camera {self.camera_id}")
|
|
|
|
def _start_ffmpeg_process(self):
|
|
"""Start FFmpeg subprocess with CUDA hardware acceleration writing to temp file."""
|
|
# Create temp file path for this camera
|
|
self.temp_file = f"/tmp/claude/camera_{self.camera_id.replace(' ', '_')}.raw"
|
|
os.makedirs("/tmp/claude", exist_ok=True)
|
|
|
|
# Use PPM format - uncompressed with header, supports -update 1
|
|
self.temp_file = f"/tmp/claude/camera_{self.camera_id.replace(' ', '_')}.ppm"
|
|
|
|
cmd = [
|
|
'ffmpeg',
|
|
'-hwaccel', 'cuda',
|
|
'-hwaccel_device', '0',
|
|
'-rtsp_transport', 'tcp',
|
|
'-i', self.rtsp_url,
|
|
'-f', 'image2',
|
|
'-update', '1', # Works with image2 format
|
|
'-pix_fmt', 'rgb24', # PPM uses RGB not BGR
|
|
'-an', # No audio
|
|
'-y', # Overwrite output file
|
|
self.temp_file
|
|
]
|
|
|
|
try:
|
|
# Start FFmpeg detached - we don't need to communicate with it
|
|
self.process = subprocess.Popen(
|
|
cmd,
|
|
stdout=subprocess.DEVNULL,
|
|
stderr=subprocess.DEVNULL
|
|
)
|
|
logger.info(f"Started FFmpeg process PID {self.process.pid} for camera {self.camera_id} -> {self.temp_file}")
|
|
return True
|
|
except Exception as e:
|
|
logger.error(f"Failed to start FFmpeg for camera {self.camera_id}: {e}")
|
|
return False
|
|
|
|
def _setup_file_watcher(self):
|
|
"""Setup file system watcher for temp file."""
|
|
if not os.path.exists(self.temp_file):
|
|
return
|
|
|
|
# Setup file watcher
|
|
handler = FrameFileHandler(self._on_file_changed)
|
|
self.observer = Observer()
|
|
self.observer.schedule(handler, os.path.dirname(self.temp_file), recursive=False)
|
|
self.observer.start()
|
|
logger.info(f"Started file watcher for {self.temp_file}")
|
|
|
|
def _on_file_changed(self):
|
|
"""Called when temp file is modified."""
|
|
if os.path.basename(self.temp_file) in str(self.temp_file):
|
|
self.frame_ready_event.set()
|
|
|
|
def _read_frames(self):
|
|
"""Reactively read frames when file changes."""
|
|
frame_count = 0
|
|
last_log_time = time.time()
|
|
bytes_per_frame = self.width * self.height * 3
|
|
restart_check_interval = 10 # Check FFmpeg status every 10 seconds
|
|
|
|
while not self.stop_event.is_set():
|
|
try:
|
|
# Start FFmpeg if not running
|
|
if not self.process or self.process.poll() is not None:
|
|
if self.process and self.process.poll() is not None:
|
|
logger.warning(f"FFmpeg process died for camera {self.camera_id}, restarting...")
|
|
|
|
if not self._start_ffmpeg_process():
|
|
time.sleep(5.0)
|
|
continue
|
|
|
|
# Wait for temp file to be created
|
|
wait_count = 0
|
|
while not os.path.exists(self.temp_file) and wait_count < 30:
|
|
time.sleep(1.0)
|
|
wait_count += 1
|
|
|
|
if not os.path.exists(self.temp_file):
|
|
logger.error(f"Temp file not created after 30s for {self.camera_id}")
|
|
continue
|
|
|
|
# Setup file watcher
|
|
self._setup_file_watcher()
|
|
|
|
# Wait for file change event (or timeout for health check)
|
|
if self.frame_ready_event.wait(timeout=restart_check_interval):
|
|
self.frame_ready_event.clear()
|
|
|
|
# Read PPM frame (uncompressed with header)
|
|
try:
|
|
if os.path.exists(self.temp_file):
|
|
# Read PPM with OpenCV (handles RGB->BGR conversion automatically)
|
|
frame = cv2.imread(self.temp_file)
|
|
|
|
if frame is not None and frame.shape == (self.height, self.width, 3):
|
|
# Call frame callback directly
|
|
if self.frame_callback:
|
|
self.frame_callback(self.camera_id, frame)
|
|
|
|
frame_count += 1
|
|
|
|
# Log progress
|
|
current_time = time.time()
|
|
if current_time - last_log_time >= 30:
|
|
logger.info(f"Camera {self.camera_id}: {frame_count} PPM frames processed reactively")
|
|
last_log_time = current_time
|
|
else:
|
|
logger.debug(f"Camera {self.camera_id}: Invalid PPM frame")
|
|
else:
|
|
logger.debug(f"Camera {self.camera_id}: PPM file not found yet")
|
|
|
|
except (IOError, OSError) as e:
|
|
logger.debug(f"Camera {self.camera_id}: File read error: {e}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Camera {self.camera_id}: Error in reactive frame reading: {e}")
|
|
time.sleep(1.0)
|
|
|
|
# Cleanup
|
|
if self.observer:
|
|
self.observer.stop()
|
|
self.observer.join()
|
|
if self.process:
|
|
self.process.terminate()
|
|
# Clean up temp file
|
|
try:
|
|
if hasattr(self, 'temp_file') and os.path.exists(self.temp_file):
|
|
os.remove(self.temp_file)
|
|
except:
|
|
pass
|
|
logger.info(f"Reactive FFmpeg reader ended for camera {self.camera_id}")
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class RTSPReader:
|
|
"""RTSP stream frame reader optimized for 1280x720 @ 6fps streams."""
|
|
|
|
def __init__(self, camera_id: str, rtsp_url: str, max_retries: int = 3):
|
|
self.camera_id = camera_id
|
|
self.rtsp_url = rtsp_url
|
|
self.max_retries = max_retries
|
|
self.cap = None
|
|
self.stop_event = threading.Event()
|
|
self.thread = None
|
|
self.frame_callback: Optional[Callable] = None
|
|
|
|
# Expected stream specifications
|
|
self.expected_width = 1280
|
|
self.expected_height = 720
|
|
self.expected_fps = 6
|
|
|
|
# Frame processing parameters
|
|
self.error_recovery_delay = 5.0 # Increased from 2.0 for stability
|
|
self.max_consecutive_errors = 30 # Increased from 10 to handle network jitter
|
|
self.stream_timeout = 30.0
|
|
|
|
def set_frame_callback(self, callback: Callable[[str, np.ndarray], None]):
|
|
"""Set callback function to handle captured frames."""
|
|
self.frame_callback = callback
|
|
|
|
def start(self):
|
|
"""Start the RTSP reader thread."""
|
|
if self.thread and self.thread.is_alive():
|
|
logger.warning(f"RTSP reader for {self.camera_id} already running")
|
|
return
|
|
|
|
self.stop_event.clear()
|
|
self.thread = threading.Thread(target=self._read_frames, daemon=True)
|
|
self.thread.start()
|
|
logger.info(f"Started RTSP reader for camera {self.camera_id}")
|
|
|
|
def stop(self):
|
|
"""Stop the RTSP reader thread."""
|
|
self.stop_event.set()
|
|
if self.thread:
|
|
self.thread.join(timeout=5.0)
|
|
if self.cap:
|
|
self.cap.release()
|
|
logger.info(f"Stopped RTSP reader for camera {self.camera_id}")
|
|
|
|
def _read_frames(self):
|
|
"""Main frame reading loop with H.264 error recovery."""
|
|
consecutive_errors = 0
|
|
frame_count = 0
|
|
last_log_time = time.time()
|
|
last_successful_frame_time = time.time()
|
|
|
|
while not self.stop_event.is_set():
|
|
try:
|
|
# Initialize/reinitialize capture if needed
|
|
if not self.cap or not self.cap.isOpened():
|
|
if not self._initialize_capture():
|
|
time.sleep(self.error_recovery_delay)
|
|
continue
|
|
last_successful_frame_time = time.time()
|
|
|
|
# Check for stream timeout
|
|
if time.time() - last_successful_frame_time > self.stream_timeout:
|
|
logger.warning(f"Camera {self.camera_id}: Stream timeout, reinitializing")
|
|
self._reinitialize_capture()
|
|
last_successful_frame_time = time.time()
|
|
continue
|
|
|
|
# Read frame immediately without rate limiting for minimum latency
|
|
try:
|
|
ret, frame = self.cap.read()
|
|
if ret and frame is None:
|
|
# Grab succeeded but retrieve failed - decoder issue
|
|
logger.error(f"Camera {self.camera_id}: Frame grab OK but decode failed")
|
|
except Exception as read_error:
|
|
logger.error(f"Camera {self.camera_id}: cap.read() threw exception: {type(read_error).__name__}: {read_error}")
|
|
ret, frame = False, None
|
|
|
|
if not ret or frame is None:
|
|
consecutive_errors += 1
|
|
|
|
# Enhanced logging to diagnose the issue
|
|
logger.error(f"Camera {self.camera_id}: cap.read() failed - ret={ret}, frame={frame is not None}")
|
|
|
|
# Try to get more info from the capture
|
|
try:
|
|
if self.cap and self.cap.isOpened():
|
|
backend = self.cap.getBackendName()
|
|
pos_frames = self.cap.get(cv2.CAP_PROP_POS_FRAMES)
|
|
logger.error(f"Camera {self.camera_id}: Capture open, backend: {backend}, pos_frames: {pos_frames}")
|
|
else:
|
|
logger.error(f"Camera {self.camera_id}: Capture is closed or None!")
|
|
except Exception as info_error:
|
|
logger.error(f"Camera {self.camera_id}: Error getting capture info: {type(info_error).__name__}: {info_error}")
|
|
|
|
if consecutive_errors >= self.max_consecutive_errors:
|
|
logger.error(f"Camera {self.camera_id}: Too many consecutive errors ({consecutive_errors}), reinitializing")
|
|
self._reinitialize_capture()
|
|
consecutive_errors = 0
|
|
time.sleep(self.error_recovery_delay)
|
|
else:
|
|
# Skip corrupted frame and continue with exponential backoff
|
|
if consecutive_errors <= 5:
|
|
logger.debug(f"Camera {self.camera_id}: Frame read failed (error {consecutive_errors})")
|
|
elif consecutive_errors % 10 == 0: # Log every 10th error after 5
|
|
logger.warning(f"Camera {self.camera_id}: Continuing frame read failures (error {consecutive_errors})")
|
|
|
|
# Exponential backoff with cap at 1 second
|
|
sleep_time = min(0.1 * (1.5 ** min(consecutive_errors, 10)), 1.0)
|
|
time.sleep(sleep_time)
|
|
continue
|
|
|
|
# Accept any valid frame dimensions - don't force specific resolution
|
|
if frame.shape[1] <= 0 or frame.shape[0] <= 0:
|
|
consecutive_errors += 1
|
|
continue
|
|
|
|
# Check for corrupted frames (all black, all white, excessive noise)
|
|
if self._is_frame_corrupted(frame):
|
|
logger.debug(f"Camera {self.camera_id}: Corrupted frame detected, skipping")
|
|
consecutive_errors += 1
|
|
continue
|
|
|
|
# Frame is valid
|
|
consecutive_errors = 0
|
|
frame_count += 1
|
|
last_successful_frame_time = time.time()
|
|
|
|
# Call frame callback
|
|
if self.frame_callback:
|
|
try:
|
|
self.frame_callback(self.camera_id, frame)
|
|
except Exception as e:
|
|
logger.error(f"Camera {self.camera_id}: Frame callback error: {e}")
|
|
|
|
# Log progress every 30 seconds
|
|
current_time = time.time()
|
|
if current_time - last_log_time >= 30:
|
|
logger.info(f"Camera {self.camera_id}: {frame_count} frames processed")
|
|
last_log_time = current_time
|
|
|
|
except Exception as e:
|
|
logger.error(f"Camera {self.camera_id}: Error in frame reading loop: {e}")
|
|
consecutive_errors += 1
|
|
if consecutive_errors >= self.max_consecutive_errors:
|
|
self._reinitialize_capture()
|
|
consecutive_errors = 0
|
|
time.sleep(self.error_recovery_delay)
|
|
|
|
# Cleanup
|
|
if self.cap:
|
|
self.cap.release()
|
|
logger.info(f"RTSP reader thread ended for camera {self.camera_id}")
|
|
|
|
def _initialize_capture(self) -> bool:
|
|
"""Initialize video capture with FFmpeg hardware acceleration (CUVID/NVDEC) for 1280x720@6fps."""
|
|
try:
|
|
# Release previous capture if exists
|
|
if self.cap:
|
|
self.cap.release()
|
|
time.sleep(0.5)
|
|
|
|
logger.info(f"Initializing capture for camera {self.camera_id} with FFmpeg hardware acceleration")
|
|
hw_accel_success = False
|
|
|
|
# Method 1: Try OpenCV CUDA VideoReader (if built with CUVID support)
|
|
if not hw_accel_success:
|
|
try:
|
|
# Check if OpenCV was built with CUDA codec support
|
|
build_info = cv2.getBuildInformation()
|
|
if 'cudacodec' in build_info or 'CUVID' in build_info:
|
|
logger.info(f"Attempting OpenCV CUDA VideoReader for camera {self.camera_id}")
|
|
|
|
# Use OpenCV's CUDA backend
|
|
self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG, [
|
|
cv2.CAP_PROP_HW_ACCELERATION, cv2.VIDEO_ACCELERATION_ANY
|
|
])
|
|
|
|
if self.cap.isOpened():
|
|
hw_accel_success = True
|
|
logger.info(f"Camera {self.camera_id}: Using OpenCV CUDA hardware acceleration")
|
|
else:
|
|
logger.debug(f"Camera {self.camera_id}: OpenCV not built with CUDA codec support")
|
|
except Exception as e:
|
|
logger.debug(f"Camera {self.camera_id}: OpenCV CUDA not available: {e}")
|
|
|
|
# Method 2: Try FFmpeg with optimal hardware acceleration (CUVID/NVDEC)
|
|
if not hw_accel_success:
|
|
try:
|
|
from core.utils.ffmpeg_detector import get_optimal_rtsp_options
|
|
import os
|
|
|
|
# Get optimal FFmpeg options based on detected capabilities
|
|
optimal_options = get_optimal_rtsp_options(self.rtsp_url)
|
|
os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = optimal_options
|
|
|
|
logger.info(f"Attempting FFmpeg with detected hardware acceleration for camera {self.camera_id}")
|
|
logger.debug(f"Camera {self.camera_id}: Using FFmpeg options: {optimal_options}")
|
|
|
|
self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG)
|
|
|
|
if self.cap.isOpened():
|
|
hw_accel_success = True
|
|
# Try to get backend info to confirm hardware acceleration
|
|
backend = self.cap.getBackendName()
|
|
logger.info(f"Camera {self.camera_id}: Using FFmpeg hardware acceleration (backend: {backend})")
|
|
except Exception as e:
|
|
logger.debug(f"Camera {self.camera_id}: FFmpeg optimal hardware acceleration not available: {e}")
|
|
|
|
# Method 3: Try FFmpeg with NVIDIA NVDEC (better for RTX 3060)
|
|
if not hw_accel_success:
|
|
try:
|
|
import os
|
|
os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = 'hwaccel;cuda|hwaccel_device;0|rtsp_transport;tcp'
|
|
|
|
logger.info(f"Attempting FFmpeg with NVDEC hardware acceleration for camera {self.camera_id}")
|
|
self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG)
|
|
|
|
if self.cap.isOpened():
|
|
hw_accel_success = True
|
|
logger.info(f"Camera {self.camera_id}: Using FFmpeg NVDEC hardware acceleration")
|
|
except Exception as e:
|
|
logger.debug(f"Camera {self.camera_id}: FFmpeg NVDEC not available: {e}")
|
|
|
|
# Method 4: Try FFmpeg with VAAPI (Intel/AMD GPUs)
|
|
if not hw_accel_success:
|
|
try:
|
|
import os
|
|
os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = 'hwaccel;vaapi|hwaccel_device;/dev/dri/renderD128|video_codec;h264|rtsp_transport;tcp'
|
|
|
|
logger.info(f"Attempting FFmpeg with VAAPI for camera {self.camera_id}")
|
|
self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG)
|
|
|
|
if self.cap.isOpened():
|
|
hw_accel_success = True
|
|
logger.info(f"Camera {self.camera_id}: Using FFmpeg VAAPI hardware acceleration")
|
|
except Exception as e:
|
|
logger.debug(f"Camera {self.camera_id}: FFmpeg VAAPI not available: {e}")
|
|
|
|
# Fallback: Standard FFmpeg with software decoding
|
|
if not hw_accel_success:
|
|
logger.warning(f"Camera {self.camera_id}: Hardware acceleration not available, falling back to software decoding")
|
|
import os
|
|
os.environ['OPENCV_FFMPEG_CAPTURE_OPTIONS'] = 'rtsp_transport;tcp'
|
|
self.cap = cv2.VideoCapture(self.rtsp_url, cv2.CAP_FFMPEG)
|
|
|
|
if not self.cap.isOpened():
|
|
logger.error(f"Failed to open stream for camera {self.camera_id}")
|
|
return False
|
|
|
|
# Don't force resolution/fps - let the stream determine its natural specs
|
|
# The camera will provide whatever resolution/fps it supports
|
|
|
|
|
|
# Set FFMPEG options for better H.264 handling
|
|
self.cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'H264'))
|
|
|
|
# Verify stream properties
|
|
actual_width = int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
actual_height = int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
actual_fps = self.cap.get(cv2.CAP_PROP_FPS)
|
|
|
|
logger.info(f"Camera {self.camera_id} initialized: {actual_width}x{actual_height} @ {actual_fps}fps")
|
|
|
|
# Read and discard first few frames to stabilize stream
|
|
for _ in range(5):
|
|
ret, _ = self.cap.read()
|
|
if not ret:
|
|
logger.warning(f"Camera {self.camera_id}: Failed to read initial frames")
|
|
time.sleep(0.1)
|
|
|
|
return True
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error initializing capture for camera {self.camera_id}: {e}")
|
|
return False
|
|
|
|
def _reinitialize_capture(self):
|
|
"""Reinitialize capture after errors with retry logic."""
|
|
logger.info(f"Reinitializing capture for camera {self.camera_id}")
|
|
if self.cap:
|
|
self.cap.release()
|
|
self.cap = None
|
|
|
|
# Longer delay before reconnection to avoid rapid reconnect loops
|
|
time.sleep(3.0)
|
|
|
|
# Retry initialization up to 3 times
|
|
for attempt in range(3):
|
|
if self._initialize_capture():
|
|
logger.info(f"Successfully reinitialized camera {self.camera_id} on attempt {attempt + 1}")
|
|
break
|
|
else:
|
|
logger.warning(f"Failed to reinitialize camera {self.camera_id} on attempt {attempt + 1}")
|
|
time.sleep(2.0)
|
|
|
|
def _is_frame_corrupted(self, frame: np.ndarray) -> bool:
|
|
"""Check if frame is corrupted (all black, all white, or excessive noise)."""
|
|
if frame is None or frame.size == 0:
|
|
return True
|
|
|
|
# Check mean and standard deviation
|
|
mean = np.mean(frame)
|
|
std = np.std(frame)
|
|
|
|
# All black or all white
|
|
if mean < 5 or mean > 250:
|
|
return True
|
|
|
|
# No variation (stuck frame)
|
|
if std < 1:
|
|
return True
|
|
|
|
# Excessive noise (corrupted H.264 decode)
|
|
# Calculate edge density as corruption indicator
|
|
edges = cv2.Canny(frame, 50, 150)
|
|
edge_density = np.sum(edges > 0) / edges.size
|
|
|
|
# Too many edges indicate corruption
|
|
if edge_density > 0.5:
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
class HTTPSnapshotReader:
|
|
"""HTTP snapshot reader optimized for 2560x1440 (2K) high quality images."""
|
|
|
|
def __init__(self, camera_id: str, snapshot_url: str, interval_ms: int = 5000, max_retries: int = 3):
|
|
self.camera_id = camera_id
|
|
self.snapshot_url = snapshot_url
|
|
self.interval_ms = interval_ms
|
|
self.max_retries = max_retries
|
|
self.stop_event = threading.Event()
|
|
self.thread = None
|
|
self.frame_callback: Optional[Callable] = None
|
|
|
|
# Expected snapshot specifications
|
|
self.expected_width = 2560
|
|
self.expected_height = 1440
|
|
self.max_file_size = 10 * 1024 * 1024 # 10MB max for 2K image
|
|
|
|
def set_frame_callback(self, callback: Callable[[str, np.ndarray], None]):
|
|
"""Set callback function to handle captured frames."""
|
|
self.frame_callback = callback
|
|
|
|
def start(self):
|
|
"""Start the snapshot reader thread."""
|
|
if self.thread and self.thread.is_alive():
|
|
logger.warning(f"Snapshot reader for {self.camera_id} already running")
|
|
return
|
|
|
|
self.stop_event.clear()
|
|
self.thread = threading.Thread(target=self._read_snapshots, daemon=True)
|
|
self.thread.start()
|
|
logger.info(f"Started snapshot reader for camera {self.camera_id}")
|
|
|
|
def stop(self):
|
|
"""Stop the snapshot reader thread."""
|
|
self.stop_event.set()
|
|
if self.thread:
|
|
self.thread.join(timeout=5.0)
|
|
logger.info(f"Stopped snapshot reader for camera {self.camera_id}")
|
|
|
|
def _read_snapshots(self):
|
|
"""Main snapshot reading loop for high quality 2K images."""
|
|
retries = 0
|
|
frame_count = 0
|
|
last_log_time = time.time()
|
|
interval_seconds = self.interval_ms / 1000.0
|
|
|
|
logger.info(f"Snapshot interval for camera {self.camera_id}: {interval_seconds}s")
|
|
|
|
while not self.stop_event.is_set():
|
|
try:
|
|
start_time = time.time()
|
|
frame = self._fetch_snapshot()
|
|
|
|
if frame is None:
|
|
retries += 1
|
|
logger.warning(f"Failed to fetch snapshot for camera {self.camera_id}, retry {retries}/{self.max_retries}")
|
|
|
|
if self.max_retries != -1 and retries > self.max_retries:
|
|
logger.error(f"Max retries reached for snapshot camera {self.camera_id}")
|
|
break
|
|
|
|
time.sleep(min(2.0, interval_seconds))
|
|
continue
|
|
|
|
# Accept any valid image dimensions - don't force specific resolution
|
|
if frame.shape[1] <= 0 or frame.shape[0] <= 0:
|
|
logger.warning(f"Camera {self.camera_id}: Invalid frame dimensions {frame.shape[1]}x{frame.shape[0]}")
|
|
continue
|
|
|
|
# Reset retry counter on successful fetch
|
|
retries = 0
|
|
frame_count += 1
|
|
|
|
# Call frame callback
|
|
if self.frame_callback:
|
|
try:
|
|
self.frame_callback(self.camera_id, frame)
|
|
except Exception as e:
|
|
logger.error(f"Camera {self.camera_id}: Frame callback error: {e}")
|
|
|
|
# Log progress every 30 seconds
|
|
current_time = time.time()
|
|
if current_time - last_log_time >= 30:
|
|
logger.info(f"Camera {self.camera_id}: {frame_count} snapshots processed")
|
|
last_log_time = current_time
|
|
|
|
# Wait for next interval
|
|
elapsed = time.time() - start_time
|
|
sleep_time = max(0, interval_seconds - elapsed)
|
|
if sleep_time > 0:
|
|
self.stop_event.wait(sleep_time)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error in snapshot loop for camera {self.camera_id}: {e}")
|
|
retries += 1
|
|
if self.max_retries != -1 and retries > self.max_retries:
|
|
break
|
|
time.sleep(min(2.0, interval_seconds))
|
|
|
|
logger.info(f"Snapshot reader thread ended for camera {self.camera_id}")
|
|
|
|
def _fetch_snapshot(self) -> Optional[np.ndarray]:
|
|
"""Fetch a single high quality snapshot from HTTP URL."""
|
|
try:
|
|
# Parse URL for authentication
|
|
from urllib.parse import urlparse
|
|
parsed_url = urlparse(self.snapshot_url)
|
|
|
|
headers = {
|
|
'User-Agent': 'Python-Detector-Worker/1.0',
|
|
'Accept': 'image/jpeg, image/png, image/*'
|
|
}
|
|
auth = None
|
|
|
|
if parsed_url.username and parsed_url.password:
|
|
from requests.auth import HTTPBasicAuth, HTTPDigestAuth
|
|
auth = HTTPBasicAuth(parsed_url.username, parsed_url.password)
|
|
|
|
# Reconstruct URL without credentials
|
|
clean_url = f"{parsed_url.scheme}://{parsed_url.hostname}"
|
|
if parsed_url.port:
|
|
clean_url += f":{parsed_url.port}"
|
|
clean_url += parsed_url.path
|
|
if parsed_url.query:
|
|
clean_url += f"?{parsed_url.query}"
|
|
|
|
# Try Basic Auth first
|
|
response = requests.get(clean_url, auth=auth, timeout=15, headers=headers,
|
|
stream=True, verify=False)
|
|
|
|
# If Basic Auth fails, try Digest Auth
|
|
if response.status_code == 401:
|
|
auth = HTTPDigestAuth(parsed_url.username, parsed_url.password)
|
|
response = requests.get(clean_url, auth=auth, timeout=15, headers=headers,
|
|
stream=True, verify=False)
|
|
else:
|
|
response = requests.get(self.snapshot_url, timeout=15, headers=headers,
|
|
stream=True, verify=False)
|
|
|
|
if response.status_code == 200:
|
|
# Check content size
|
|
content_length = int(response.headers.get('content-length', 0))
|
|
if content_length > self.max_file_size:
|
|
logger.warning(f"Snapshot too large for camera {self.camera_id}: {content_length} bytes")
|
|
return None
|
|
|
|
# Read content
|
|
content = response.content
|
|
|
|
# Convert to numpy array
|
|
image_array = np.frombuffer(content, np.uint8)
|
|
|
|
# Decode as high quality image
|
|
frame = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
|
|
|
|
if frame is None:
|
|
logger.error(f"Failed to decode snapshot for camera {self.camera_id}")
|
|
return None
|
|
|
|
logger.debug(f"Fetched snapshot for camera {self.camera_id}: {frame.shape[1]}x{frame.shape[0]}")
|
|
return frame
|
|
else:
|
|
logger.warning(f"HTTP {response.status_code} from {self.camera_id}")
|
|
return None
|
|
|
|
except requests.RequestException as e:
|
|
logger.error(f"Request error fetching snapshot for {self.camera_id}: {e}")
|
|
return None
|
|
except Exception as e:
|
|
logger.error(f"Error decoding snapshot for {self.camera_id}: {e}")
|
|
return None
|
|
|
|
def fetch_single_snapshot(self) -> Optional[np.ndarray]:
|
|
"""
|
|
Fetch a single high-quality snapshot on demand for pipeline processing.
|
|
This method is for one-time fetch from HTTP URL, not continuous streaming.
|
|
|
|
Returns:
|
|
High quality 2K snapshot frame or None if failed
|
|
"""
|
|
logger.info(f"[SNAPSHOT] Fetching snapshot for {self.camera_id} from {self.snapshot_url}")
|
|
|
|
# Try to fetch snapshot with retries
|
|
for attempt in range(self.max_retries):
|
|
frame = self._fetch_snapshot()
|
|
|
|
if frame is not None:
|
|
logger.info(f"[SNAPSHOT] Successfully fetched {frame.shape[1]}x{frame.shape[0]} snapshot for {self.camera_id}")
|
|
return frame
|
|
|
|
if attempt < self.max_retries - 1:
|
|
logger.warning(f"[SNAPSHOT] Attempt {attempt + 1}/{self.max_retries} failed for {self.camera_id}, retrying...")
|
|
time.sleep(0.5)
|
|
|
|
logger.error(f"[SNAPSHOT] Failed to fetch snapshot for {self.camera_id} after {self.max_retries} attempts")
|
|
return None
|
|
|
|
def _resize_maintain_aspect(self, frame: np.ndarray, target_width: int, target_height: int) -> np.ndarray:
|
|
"""Resize image while maintaining aspect ratio for high quality."""
|
|
h, w = frame.shape[:2]
|
|
aspect = w / h
|
|
target_aspect = target_width / target_height
|
|
|
|
if aspect > target_aspect:
|
|
# Image is wider
|
|
new_width = target_width
|
|
new_height = int(target_width / aspect)
|
|
else:
|
|
# Image is taller
|
|
new_height = target_height
|
|
new_width = int(target_height * aspect)
|
|
|
|
# Use INTER_LANCZOS4 for high quality downsampling
|
|
resized = cv2.resize(frame, (new_width, new_height), interpolation=cv2.INTER_LANCZOS4)
|
|
|
|
# Pad to target size if needed
|
|
if new_width < target_width or new_height < target_height:
|
|
top = (target_height - new_height) // 2
|
|
bottom = target_height - new_height - top
|
|
left = (target_width - new_width) // 2
|
|
right = target_width - new_width - left
|
|
resized = cv2.copyMakeBorder(resized, top, bottom, left, right, cv2.BORDER_CONSTANT, value=[0, 0, 0])
|
|
|
|
return resized |