beta pipeline
This commit is contained in:
		
							parent
							
								
									b12e4ccb7f
								
							
						
					
					
						commit
						5da166a341
					
				
					 2 changed files with 622 additions and 125 deletions
				
			
		
							
								
								
									
										381
									
								
								app.py
									
										
									
									
									
								
							
							
						
						
									
										381
									
								
								app.py
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -1,31 +1,35 @@
 | 
			
		|||
from typing import List
 | 
			
		||||
from typing import Any, Dict
 | 
			
		||||
import os
 | 
			
		||||
import json
 | 
			
		||||
import time
 | 
			
		||||
import queue
 | 
			
		||||
import torch
 | 
			
		||||
import cv2
 | 
			
		||||
import base64
 | 
			
		||||
import logging
 | 
			
		||||
import threading
 | 
			
		||||
import requests
 | 
			
		||||
import asyncio
 | 
			
		||||
import psutil
 | 
			
		||||
import zipfile
 | 
			
		||||
from urllib.parse import urlparse
 | 
			
		||||
from fastapi import FastAPI, WebSocket
 | 
			
		||||
from fastapi.websockets import WebSocketDisconnect
 | 
			
		||||
from websockets.exceptions import ConnectionClosedError
 | 
			
		||||
from ultralytics import YOLO
 | 
			
		||||
import torch
 | 
			
		||||
import cv2
 | 
			
		||||
import base64
 | 
			
		||||
import numpy as np
 | 
			
		||||
import json
 | 
			
		||||
import logging
 | 
			
		||||
import threading
 | 
			
		||||
import queue
 | 
			
		||||
import os
 | 
			
		||||
import requests
 | 
			
		||||
from urllib.parse import urlparse
 | 
			
		||||
import asyncio
 | 
			
		||||
import psutil
 | 
			
		||||
 | 
			
		||||
app = FastAPI()
 | 
			
		||||
 | 
			
		||||
models = {}
 | 
			
		||||
# Global dictionaries to keep track of models and streams
 | 
			
		||||
# "models" now holds a nested dict: { camera_id: { modelId: model_tree } }
 | 
			
		||||
models: Dict[str, Dict[str, Any]] = {}
 | 
			
		||||
streams: Dict[str, Dict[str, Any]] = {}
 | 
			
		||||
 | 
			
		||||
with open("config.json", "r") as f:
 | 
			
		||||
    config = json.load(f)
 | 
			
		||||
 | 
			
		||||
poll_interval = config.get("poll_interval_ms", 100)
 | 
			
		||||
reconnect_interval = config.get("reconnect_interval_sec", 5) 
 | 
			
		||||
reconnect_interval = config.get("reconnect_interval_sec", 5)
 | 
			
		||||
TARGET_FPS = config.get("target_fps", 10)
 | 
			
		||||
poll_interval = 1000 / TARGET_FPS
 | 
			
		||||
logging.info(f"Poll interval: {poll_interval}ms")
 | 
			
		||||
| 
						 | 
				
			
			@ -45,51 +49,188 @@ logging.basicConfig(
 | 
			
		|||
# Ensure the models directory exists
 | 
			
		||||
os.makedirs("models", exist_ok=True)
 | 
			
		||||
 | 
			
		||||
# Add constants for heartbeat
 | 
			
		||||
# Constants for heartbeat and timeouts
 | 
			
		||||
HEARTBEAT_INTERVAL = 2  # seconds
 | 
			
		||||
WORKER_TIMEOUT_MS = 10000
 | 
			
		||||
 | 
			
		||||
# Add a lock for thread-safe operations on shared resources
 | 
			
		||||
# Locks for thread-safe operations
 | 
			
		||||
streams_lock = threading.Lock()
 | 
			
		||||
models_lock = threading.Lock()
 | 
			
		||||
 | 
			
		||||
####################################################
 | 
			
		||||
# Pipeline (Model)-loading helper functions
 | 
			
		||||
####################################################
 | 
			
		||||
def load_pipeline_node(node_config: dict, models_dir: str) -> dict:
 | 
			
		||||
    """
 | 
			
		||||
    Recursively load a model node.
 | 
			
		||||
    Expects node_config to have:
 | 
			
		||||
      - modelId: a unique identifier
 | 
			
		||||
      - modelFile: the .pt file in models_dir
 | 
			
		||||
      - triggerClasses: list of class names that activate child branches
 | 
			
		||||
      - crop: boolean; if True, we crop to the bounding box for the next model
 | 
			
		||||
      - minConfidence: (optional) minimum confidence required to enter this branch
 | 
			
		||||
      - branches: list of child node configurations
 | 
			
		||||
    """
 | 
			
		||||
    model_path = os.path.join(models_dir, node_config["modelFile"])
 | 
			
		||||
    if not os.path.exists(model_path):
 | 
			
		||||
        logging.error(f"Model file {model_path} not found.")
 | 
			
		||||
        raise FileNotFoundError(f"Model file {model_path} not found.")
 | 
			
		||||
    
 | 
			
		||||
    logging.info(f"Loading model for node {node_config['modelId']} from {model_path}")
 | 
			
		||||
    model = YOLO(model_path)
 | 
			
		||||
    if torch.cuda.is_available():
 | 
			
		||||
        model.to("cuda")
 | 
			
		||||
    
 | 
			
		||||
    node = {
 | 
			
		||||
        "modelId": node_config["modelId"],
 | 
			
		||||
        "modelFile": node_config["modelFile"],
 | 
			
		||||
        "triggerClasses": node_config.get("triggerClasses", []),
 | 
			
		||||
        "crop": node_config.get("crop", False),
 | 
			
		||||
        "minConfidence": node_config.get("minConfidence", None),  # NEW FIELD
 | 
			
		||||
        "model": model,
 | 
			
		||||
        "branches": []
 | 
			
		||||
    }
 | 
			
		||||
    for child_config in node_config.get("branches", []):
 | 
			
		||||
        child_node = load_pipeline_node(child_config, models_dir)
 | 
			
		||||
        node["branches"].append(child_node)
 | 
			
		||||
    return node
 | 
			
		||||
 | 
			
		||||
def load_pipeline_from_zip(zip_url: str, target_dir: str) -> dict:
 | 
			
		||||
    """
 | 
			
		||||
    Download the .mpta file from zip_url, extract it to target_dir,
 | 
			
		||||
    and load the pipeline configuration (pipeline.json).
 | 
			
		||||
    Returns the model tree (root node) loaded with YOLO models.
 | 
			
		||||
    """
 | 
			
		||||
    os.makedirs(target_dir, exist_ok=True)
 | 
			
		||||
    zip_path = os.path.join(target_dir, "pipeline.mpta")
 | 
			
		||||
    
 | 
			
		||||
    try:
 | 
			
		||||
        response = requests.get(zip_url, stream=True)
 | 
			
		||||
        if response.status_code == 200:
 | 
			
		||||
            with open(zip_path, "wb") as f:
 | 
			
		||||
                for chunk in response.iter_content(chunk_size=8192):
 | 
			
		||||
                    f.write(chunk)
 | 
			
		||||
            logging.info(f"Downloaded .mpta file from {zip_url} to {zip_path}")
 | 
			
		||||
        else:
 | 
			
		||||
            logging.error(f"Failed to download .mpta file (status {response.status_code})")
 | 
			
		||||
            return None
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Exception downloading .mpta file from {zip_url}: {e}")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    # Extract the .mpta file
 | 
			
		||||
    try:
 | 
			
		||||
        with zipfile.ZipFile(zip_path, "r") as zip_ref:
 | 
			
		||||
            zip_ref.extractall(target_dir)
 | 
			
		||||
        logging.info(f"Extracted .mpta file to {target_dir}")
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Failed to extract .mpta file: {e}")
 | 
			
		||||
        return None
 | 
			
		||||
    finally:
 | 
			
		||||
        if os.path.exists(zip_path):
 | 
			
		||||
            os.remove(zip_path)
 | 
			
		||||
 | 
			
		||||
    # Load pipeline.json
 | 
			
		||||
    pipeline_json_path = os.path.join(target_dir, "pipeline.json")
 | 
			
		||||
    if not os.path.exists(pipeline_json_path):
 | 
			
		||||
        logging.error("pipeline.json not found in the .mpta file")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        with open(pipeline_json_path, "r") as f:
 | 
			
		||||
            pipeline_config = json.load(f)
 | 
			
		||||
        # Build the model tree recursively
 | 
			
		||||
        model_tree = load_pipeline_node(pipeline_config["pipeline"], target_dir)
 | 
			
		||||
        return model_tree
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Error loading pipeline.json: {e}")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
####################################################
 | 
			
		||||
# Model execution function
 | 
			
		||||
####################################################
 | 
			
		||||
def run_pipeline(frame, node: dict):
 | 
			
		||||
    """
 | 
			
		||||
    Run the model at the current node.
 | 
			
		||||
    - Select the highest-confidence detection (if any).
 | 
			
		||||
    - If 'crop' is True, crop to the bounding box for the next stage.
 | 
			
		||||
    - If the detected class matches a branch's triggerClasses, check the confidence.
 | 
			
		||||
      If the detection's confidence is below branch["minConfidence"] (if specified),
 | 
			
		||||
      do not enter the branch and return the current detection.
 | 
			
		||||
    Returns the final detection result (dict) or None.
 | 
			
		||||
    """
 | 
			
		||||
    try:
 | 
			
		||||
        results = node["model"].track(frame, stream=False, persist=True)
 | 
			
		||||
        detection = None
 | 
			
		||||
        max_conf = -1
 | 
			
		||||
        best_box = None
 | 
			
		||||
        
 | 
			
		||||
        for r in results:
 | 
			
		||||
            for box in r.boxes:
 | 
			
		||||
                box_cpu = box.cpu()
 | 
			
		||||
                conf = float(box_cpu.conf[0])
 | 
			
		||||
                if conf > max_conf and hasattr(box, "id") and box.id is not None:
 | 
			
		||||
                    max_conf = conf
 | 
			
		||||
                    detection = {
 | 
			
		||||
                        "class": node["model"].names[int(box_cpu.cls[0])],
 | 
			
		||||
                        "confidence": conf,
 | 
			
		||||
                        "id": box.id.item(),
 | 
			
		||||
                    }
 | 
			
		||||
                    best_box = box_cpu
 | 
			
		||||
 | 
			
		||||
        # If there's a detection and crop is True, crop frame to bounding box
 | 
			
		||||
        if detection and node.get("crop", False) and best_box is not None:
 | 
			
		||||
            coords = best_box.xyxy[0]  # [x1, y1, x2, y2]
 | 
			
		||||
            x1, y1, x2, y2 = map(int, coords)
 | 
			
		||||
            h, w = frame.shape[:2]
 | 
			
		||||
            x1 = max(0, x1)
 | 
			
		||||
            y1 = max(0, y1)
 | 
			
		||||
            x2 = min(w, x2)
 | 
			
		||||
            y2 = min(h, y2)
 | 
			
		||||
            
 | 
			
		||||
            if x2 > x1 and y2 > y1:
 | 
			
		||||
                frame = frame[y1:y2, x1:x2]  # crop the frame
 | 
			
		||||
 | 
			
		||||
        if detection is not None:
 | 
			
		||||
            # Check if any branch should be entered based on trigger classes
 | 
			
		||||
            for branch in node["branches"]:
 | 
			
		||||
                if detection["class"] in branch.get("triggerClasses", []):
 | 
			
		||||
                    # Check for a minimum confidence threshold for this branch
 | 
			
		||||
                    min_conf = branch.get("minConfidence")
 | 
			
		||||
                    if min_conf is not None and detection["confidence"] < min_conf:
 | 
			
		||||
                        logging.debug(
 | 
			
		||||
                            f"Detection confidence {detection['confidence']} below threshold "
 | 
			
		||||
                            f"{min_conf} for branch {branch['modelId']}. Ending pipeline at current node."
 | 
			
		||||
                        )
 | 
			
		||||
                        return detection
 | 
			
		||||
                    branch_detection = run_pipeline(frame, branch)
 | 
			
		||||
                    if branch_detection is not None:
 | 
			
		||||
                        return branch_detection
 | 
			
		||||
            return detection
 | 
			
		||||
        return None
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
####################################################
 | 
			
		||||
# Detection and frame processing functions
 | 
			
		||||
####################################################
 | 
			
		||||
@app.websocket("/")
 | 
			
		||||
async def detect(websocket: WebSocket):
 | 
			
		||||
    import asyncio
 | 
			
		||||
    import time
 | 
			
		||||
 | 
			
		||||
    logging.info("WebSocket connection accepted")
 | 
			
		||||
    persistent_data_dict = {}
 | 
			
		||||
 | 
			
		||||
    streams = {}
 | 
			
		||||
 | 
			
		||||
    # This function is user-modifiable
 | 
			
		||||
    # Save data you want to persist across frames in the persistent_data dictionary
 | 
			
		||||
    async def handle_detection(camera_id, stream, frame, websocket, model: YOLO, persistent_data):
 | 
			
		||||
    async def handle_detection(camera_id, stream, frame, websocket, model_tree, persistent_data):
 | 
			
		||||
        try:
 | 
			
		||||
            highest_conf_box = None
 | 
			
		||||
            max_conf = -1
 | 
			
		||||
            
 | 
			
		||||
            for r in model.track(frame, stream=False, persist=True):
 | 
			
		||||
                for box in r.boxes:
 | 
			
		||||
                    box_cpu = box.cpu()
 | 
			
		||||
                    conf = float(box_cpu.conf[0])
 | 
			
		||||
                    if conf > max_conf and hasattr(box, "id") and box.id is not None:
 | 
			
		||||
                        max_conf = conf
 | 
			
		||||
                        highest_conf_box = {
 | 
			
		||||
                            "class": model.names[int(box_cpu.cls[0])],
 | 
			
		||||
                            "confidence": conf,
 | 
			
		||||
                            "id": box.id.item(),
 | 
			
		||||
                        }
 | 
			
		||||
            
 | 
			
		||||
            # Broadcast to all subscribers of this URL
 | 
			
		||||
            detection_result = run_pipeline(frame, model_tree)
 | 
			
		||||
            detection_data = {
 | 
			
		||||
                "type": "imageDetection",
 | 
			
		||||
                "cameraIdentifier": camera_id,
 | 
			
		||||
                "timestamp": time.time(),
 | 
			
		||||
                "data": {
 | 
			
		||||
                    "detections": highest_conf_box if highest_conf_box else None,
 | 
			
		||||
                    "modelId": stream['modelId'],
 | 
			
		||||
                    "modelName": stream['modelName']
 | 
			
		||||
                    "detection": detection_result if detection_result else None,
 | 
			
		||||
                    "modelId": stream["modelId"],
 | 
			
		||||
                    "modelName": stream["modelName"]
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            logging.debug(f"Sending detection data for camera {camera_id}: {detection_data}")
 | 
			
		||||
| 
						 | 
				
			
			@ -100,7 +241,6 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
            return persistent_data
 | 
			
		||||
 | 
			
		||||
    def frame_reader(camera_id, cap, buffer, stop_event):
 | 
			
		||||
        import time
 | 
			
		||||
        retries = 0
 | 
			
		||||
        try:
 | 
			
		||||
            while not stop_event.is_set():
 | 
			
		||||
| 
						 | 
				
			
			@ -114,16 +254,17 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                        if retries > max_retries and max_retries != -1:
 | 
			
		||||
                            logging.error(f"Max retries reached for camera: {camera_id}")
 | 
			
		||||
                            break
 | 
			
		||||
                        # Re-open the VideoCapture
 | 
			
		||||
                        cap = cv2.VideoCapture(streams[camera_id]['rtsp_url'])
 | 
			
		||||
                        # Re-open
 | 
			
		||||
                        cap = cv2.VideoCapture(streams[camera_id]["rtsp_url"])
 | 
			
		||||
                        if not cap.isOpened():
 | 
			
		||||
                            logging.error(f"Failed to reopen RTSP stream for camera: {camera_id}")
 | 
			
		||||
                            continue
 | 
			
		||||
                        continue
 | 
			
		||||
                    retries = 0  # Reset on success
 | 
			
		||||
                    retries = 0
 | 
			
		||||
                    # Overwrite old frame if buffer is full
 | 
			
		||||
                    if not buffer.empty():
 | 
			
		||||
                        try:
 | 
			
		||||
                            buffer.get_nowait()  # Discard the old frame
 | 
			
		||||
                            buffer.get_nowait()
 | 
			
		||||
                        except queue.Empty:
 | 
			
		||||
                            pass
 | 
			
		||||
                    buffer.put(frame)
 | 
			
		||||
| 
						 | 
				
			
			@ -133,10 +274,9 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                    time.sleep(reconnect_interval)
 | 
			
		||||
                    retries += 1
 | 
			
		||||
                    if retries > max_retries and max_retries != -1:
 | 
			
		||||
                        logging.error(f"Max retries reached after OpenCV error for camera: {camera_id}")
 | 
			
		||||
                        logging.error(f"Max retries reached after OpenCV error for camera {camera_id}")
 | 
			
		||||
                        break
 | 
			
		||||
                    # Re-open the VideoCapture
 | 
			
		||||
                    cap = cv2.VideoCapture(streams[camera_id]['rtsp_url'])
 | 
			
		||||
                    cap = cv2.VideoCapture(streams[camera_id]["rtsp_url"])
 | 
			
		||||
                    if not cap.isOpened():
 | 
			
		||||
                        logging.error(f"Failed to reopen RTSP stream for camera {camera_id} after OpenCV error")
 | 
			
		||||
                        continue
 | 
			
		||||
| 
						 | 
				
			
			@ -148,26 +288,25 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
            logging.error(f"Error in frame_reader thread for camera {camera_id}: {e}")
 | 
			
		||||
 | 
			
		||||
    async def process_streams():
 | 
			
		||||
        global models
 | 
			
		||||
        logging.info("Started processing streams")
 | 
			
		||||
        persistent_data_dict = {} 
 | 
			
		||||
        try:
 | 
			
		||||
            while True:
 | 
			
		||||
                start_time = time.time()
 | 
			
		||||
                # Round-robin processing
 | 
			
		||||
                with streams_lock:
 | 
			
		||||
                    current_streams = list(streams.items())
 | 
			
		||||
                for camera_id, stream in current_streams:
 | 
			
		||||
                    buffer = stream['buffer']
 | 
			
		||||
                    buffer = stream["buffer"]
 | 
			
		||||
                    if not buffer.empty():
 | 
			
		||||
                        frame = buffer.get()
 | 
			
		||||
                        with models_lock:
 | 
			
		||||
                            model = models.get(camera_id, {}).get(stream['modelId'])
 | 
			
		||||
                        key = (camera_id, stream['modelId'])
 | 
			
		||||
                            model_tree = models.get(camera_id, {}).get(stream["modelId"])
 | 
			
		||||
                        key = (camera_id, stream["modelId"])
 | 
			
		||||
                        persistent_data = persistent_data_dict.get(key, {})
 | 
			
		||||
                        updated_persistent_data = await handle_detection(camera_id, stream, frame, websocket, model, persistent_data)
 | 
			
		||||
                        updated_persistent_data = await handle_detection(
 | 
			
		||||
                            camera_id, stream, frame, websocket, model_tree, persistent_data
 | 
			
		||||
                        )
 | 
			
		||||
                        persistent_data_dict[key] = updated_persistent_data
 | 
			
		||||
                elapsed_time = (time.time() - start_time) * 1000  # in ms
 | 
			
		||||
                elapsed_time = (time.time() - start_time) * 1000  # ms
 | 
			
		||||
                sleep_time = max(poll_interval - elapsed_time, 0)
 | 
			
		||||
                logging.debug(f"Elapsed time: {elapsed_time}ms, sleeping for: {sleep_time}ms")
 | 
			
		||||
                await asyncio.sleep(sleep_time / 1000.0)
 | 
			
		||||
| 
						 | 
				
			
			@ -182,22 +321,22 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                cpu_usage = psutil.cpu_percent()
 | 
			
		||||
                memory_usage = psutil.virtual_memory().percent
 | 
			
		||||
                if torch.cuda.is_available():
 | 
			
		||||
                    gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2)  # Convert to MB
 | 
			
		||||
                    gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)  # Convert to MB
 | 
			
		||||
                    gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2)  # MB
 | 
			
		||||
                    gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)  # MB
 | 
			
		||||
                else:
 | 
			
		||||
                    gpu_usage = None
 | 
			
		||||
                    gpu_memory_usage = None
 | 
			
		||||
            
 | 
			
		||||
 | 
			
		||||
                camera_connections = [
 | 
			
		||||
                    {
 | 
			
		||||
                        "cameraIdentifier": camera_id,
 | 
			
		||||
                        "modelId": stream['modelId'],
 | 
			
		||||
                        "modelName": stream['modelName'],
 | 
			
		||||
                        "modelId": stream["modelId"],
 | 
			
		||||
                        "modelName": stream["modelName"],
 | 
			
		||||
                        "online": True
 | 
			
		||||
                    }
 | 
			
		||||
                    for camera_id, stream in streams.items()
 | 
			
		||||
                ]
 | 
			
		||||
            
 | 
			
		||||
 | 
			
		||||
                state_report = {
 | 
			
		||||
                    "type": "stateReport",
 | 
			
		||||
                    "cpuUsage": cpu_usage,
 | 
			
		||||
| 
						 | 
				
			
			@ -214,12 +353,10 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                break
 | 
			
		||||
 | 
			
		||||
    async def on_message():
 | 
			
		||||
        global models
 | 
			
		||||
        while True:
 | 
			
		||||
            try:
 | 
			
		||||
                msg = await websocket.receive_text()
 | 
			
		||||
                logging.debug(f"Received message: {msg}")
 | 
			
		||||
                print(f"Received message: {msg}")
 | 
			
		||||
                data = json.loads(msg)
 | 
			
		||||
                msg_type = data.get("type")
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -227,34 +364,25 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                    payload = data.get("payload", {})
 | 
			
		||||
                    camera_id = payload.get("cameraIdentifier")
 | 
			
		||||
                    rtsp_url = payload.get("rtspUrl")
 | 
			
		||||
                    model_url = payload.get("modelUrl")
 | 
			
		||||
                    model_url = payload.get("modelUrl")  # ZIP file URL
 | 
			
		||||
                    modelId = payload.get("modelId")
 | 
			
		||||
                    modelName = payload.get("modelName")
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
                    if model_url:
 | 
			
		||||
                        with models_lock:
 | 
			
		||||
                            if camera_id not in models:
 | 
			
		||||
                                models[camera_id] = {}
 | 
			
		||||
                            if modelId not in models[camera_id]:
 | 
			
		||||
                                print(f"Downloading model from {model_url}")
 | 
			
		||||
                                parsed_url = urlparse(model_url)
 | 
			
		||||
                                filename = os.path.basename(parsed_url.path)    
 | 
			
		||||
                                model_filename = os.path.join("models", filename)
 | 
			
		||||
                                # Download the model
 | 
			
		||||
                                response = requests.get(model_url, stream=True)
 | 
			
		||||
                                if response.status_code == 200:
 | 
			
		||||
                                    with open(model_filename, 'wb') as f:
 | 
			
		||||
                                        for chunk in response.iter_content(chunk_size=8192):
 | 
			
		||||
                                            f.write(chunk)
 | 
			
		||||
                                    logging.info(f"Downloaded model from {model_url} to {model_filename}")
 | 
			
		||||
                                    model = YOLO(model_filename)
 | 
			
		||||
                                    if torch.cuda.is_available():
 | 
			
		||||
                                        model.to('cuda')
 | 
			
		||||
                                    models[camera_id][modelId] = model
 | 
			
		||||
                                    logging.info(f"Loaded model {modelId} for camera {camera_id}")
 | 
			
		||||
                                else:
 | 
			
		||||
                                    logging.error(f"Failed to download model from {model_url}")
 | 
			
		||||
                                logging.info(f"Downloading model from {model_url}")
 | 
			
		||||
                                extraction_dir = os.path.join("models", camera_id, str(modelId))
 | 
			
		||||
                                os.makedirs(extraction_dir, exist_ok=True)
 | 
			
		||||
                                model_tree = load_pipeline_from_zip(model_url, extraction_dir)
 | 
			
		||||
                                if model_tree is None:
 | 
			
		||||
                                    logging.error("Failed to load model from ZIP file.")
 | 
			
		||||
                                    continue
 | 
			
		||||
                                models[camera_id][modelId] = model_tree
 | 
			
		||||
                                logging.info(f"Loaded model {modelId} for camera {camera_id}")
 | 
			
		||||
 | 
			
		||||
                    if camera_id and rtsp_url:
 | 
			
		||||
                        with streams_lock:
 | 
			
		||||
                            if camera_id not in streams and len(streams) < max_streams:
 | 
			
		||||
| 
						 | 
				
			
			@ -268,23 +396,25 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                                thread.daemon = True
 | 
			
		||||
                                thread.start()
 | 
			
		||||
                                streams[camera_id] = {
 | 
			
		||||
                                    'cap': cap,
 | 
			
		||||
                                    'buffer': buffer,
 | 
			
		||||
                                    'thread': thread,
 | 
			
		||||
                                    'rtsp_url': rtsp_url,
 | 
			
		||||
                                    'stop_event': stop_event,
 | 
			
		||||
                                    'modelId': modelId,
 | 
			
		||||
                                    'modelName': modelName
 | 
			
		||||
                                    "cap": cap,
 | 
			
		||||
                                    "buffer": buffer,
 | 
			
		||||
                                    "thread": thread,
 | 
			
		||||
                                    "rtsp_url": rtsp_url,
 | 
			
		||||
                                    "stop_event": stop_event,
 | 
			
		||||
                                    "modelId": modelId,
 | 
			
		||||
                                    "modelName": modelName
 | 
			
		||||
                                }
 | 
			
		||||
                                logging.info(f"Subscribed to camera {camera_id} with modelId {modelId}, modelName {modelName} and URL {rtsp_url}")
 | 
			
		||||
                                logging.info(f"Subscribed to camera {camera_id} with modelId {modelId}, modelName {modelName}, URL {rtsp_url}")
 | 
			
		||||
                            elif camera_id and camera_id in streams:
 | 
			
		||||
                                # If already subscribed, unsubscribe
 | 
			
		||||
                                stream = streams.pop(camera_id)
 | 
			
		||||
                                stream['cap'].release()
 | 
			
		||||
                                stream["cap"].release()
 | 
			
		||||
                                logging.info(f"Unsubscribed from camera {camera_id}")
 | 
			
		||||
                                if camera_id in models and modelId in models[camera_id]:
 | 
			
		||||
                                    del models[camera_id][modelId]
 | 
			
		||||
                                    if not models[camera_id]:
 | 
			
		||||
                                        del models[camera_id]
 | 
			
		||||
                                with models_lock:
 | 
			
		||||
                                    if camera_id in models and modelId in models[camera_id]:
 | 
			
		||||
                                        del models[camera_id][modelId]
 | 
			
		||||
                                        if not models[camera_id]:
 | 
			
		||||
                                            del models[camera_id]
 | 
			
		||||
                elif msg_type == "unsubscribe":
 | 
			
		||||
                    payload = data.get("payload", {})
 | 
			
		||||
                    camera_id = payload.get("cameraIdentifier")
 | 
			
		||||
| 
						 | 
				
			
			@ -292,35 +422,33 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                    with streams_lock:
 | 
			
		||||
                        if camera_id and camera_id in streams:
 | 
			
		||||
                            stream = streams.pop(camera_id)
 | 
			
		||||
                            stream['stop_event'].set()
 | 
			
		||||
                            stream['thread'].join()
 | 
			
		||||
                            stream['cap'].release()
 | 
			
		||||
                            stream["stop_event"].set()
 | 
			
		||||
                            stream["thread"].join()
 | 
			
		||||
                            stream["cap"].release()
 | 
			
		||||
                            logging.info(f"Unsubscribed from camera {camera_id}")
 | 
			
		||||
                            if camera_id in models and modelId in models[camera_id]:
 | 
			
		||||
                                del models[camera_id][modelId]
 | 
			
		||||
                                if not models[camera_id]:
 | 
			
		||||
                            with models_lock:
 | 
			
		||||
                                if camera_id in models:
 | 
			
		||||
                                    del models[camera_id]
 | 
			
		||||
                elif msg_type == "requestState":
 | 
			
		||||
                    # Handle state request
 | 
			
		||||
                    cpu_usage = psutil.cpu_percent()
 | 
			
		||||
                    memory_usage = psutil.virtual_memory().percent
 | 
			
		||||
                    if torch.cuda.is_available():
 | 
			
		||||
                        gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2)  # Convert to MB
 | 
			
		||||
                        gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)  # Convert to MB
 | 
			
		||||
                        gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2)
 | 
			
		||||
                        gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)
 | 
			
		||||
                    else:
 | 
			
		||||
                        gpu_usage = None
 | 
			
		||||
                        gpu_memory_usage = None
 | 
			
		||||
                    
 | 
			
		||||
 | 
			
		||||
                    camera_connections = [
 | 
			
		||||
                        {
 | 
			
		||||
                            "cameraIdentifier": camera_id,
 | 
			
		||||
                            "modelId": stream['modelId'],
 | 
			
		||||
                            "modelName": stream['modelName'],
 | 
			
		||||
                            "modelId": stream["modelId"],
 | 
			
		||||
                            "modelName": stream["modelName"],
 | 
			
		||||
                            "online": True
 | 
			
		||||
                        }
 | 
			
		||||
                        for camera_id, stream in streams.items()
 | 
			
		||||
                    ]
 | 
			
		||||
                    
 | 
			
		||||
 | 
			
		||||
                    state_report = {
 | 
			
		||||
                        "type": "stateReport",
 | 
			
		||||
                        "cpuUsage": cpu_usage,
 | 
			
		||||
| 
						 | 
				
			
			@ -336,31 +464,34 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                logging.error("Received invalid JSON message")
 | 
			
		||||
            except (WebSocketDisconnect, ConnectionClosedError) as e:
 | 
			
		||||
                logging.warning(f"WebSocket disconnected: {e}")
 | 
			
		||||
                break 
 | 
			
		||||
                break
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
                logging.error(f"Error handling message: {e}")
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        await websocket.accept()
 | 
			
		||||
        task = asyncio.create_task(process_streams())
 | 
			
		||||
        stream_task = asyncio.create_task(process_streams())
 | 
			
		||||
        heartbeat_task = asyncio.create_task(send_heartbeat())
 | 
			
		||||
        message_task = asyncio.create_task(on_message())
 | 
			
		||||
 | 
			
		||||
        await asyncio.gather(heartbeat_task, message_task)
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Error in detect websocket: {e}")
 | 
			
		||||
    finally:
 | 
			
		||||
        task.cancel()
 | 
			
		||||
        await task
 | 
			
		||||
        stream_task.cancel()
 | 
			
		||||
        await stream_task
 | 
			
		||||
        with streams_lock:
 | 
			
		||||
            for camera_id, stream in streams.items():
 | 
			
		||||
                stream['stop_event'].set()
 | 
			
		||||
                stream['thread'].join()
 | 
			
		||||
                stream['cap'].release()
 | 
			
		||||
                stream['buffer'].queue.clear()
 | 
			
		||||
                stream["stop_event"].set()
 | 
			
		||||
                stream["thread"].join()
 | 
			
		||||
                stream["cap"].release()
 | 
			
		||||
                while not stream["buffer"].empty():
 | 
			
		||||
                    try:
 | 
			
		||||
                        stream["buffer"].get_nowait()
 | 
			
		||||
                    except queue.Empty:
 | 
			
		||||
                        pass
 | 
			
		||||
                logging.info(f"Released camera {camera_id} and cleaned up resources")
 | 
			
		||||
            streams.clear()
 | 
			
		||||
        with models_lock:
 | 
			
		||||
            models.clear()
 | 
			
		||||
        logging.info("WebSocket connection closed")
 | 
			
		||||
        logging.info("WebSocket connection closed")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										366
									
								
								app_single.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										366
									
								
								app_single.py
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,366 @@
 | 
			
		|||
from typing import List
 | 
			
		||||
from fastapi import FastAPI, WebSocket
 | 
			
		||||
from fastapi.websockets import WebSocketDisconnect
 | 
			
		||||
from websockets.exceptions import ConnectionClosedError
 | 
			
		||||
from ultralytics import YOLO
 | 
			
		||||
import torch
 | 
			
		||||
import cv2
 | 
			
		||||
import base64
 | 
			
		||||
import numpy as np
 | 
			
		||||
import json
 | 
			
		||||
import logging
 | 
			
		||||
import threading
 | 
			
		||||
import queue
 | 
			
		||||
import os
 | 
			
		||||
import requests
 | 
			
		||||
from urllib.parse import urlparse
 | 
			
		||||
import asyncio
 | 
			
		||||
import psutil
 | 
			
		||||
 | 
			
		||||
app = FastAPI()
 | 
			
		||||
 | 
			
		||||
models = {}
 | 
			
		||||
 | 
			
		||||
with open("config.json", "r") as f:
 | 
			
		||||
    config = json.load(f)
 | 
			
		||||
 | 
			
		||||
poll_interval = config.get("poll_interval_ms", 100)
 | 
			
		||||
reconnect_interval = config.get("reconnect_interval_sec", 5) 
 | 
			
		||||
TARGET_FPS = config.get("target_fps", 10)
 | 
			
		||||
poll_interval = 1000 / TARGET_FPS
 | 
			
		||||
logging.info(f"Poll interval: {poll_interval}ms")
 | 
			
		||||
max_streams = config.get("max_streams", 5)
 | 
			
		||||
max_retries = config.get("max_retries", 3)
 | 
			
		||||
 | 
			
		||||
# Configure logging
 | 
			
		||||
logging.basicConfig(
 | 
			
		||||
    level=logging.DEBUG,
 | 
			
		||||
    format="%(asctime)s [%(levelname)s] %(message)s",
 | 
			
		||||
    handlers=[
 | 
			
		||||
        logging.FileHandler("app.log"),
 | 
			
		||||
        logging.StreamHandler()
 | 
			
		||||
    ]
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
# Ensure the models directory exists
 | 
			
		||||
os.makedirs("models", exist_ok=True)
 | 
			
		||||
 | 
			
		||||
# Add constants for heartbeat
 | 
			
		||||
HEARTBEAT_INTERVAL = 2  # seconds
 | 
			
		||||
WORKER_TIMEOUT_MS = 10000
 | 
			
		||||
 | 
			
		||||
# Add a lock for thread-safe operations on shared resources
 | 
			
		||||
streams_lock = threading.Lock()
 | 
			
		||||
models_lock = threading.Lock()
 | 
			
		||||
 | 
			
		||||
@app.websocket("/")
 | 
			
		||||
async def detect(websocket: WebSocket):
 | 
			
		||||
    import asyncio
 | 
			
		||||
    import time
 | 
			
		||||
 | 
			
		||||
    logging.info("WebSocket connection accepted")
 | 
			
		||||
 | 
			
		||||
    streams = {}
 | 
			
		||||
 | 
			
		||||
    # This function is user-modifiable
 | 
			
		||||
    # Save data you want to persist across frames in the persistent_data dictionary
 | 
			
		||||
    async def handle_detection(camera_id, stream, frame, websocket, model: YOLO, persistent_data):
 | 
			
		||||
        try:
 | 
			
		||||
            highest_conf_box = None
 | 
			
		||||
            max_conf = -1
 | 
			
		||||
            
 | 
			
		||||
            for r in model.track(frame, stream=False, persist=True):
 | 
			
		||||
                for box in r.boxes:
 | 
			
		||||
                    box_cpu = box.cpu()
 | 
			
		||||
                    conf = float(box_cpu.conf[0])
 | 
			
		||||
                    if conf > max_conf and hasattr(box, "id") and box.id is not None:
 | 
			
		||||
                        max_conf = conf
 | 
			
		||||
                        highest_conf_box = {
 | 
			
		||||
                            "class": model.names[int(box_cpu.cls[0])],
 | 
			
		||||
                            "confidence": conf,
 | 
			
		||||
                            "id": box.id.item(),
 | 
			
		||||
                        }
 | 
			
		||||
            
 | 
			
		||||
            # Broadcast to all subscribers of this URL
 | 
			
		||||
            detection_data = {
 | 
			
		||||
                "type": "imageDetection",
 | 
			
		||||
                "cameraIdentifier": camera_id,
 | 
			
		||||
                "timestamp": time.time(),
 | 
			
		||||
                "data": {
 | 
			
		||||
                    "detections": highest_conf_box if highest_conf_box else None,
 | 
			
		||||
                    "modelId": stream['modelId'],
 | 
			
		||||
                    "modelName": stream['modelName']
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            logging.debug(f"Sending detection data for camera {camera_id}: {detection_data}")
 | 
			
		||||
            await websocket.send_json(detection_data)
 | 
			
		||||
            return persistent_data
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logging.error(f"Error in handle_detection for camera {camera_id}: {e}")
 | 
			
		||||
            return persistent_data
 | 
			
		||||
 | 
			
		||||
    def frame_reader(camera_id, cap, buffer, stop_event):
 | 
			
		||||
        import time
 | 
			
		||||
        retries = 0
 | 
			
		||||
        try:
 | 
			
		||||
            while not stop_event.is_set():
 | 
			
		||||
                try:
 | 
			
		||||
                    ret, frame = cap.read()
 | 
			
		||||
                    if not ret:
 | 
			
		||||
                        logging.warning(f"Connection lost for camera: {camera_id}, retry {retries+1}/{max_retries}")
 | 
			
		||||
                        cap.release()
 | 
			
		||||
                        time.sleep(reconnect_interval)
 | 
			
		||||
                        retries += 1
 | 
			
		||||
                        if retries > max_retries and max_retries != -1:
 | 
			
		||||
                            logging.error(f"Max retries reached for camera: {camera_id}")
 | 
			
		||||
                            break
 | 
			
		||||
                        # Re-open the VideoCapture
 | 
			
		||||
                        cap = cv2.VideoCapture(streams[camera_id]['rtsp_url'])
 | 
			
		||||
                        if not cap.isOpened():
 | 
			
		||||
                            logging.error(f"Failed to reopen RTSP stream for camera: {camera_id}")
 | 
			
		||||
                            continue
 | 
			
		||||
                        continue
 | 
			
		||||
                    retries = 0  # Reset on success
 | 
			
		||||
                    if not buffer.empty():
 | 
			
		||||
                        try:
 | 
			
		||||
                            buffer.get_nowait()  # Discard the old frame
 | 
			
		||||
                        except queue.Empty:
 | 
			
		||||
                            pass
 | 
			
		||||
                    buffer.put(frame)
 | 
			
		||||
                except cv2.error as e:
 | 
			
		||||
                    logging.error(f"OpenCV error for camera {camera_id}: {e}")
 | 
			
		||||
                    cap.release()
 | 
			
		||||
                    time.sleep(reconnect_interval)
 | 
			
		||||
                    retries += 1
 | 
			
		||||
                    if retries > max_retries and max_retries != -1:
 | 
			
		||||
                        logging.error(f"Max retries reached after OpenCV error for camera: {camera_id}")
 | 
			
		||||
                        break
 | 
			
		||||
                    # Re-open the VideoCapture
 | 
			
		||||
                    cap = cv2.VideoCapture(streams[camera_id]['rtsp_url'])
 | 
			
		||||
                    if not cap.isOpened():
 | 
			
		||||
                        logging.error(f"Failed to reopen RTSP stream for camera {camera_id} after OpenCV error")
 | 
			
		||||
                        continue
 | 
			
		||||
                except Exception as e:
 | 
			
		||||
                    logging.error(f"Unexpected error for camera {camera_id}: {e}")
 | 
			
		||||
                    cap.release()
 | 
			
		||||
                    break
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logging.error(f"Error in frame_reader thread for camera {camera_id}: {e}")
 | 
			
		||||
 | 
			
		||||
    async def process_streams():
 | 
			
		||||
        global models
 | 
			
		||||
        logging.info("Started processing streams")
 | 
			
		||||
        persistent_data_dict = {} 
 | 
			
		||||
        try:
 | 
			
		||||
            while True:
 | 
			
		||||
                start_time = time.time()
 | 
			
		||||
                # Round-robin processing
 | 
			
		||||
                with streams_lock:
 | 
			
		||||
                    current_streams = list(streams.items())
 | 
			
		||||
                for camera_id, stream in current_streams:
 | 
			
		||||
                    buffer = stream['buffer']
 | 
			
		||||
                    if not buffer.empty():
 | 
			
		||||
                        frame = buffer.get()
 | 
			
		||||
                        with models_lock:
 | 
			
		||||
                            model = models.get(camera_id, {}).get(stream['modelId'])
 | 
			
		||||
                        key = (camera_id, stream['modelId'])
 | 
			
		||||
                        persistent_data = persistent_data_dict.get(key, {})
 | 
			
		||||
                        updated_persistent_data = await handle_detection(camera_id, stream, frame, websocket, model, persistent_data)
 | 
			
		||||
                        persistent_data_dict[key] = updated_persistent_data
 | 
			
		||||
                elapsed_time = (time.time() - start_time) * 1000  # in ms
 | 
			
		||||
                sleep_time = max(poll_interval - elapsed_time, 0)
 | 
			
		||||
                logging.debug(f"Elapsed time: {elapsed_time}ms, sleeping for: {sleep_time}ms")
 | 
			
		||||
                await asyncio.sleep(sleep_time / 1000.0)
 | 
			
		||||
        except asyncio.CancelledError:
 | 
			
		||||
            logging.info("Stream processing task cancelled")
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logging.error(f"Error in process_streams: {e}")
 | 
			
		||||
 | 
			
		||||
    async def send_heartbeat():
 | 
			
		||||
        while True:
 | 
			
		||||
            try:
 | 
			
		||||
                cpu_usage = psutil.cpu_percent()
 | 
			
		||||
                memory_usage = psutil.virtual_memory().percent
 | 
			
		||||
                if torch.cuda.is_available():
 | 
			
		||||
                    gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2)  # Convert to MB
 | 
			
		||||
                    gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)  # Convert to MB
 | 
			
		||||
                else:
 | 
			
		||||
                    gpu_usage = None
 | 
			
		||||
                    gpu_memory_usage = None
 | 
			
		||||
            
 | 
			
		||||
                camera_connections = [
 | 
			
		||||
                    {
 | 
			
		||||
                        "cameraIdentifier": camera_id,
 | 
			
		||||
                        "modelId": stream['modelId'],
 | 
			
		||||
                        "modelName": stream['modelName'],
 | 
			
		||||
                        "online": True
 | 
			
		||||
                    }
 | 
			
		||||
                    for camera_id, stream in streams.items()
 | 
			
		||||
                ]
 | 
			
		||||
            
 | 
			
		||||
                state_report = {
 | 
			
		||||
                    "type": "stateReport",
 | 
			
		||||
                    "cpuUsage": cpu_usage,
 | 
			
		||||
                    "memoryUsage": memory_usage,
 | 
			
		||||
                    "gpuUsage": gpu_usage,
 | 
			
		||||
                    "gpuMemoryUsage": gpu_memory_usage,
 | 
			
		||||
                    "cameraConnections": camera_connections
 | 
			
		||||
                }
 | 
			
		||||
                await websocket.send_text(json.dumps(state_report))
 | 
			
		||||
                logging.debug("Sent stateReport as heartbeat")
 | 
			
		||||
                await asyncio.sleep(HEARTBEAT_INTERVAL)
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
                logging.error(f"Error sending stateReport heartbeat: {e}")
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
    async def on_message():
 | 
			
		||||
        global models
 | 
			
		||||
        while True:
 | 
			
		||||
            try:
 | 
			
		||||
                msg = await websocket.receive_text()
 | 
			
		||||
                logging.debug(f"Received message: {msg}")
 | 
			
		||||
                print(f"Received message: {msg}")
 | 
			
		||||
                data = json.loads(msg)
 | 
			
		||||
                msg_type = data.get("type")
 | 
			
		||||
 | 
			
		||||
                if msg_type == "subscribe":
 | 
			
		||||
                    payload = data.get("payload", {})
 | 
			
		||||
                    camera_id = payload.get("cameraIdentifier")
 | 
			
		||||
                    rtsp_url = payload.get("rtspUrl")
 | 
			
		||||
                    model_url = payload.get("modelUrl")
 | 
			
		||||
                    modelId = payload.get("modelId")
 | 
			
		||||
                    modelName = payload.get("modelName")
 | 
			
		||||
    
 | 
			
		||||
                    if model_url:
 | 
			
		||||
                        with models_lock:
 | 
			
		||||
                            if camera_id not in models:
 | 
			
		||||
                                models[camera_id] = {}
 | 
			
		||||
                            if modelId not in models[camera_id]:
 | 
			
		||||
                                print(f"Downloading model from {model_url}")
 | 
			
		||||
                                parsed_url = urlparse(model_url)
 | 
			
		||||
                                filename = os.path.basename(parsed_url.path)    
 | 
			
		||||
                                model_filename = os.path.join("models", filename)
 | 
			
		||||
                                # Download the model
 | 
			
		||||
                                response = requests.get(model_url, stream=True)
 | 
			
		||||
                                if response.status_code == 200:
 | 
			
		||||
                                    with open(model_filename, 'wb') as f:
 | 
			
		||||
                                        for chunk in response.iter_content(chunk_size=8192):
 | 
			
		||||
                                            f.write(chunk)
 | 
			
		||||
                                    logging.info(f"Downloaded model from {model_url} to {model_filename}")
 | 
			
		||||
                                    model = YOLO(model_filename)
 | 
			
		||||
                                    if torch.cuda.is_available():
 | 
			
		||||
                                        model.to('cuda')
 | 
			
		||||
                                    models[camera_id][modelId] = model
 | 
			
		||||
                                    logging.info(f"Loaded model {modelId} for camera {camera_id}")
 | 
			
		||||
                                else:
 | 
			
		||||
                                    logging.error(f"Failed to download model from {model_url}")
 | 
			
		||||
                                    continue
 | 
			
		||||
                    if camera_id and rtsp_url:
 | 
			
		||||
                        with streams_lock:
 | 
			
		||||
                            if camera_id not in streams and len(streams) < max_streams:
 | 
			
		||||
                                cap = cv2.VideoCapture(rtsp_url)
 | 
			
		||||
                                if not cap.isOpened():
 | 
			
		||||
                                    logging.error(f"Failed to open RTSP stream for camera {camera_id}")
 | 
			
		||||
                                    continue
 | 
			
		||||
                                buffer = queue.Queue(maxsize=1)
 | 
			
		||||
                                stop_event = threading.Event()
 | 
			
		||||
                                thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
 | 
			
		||||
                                thread.daemon = True
 | 
			
		||||
                                thread.start()
 | 
			
		||||
                                streams[camera_id] = {
 | 
			
		||||
                                    'cap': cap,
 | 
			
		||||
                                    'buffer': buffer,
 | 
			
		||||
                                    'thread': thread,
 | 
			
		||||
                                    'rtsp_url': rtsp_url,
 | 
			
		||||
                                    'stop_event': stop_event,
 | 
			
		||||
                                    'modelId': modelId,
 | 
			
		||||
                                    'modelName': modelName
 | 
			
		||||
                                }
 | 
			
		||||
                                logging.info(f"Subscribed to camera {camera_id} with modelId {modelId}, modelName {modelName} and URL {rtsp_url}")
 | 
			
		||||
                            elif camera_id and camera_id in streams:
 | 
			
		||||
                                stream = streams.pop(camera_id)
 | 
			
		||||
                                stream['cap'].release()
 | 
			
		||||
                                logging.info(f"Unsubscribed from camera {camera_id}")
 | 
			
		||||
                                if camera_id in models and modelId in models[camera_id]:
 | 
			
		||||
                                    del models[camera_id][modelId]
 | 
			
		||||
                                    if not models[camera_id]:
 | 
			
		||||
                                        del models[camera_id]
 | 
			
		||||
                elif msg_type == "unsubscribe":
 | 
			
		||||
                    payload = data.get("payload", {})
 | 
			
		||||
                    camera_id = payload.get("cameraIdentifier")
 | 
			
		||||
                    logging.debug(f"Unsubscribing from camera {camera_id}")
 | 
			
		||||
                    with streams_lock:
 | 
			
		||||
                        if camera_id and camera_id in streams:
 | 
			
		||||
                            stream = streams.pop(camera_id)
 | 
			
		||||
                            stream['stop_event'].set()
 | 
			
		||||
                            stream['thread'].join()
 | 
			
		||||
                            stream['cap'].release()
 | 
			
		||||
                            logging.info(f"Unsubscribed from camera {camera_id}")
 | 
			
		||||
                            if camera_id in models and modelId in models[camera_id]:
 | 
			
		||||
                                del models[camera_id][modelId]
 | 
			
		||||
                                if not models[camera_id]:
 | 
			
		||||
                                    del models[camera_id]
 | 
			
		||||
                elif msg_type == "requestState":
 | 
			
		||||
                    # Handle state request
 | 
			
		||||
                    cpu_usage = psutil.cpu_percent()
 | 
			
		||||
                    memory_usage = psutil.virtual_memory().percent
 | 
			
		||||
                    if torch.cuda.is_available():
 | 
			
		||||
                        gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2)  # Convert to MB
 | 
			
		||||
                        gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)  # Convert to MB
 | 
			
		||||
                    else:
 | 
			
		||||
                        gpu_usage = None
 | 
			
		||||
                        gpu_memory_usage = None
 | 
			
		||||
                    
 | 
			
		||||
                    camera_connections = [
 | 
			
		||||
                        {
 | 
			
		||||
                            "cameraIdentifier": camera_id,
 | 
			
		||||
                            "modelId": stream['modelId'],
 | 
			
		||||
                            "modelName": stream['modelName'],
 | 
			
		||||
                            "online": True
 | 
			
		||||
                        }
 | 
			
		||||
                        for camera_id, stream in streams.items()
 | 
			
		||||
                    ]
 | 
			
		||||
                    
 | 
			
		||||
                    state_report = {
 | 
			
		||||
                        "type": "stateReport",
 | 
			
		||||
                        "cpuUsage": cpu_usage,
 | 
			
		||||
                        "memoryUsage": memory_usage,
 | 
			
		||||
                        "gpuUsage": gpu_usage,
 | 
			
		||||
                        "gpuMemoryUsage": gpu_memory_usage,
 | 
			
		||||
                        "cameraConnections": camera_connections
 | 
			
		||||
                    }
 | 
			
		||||
                    await websocket.send_text(json.dumps(state_report))
 | 
			
		||||
                else:
 | 
			
		||||
                    logging.error(f"Unknown message type: {msg_type}")
 | 
			
		||||
            except json.JSONDecodeError:
 | 
			
		||||
                logging.error("Received invalid JSON message")
 | 
			
		||||
            except (WebSocketDisconnect, ConnectionClosedError) as e:
 | 
			
		||||
                logging.warning(f"WebSocket disconnected: {e}")
 | 
			
		||||
                break 
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
                logging.error(f"Error handling message: {e}")
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        await websocket.accept()
 | 
			
		||||
        task = asyncio.create_task(process_streams())
 | 
			
		||||
        heartbeat_task = asyncio.create_task(send_heartbeat())
 | 
			
		||||
        message_task = asyncio.create_task(on_message())
 | 
			
		||||
 | 
			
		||||
        await asyncio.gather(heartbeat_task, message_task)
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Error in detect websocket: {e}")
 | 
			
		||||
    finally:
 | 
			
		||||
        task.cancel()
 | 
			
		||||
        await task
 | 
			
		||||
        with streams_lock:
 | 
			
		||||
            for camera_id, stream in streams.items():
 | 
			
		||||
                stream['stop_event'].set()
 | 
			
		||||
                stream['thread'].join()
 | 
			
		||||
                stream['cap'].release()
 | 
			
		||||
                stream['buffer'].queue.clear()
 | 
			
		||||
                logging.info(f"Released camera {camera_id} and cleaned up resources")
 | 
			
		||||
            streams.clear()
 | 
			
		||||
        with models_lock:
 | 
			
		||||
            models.clear()
 | 
			
		||||
        logging.info("WebSocket connection closed")
 | 
			
		||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue