497 lines
22 KiB
Python
497 lines
22 KiB
Python
from typing import Any, Dict
|
|
import os
|
|
import json
|
|
import time
|
|
import queue
|
|
import torch
|
|
import cv2
|
|
import base64
|
|
import logging
|
|
import threading
|
|
import requests
|
|
import asyncio
|
|
import psutil
|
|
import zipfile
|
|
from urllib.parse import urlparse
|
|
from fastapi import FastAPI, WebSocket
|
|
from fastapi.websockets import WebSocketDisconnect
|
|
from websockets.exceptions import ConnectionClosedError
|
|
from ultralytics import YOLO
|
|
|
|
app = FastAPI()
|
|
|
|
# Global dictionaries to keep track of models and streams
|
|
# "models" now holds a nested dict: { camera_id: { modelId: model_tree } }
|
|
models: Dict[str, Dict[str, Any]] = {}
|
|
streams: Dict[str, Dict[str, Any]] = {}
|
|
|
|
with open("config.json", "r") as f:
|
|
config = json.load(f)
|
|
|
|
poll_interval = config.get("poll_interval_ms", 100)
|
|
reconnect_interval = config.get("reconnect_interval_sec", 5)
|
|
TARGET_FPS = config.get("target_fps", 10)
|
|
poll_interval = 1000 / TARGET_FPS
|
|
logging.info(f"Poll interval: {poll_interval}ms")
|
|
max_streams = config.get("max_streams", 5)
|
|
max_retries = config.get("max_retries", 3)
|
|
|
|
# Configure logging
|
|
logging.basicConfig(
|
|
level=logging.DEBUG,
|
|
format="%(asctime)s [%(levelname)s] %(message)s",
|
|
handlers=[
|
|
logging.FileHandler("app.log"),
|
|
logging.StreamHandler()
|
|
]
|
|
)
|
|
|
|
# Ensure the models directory exists
|
|
os.makedirs("models", exist_ok=True)
|
|
|
|
# Constants for heartbeat and timeouts
|
|
HEARTBEAT_INTERVAL = 2 # seconds
|
|
WORKER_TIMEOUT_MS = 10000
|
|
|
|
# Locks for thread-safe operations
|
|
streams_lock = threading.Lock()
|
|
models_lock = threading.Lock()
|
|
|
|
####################################################
|
|
# Pipeline (Model)-loading helper functions
|
|
####################################################
|
|
def load_pipeline_node(node_config: dict, models_dir: str) -> dict:
|
|
"""
|
|
Recursively load a model node.
|
|
Expects node_config to have:
|
|
- modelId: a unique identifier
|
|
- modelFile: the .pt file in models_dir
|
|
- triggerClasses: list of class names that activate child branches
|
|
- crop: boolean; if True, we crop to the bounding box for the next model
|
|
- minConfidence: (optional) minimum confidence required to enter this branch
|
|
- branches: list of child node configurations
|
|
"""
|
|
model_path = os.path.join(models_dir, node_config["modelFile"])
|
|
if not os.path.exists(model_path):
|
|
logging.error(f"Model file {model_path} not found.")
|
|
raise FileNotFoundError(f"Model file {model_path} not found.")
|
|
|
|
logging.info(f"Loading model for node {node_config['modelId']} from {model_path}")
|
|
model = YOLO(model_path)
|
|
if torch.cuda.is_available():
|
|
model.to("cuda")
|
|
|
|
node = {
|
|
"modelId": node_config["modelId"],
|
|
"modelFile": node_config["modelFile"],
|
|
"triggerClasses": node_config.get("triggerClasses", []),
|
|
"crop": node_config.get("crop", False),
|
|
"minConfidence": node_config.get("minConfidence", None), # NEW FIELD
|
|
"model": model,
|
|
"branches": []
|
|
}
|
|
for child_config in node_config.get("branches", []):
|
|
child_node = load_pipeline_node(child_config, models_dir)
|
|
node["branches"].append(child_node)
|
|
return node
|
|
|
|
def load_pipeline_from_zip(zip_url: str, target_dir: str) -> dict:
|
|
"""
|
|
Download the .mpta file from zip_url, extract it to target_dir,
|
|
and load the pipeline configuration (pipeline.json).
|
|
Returns the model tree (root node) loaded with YOLO models.
|
|
"""
|
|
os.makedirs(target_dir, exist_ok=True)
|
|
zip_path = os.path.join(target_dir, "pipeline.mpta")
|
|
|
|
try:
|
|
response = requests.get(zip_url, stream=True)
|
|
if response.status_code == 200:
|
|
with open(zip_path, "wb") as f:
|
|
for chunk in response.iter_content(chunk_size=8192):
|
|
f.write(chunk)
|
|
logging.info(f"Downloaded .mpta file from {zip_url} to {zip_path}")
|
|
else:
|
|
logging.error(f"Failed to download .mpta file (status {response.status_code})")
|
|
return None
|
|
except Exception as e:
|
|
logging.error(f"Exception downloading .mpta file from {zip_url}: {e}")
|
|
return None
|
|
|
|
# Extract the .mpta file
|
|
try:
|
|
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
|
zip_ref.extractall(target_dir)
|
|
logging.info(f"Extracted .mpta file to {target_dir}")
|
|
except Exception as e:
|
|
logging.error(f"Failed to extract .mpta file: {e}")
|
|
return None
|
|
finally:
|
|
if os.path.exists(zip_path):
|
|
os.remove(zip_path)
|
|
|
|
# Load pipeline.json
|
|
pipeline_json_path = os.path.join(target_dir, "pipeline.json")
|
|
if not os.path.exists(pipeline_json_path):
|
|
logging.error("pipeline.json not found in the .mpta file")
|
|
return None
|
|
|
|
try:
|
|
with open(pipeline_json_path, "r") as f:
|
|
pipeline_config = json.load(f)
|
|
# Build the model tree recursively
|
|
model_tree = load_pipeline_node(pipeline_config["pipeline"], target_dir)
|
|
return model_tree
|
|
except Exception as e:
|
|
logging.error(f"Error loading pipeline.json: {e}")
|
|
return None
|
|
|
|
####################################################
|
|
# Model execution function
|
|
####################################################
|
|
def run_pipeline(frame, node: dict):
|
|
"""
|
|
Run the model at the current node.
|
|
- Select the highest-confidence detection (if any).
|
|
- If 'crop' is True, crop to the bounding box for the next stage.
|
|
- If the detected class matches a branch's triggerClasses, check the confidence.
|
|
If the detection's confidence is below branch["minConfidence"] (if specified),
|
|
do not enter the branch and return the current detection.
|
|
Returns the final detection result (dict) or None.
|
|
"""
|
|
try:
|
|
results = node["model"].track(frame, stream=False, persist=True)
|
|
detection = None
|
|
max_conf = -1
|
|
best_box = None
|
|
|
|
for r in results:
|
|
for box in r.boxes:
|
|
box_cpu = box.cpu()
|
|
conf = float(box_cpu.conf[0])
|
|
if conf > max_conf and hasattr(box, "id") and box.id is not None:
|
|
max_conf = conf
|
|
detection = {
|
|
"class": node["model"].names[int(box_cpu.cls[0])],
|
|
"confidence": conf,
|
|
"id": box.id.item(),
|
|
}
|
|
best_box = box_cpu
|
|
|
|
# If there's a detection and crop is True, crop frame to bounding box
|
|
if detection and node.get("crop", False) and best_box is not None:
|
|
coords = best_box.xyxy[0] # [x1, y1, x2, y2]
|
|
x1, y1, x2, y2 = map(int, coords)
|
|
h, w = frame.shape[:2]
|
|
x1 = max(0, x1)
|
|
y1 = max(0, y1)
|
|
x2 = min(w, x2)
|
|
y2 = min(h, y2)
|
|
|
|
if x2 > x1 and y2 > y1:
|
|
frame = frame[y1:y2, x1:x2] # crop the frame
|
|
|
|
if detection is not None:
|
|
# Check if any branch should be entered based on trigger classes
|
|
for branch in node["branches"]:
|
|
if detection["class"] in branch.get("triggerClasses", []):
|
|
# Check for a minimum confidence threshold for this branch
|
|
min_conf = branch.get("minConfidence")
|
|
if min_conf is not None and detection["confidence"] < min_conf:
|
|
logging.debug(
|
|
f"Detection confidence {detection['confidence']} below threshold "
|
|
f"{min_conf} for branch {branch['modelId']}. Ending pipeline at current node."
|
|
)
|
|
return detection
|
|
branch_detection = run_pipeline(frame, branch)
|
|
if branch_detection is not None:
|
|
return branch_detection
|
|
return detection
|
|
return None
|
|
except Exception as e:
|
|
logging.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
|
|
return None
|
|
|
|
####################################################
|
|
# Detection and frame processing functions
|
|
####################################################
|
|
@app.websocket("/")
|
|
async def detect(websocket: WebSocket):
|
|
logging.info("WebSocket connection accepted")
|
|
persistent_data_dict = {}
|
|
|
|
async def handle_detection(camera_id, stream, frame, websocket, model_tree, persistent_data):
|
|
try:
|
|
detection_result = run_pipeline(frame, model_tree)
|
|
detection_data = {
|
|
"type": "imageDetection",
|
|
"cameraIdentifier": camera_id,
|
|
"timestamp": time.time(),
|
|
"data": {
|
|
"detection": detection_result if detection_result else None,
|
|
"modelId": stream["modelId"],
|
|
"modelName": stream["modelName"]
|
|
}
|
|
}
|
|
logging.debug(f"Sending detection data for camera {camera_id}: {detection_data}")
|
|
await websocket.send_json(detection_data)
|
|
return persistent_data
|
|
except Exception as e:
|
|
logging.error(f"Error in handle_detection for camera {camera_id}: {e}")
|
|
return persistent_data
|
|
|
|
def frame_reader(camera_id, cap, buffer, stop_event):
|
|
retries = 0
|
|
try:
|
|
while not stop_event.is_set():
|
|
try:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
logging.warning(f"Connection lost for camera: {camera_id}, retry {retries+1}/{max_retries}")
|
|
cap.release()
|
|
time.sleep(reconnect_interval)
|
|
retries += 1
|
|
if retries > max_retries and max_retries != -1:
|
|
logging.error(f"Max retries reached for camera: {camera_id}")
|
|
break
|
|
# Re-open
|
|
cap = cv2.VideoCapture(streams[camera_id]["rtsp_url"])
|
|
if not cap.isOpened():
|
|
logging.error(f"Failed to reopen RTSP stream for camera: {camera_id}")
|
|
continue
|
|
continue
|
|
retries = 0
|
|
# Overwrite old frame if buffer is full
|
|
if not buffer.empty():
|
|
try:
|
|
buffer.get_nowait()
|
|
except queue.Empty:
|
|
pass
|
|
buffer.put(frame)
|
|
except cv2.error as e:
|
|
logging.error(f"OpenCV error for camera {camera_id}: {e}")
|
|
cap.release()
|
|
time.sleep(reconnect_interval)
|
|
retries += 1
|
|
if retries > max_retries and max_retries != -1:
|
|
logging.error(f"Max retries reached after OpenCV error for camera {camera_id}")
|
|
break
|
|
cap = cv2.VideoCapture(streams[camera_id]["rtsp_url"])
|
|
if not cap.isOpened():
|
|
logging.error(f"Failed to reopen RTSP stream for camera {camera_id} after OpenCV error")
|
|
continue
|
|
except Exception as e:
|
|
logging.error(f"Unexpected error for camera {camera_id}: {e}")
|
|
cap.release()
|
|
break
|
|
except Exception as e:
|
|
logging.error(f"Error in frame_reader thread for camera {camera_id}: {e}")
|
|
|
|
async def process_streams():
|
|
logging.info("Started processing streams")
|
|
try:
|
|
while True:
|
|
start_time = time.time()
|
|
with streams_lock:
|
|
current_streams = list(streams.items())
|
|
for camera_id, stream in current_streams:
|
|
buffer = stream["buffer"]
|
|
if not buffer.empty():
|
|
frame = buffer.get()
|
|
with models_lock:
|
|
model_tree = models.get(camera_id, {}).get(stream["modelId"])
|
|
key = (camera_id, stream["modelId"])
|
|
persistent_data = persistent_data_dict.get(key, {})
|
|
updated_persistent_data = await handle_detection(
|
|
camera_id, stream, frame, websocket, model_tree, persistent_data
|
|
)
|
|
persistent_data_dict[key] = updated_persistent_data
|
|
elapsed_time = (time.time() - start_time) * 1000 # ms
|
|
sleep_time = max(poll_interval - elapsed_time, 0)
|
|
logging.debug(f"Elapsed time: {elapsed_time}ms, sleeping for: {sleep_time}ms")
|
|
await asyncio.sleep(sleep_time / 1000.0)
|
|
except asyncio.CancelledError:
|
|
logging.info("Stream processing task cancelled")
|
|
except Exception as e:
|
|
logging.error(f"Error in process_streams: {e}")
|
|
|
|
async def send_heartbeat():
|
|
while True:
|
|
try:
|
|
cpu_usage = psutil.cpu_percent()
|
|
memory_usage = psutil.virtual_memory().percent
|
|
if torch.cuda.is_available():
|
|
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2) # MB
|
|
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2) # MB
|
|
else:
|
|
gpu_usage = None
|
|
gpu_memory_usage = None
|
|
|
|
camera_connections = [
|
|
{
|
|
"cameraIdentifier": camera_id,
|
|
"modelId": stream["modelId"],
|
|
"modelName": stream["modelName"],
|
|
"online": True
|
|
}
|
|
for camera_id, stream in streams.items()
|
|
]
|
|
|
|
state_report = {
|
|
"type": "stateReport",
|
|
"cpuUsage": cpu_usage,
|
|
"memoryUsage": memory_usage,
|
|
"gpuUsage": gpu_usage,
|
|
"gpuMemoryUsage": gpu_memory_usage,
|
|
"cameraConnections": camera_connections
|
|
}
|
|
await websocket.send_text(json.dumps(state_report))
|
|
logging.debug("Sent stateReport as heartbeat")
|
|
await asyncio.sleep(HEARTBEAT_INTERVAL)
|
|
except Exception as e:
|
|
logging.error(f"Error sending stateReport heartbeat: {e}")
|
|
break
|
|
|
|
async def on_message():
|
|
while True:
|
|
try:
|
|
msg = await websocket.receive_text()
|
|
logging.debug(f"Received message: {msg}")
|
|
data = json.loads(msg)
|
|
msg_type = data.get("type")
|
|
|
|
if msg_type == "subscribe":
|
|
payload = data.get("payload", {})
|
|
camera_id = payload.get("cameraIdentifier")
|
|
rtsp_url = payload.get("rtspUrl")
|
|
model_url = payload.get("modelUrl") # ZIP file URL
|
|
modelId = payload.get("modelId")
|
|
modelName = payload.get("modelName")
|
|
|
|
if model_url:
|
|
with models_lock:
|
|
if camera_id not in models:
|
|
models[camera_id] = {}
|
|
if modelId not in models[camera_id]:
|
|
logging.info(f"Downloading model from {model_url}")
|
|
extraction_dir = os.path.join("models", camera_id, str(modelId))
|
|
os.makedirs(extraction_dir, exist_ok=True)
|
|
model_tree = load_pipeline_from_zip(model_url, extraction_dir)
|
|
if model_tree is None:
|
|
logging.error("Failed to load model from ZIP file.")
|
|
continue
|
|
models[camera_id][modelId] = model_tree
|
|
logging.info(f"Loaded model {modelId} for camera {camera_id}")
|
|
|
|
if camera_id and rtsp_url:
|
|
with streams_lock:
|
|
if camera_id not in streams and len(streams) < max_streams:
|
|
cap = cv2.VideoCapture(rtsp_url)
|
|
if not cap.isOpened():
|
|
logging.error(f"Failed to open RTSP stream for camera {camera_id}")
|
|
continue
|
|
buffer = queue.Queue(maxsize=1)
|
|
stop_event = threading.Event()
|
|
thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
|
|
thread.daemon = True
|
|
thread.start()
|
|
streams[camera_id] = {
|
|
"cap": cap,
|
|
"buffer": buffer,
|
|
"thread": thread,
|
|
"rtsp_url": rtsp_url,
|
|
"stop_event": stop_event,
|
|
"modelId": modelId,
|
|
"modelName": modelName
|
|
}
|
|
logging.info(f"Subscribed to camera {camera_id} with modelId {modelId}, modelName {modelName}, URL {rtsp_url}")
|
|
elif camera_id and camera_id in streams:
|
|
# If already subscribed, unsubscribe
|
|
stream = streams.pop(camera_id)
|
|
stream["cap"].release()
|
|
logging.info(f"Unsubscribed from camera {camera_id}")
|
|
with models_lock:
|
|
if camera_id in models and modelId in models[camera_id]:
|
|
del models[camera_id][modelId]
|
|
if not models[camera_id]:
|
|
del models[camera_id]
|
|
elif msg_type == "unsubscribe":
|
|
payload = data.get("payload", {})
|
|
camera_id = payload.get("cameraIdentifier")
|
|
logging.debug(f"Unsubscribing from camera {camera_id}")
|
|
with streams_lock:
|
|
if camera_id and camera_id in streams:
|
|
stream = streams.pop(camera_id)
|
|
stream["stop_event"].set()
|
|
stream["thread"].join()
|
|
stream["cap"].release()
|
|
logging.info(f"Unsubscribed from camera {camera_id}")
|
|
with models_lock:
|
|
if camera_id in models:
|
|
del models[camera_id]
|
|
elif msg_type == "requestState":
|
|
cpu_usage = psutil.cpu_percent()
|
|
memory_usage = psutil.virtual_memory().percent
|
|
if torch.cuda.is_available():
|
|
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2)
|
|
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)
|
|
else:
|
|
gpu_usage = None
|
|
gpu_memory_usage = None
|
|
|
|
camera_connections = [
|
|
{
|
|
"cameraIdentifier": camera_id,
|
|
"modelId": stream["modelId"],
|
|
"modelName": stream["modelName"],
|
|
"online": True
|
|
}
|
|
for camera_id, stream in streams.items()
|
|
]
|
|
|
|
state_report = {
|
|
"type": "stateReport",
|
|
"cpuUsage": cpu_usage,
|
|
"memoryUsage": memory_usage,
|
|
"gpuUsage": gpu_usage,
|
|
"gpuMemoryUsage": gpu_memory_usage,
|
|
"cameraConnections": camera_connections
|
|
}
|
|
await websocket.send_text(json.dumps(state_report))
|
|
else:
|
|
logging.error(f"Unknown message type: {msg_type}")
|
|
except json.JSONDecodeError:
|
|
logging.error("Received invalid JSON message")
|
|
except (WebSocketDisconnect, ConnectionClosedError) as e:
|
|
logging.warning(f"WebSocket disconnected: {e}")
|
|
break
|
|
except Exception as e:
|
|
logging.error(f"Error handling message: {e}")
|
|
break
|
|
|
|
try:
|
|
await websocket.accept()
|
|
stream_task = asyncio.create_task(process_streams())
|
|
heartbeat_task = asyncio.create_task(send_heartbeat())
|
|
message_task = asyncio.create_task(on_message())
|
|
await asyncio.gather(heartbeat_task, message_task)
|
|
except Exception as e:
|
|
logging.error(f"Error in detect websocket: {e}")
|
|
finally:
|
|
stream_task.cancel()
|
|
await stream_task
|
|
with streams_lock:
|
|
for camera_id, stream in streams.items():
|
|
stream["stop_event"].set()
|
|
stream["thread"].join()
|
|
stream["cap"].release()
|
|
while not stream["buffer"].empty():
|
|
try:
|
|
stream["buffer"].get_nowait()
|
|
except queue.Empty:
|
|
pass
|
|
logging.info(f"Released camera {camera_id} and cleaned up resources")
|
|
streams.clear()
|
|
with models_lock:
|
|
models.clear()
|
|
logging.info("WebSocket connection closed")
|