All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 8m48s
709 lines
36 KiB
Python
709 lines
36 KiB
Python
from typing import Any, Dict
|
|
import os
|
|
import json
|
|
import time
|
|
import queue
|
|
import torch
|
|
import cv2
|
|
import numpy as np
|
|
import base64
|
|
import logging
|
|
import threading
|
|
import requests
|
|
import asyncio
|
|
import psutil
|
|
import zipfile
|
|
from urllib.parse import urlparse
|
|
from fastapi import FastAPI, WebSocket, HTTPException
|
|
from fastapi.websockets import WebSocketDisconnect
|
|
from fastapi.responses import Response
|
|
from websockets.exceptions import ConnectionClosedError
|
|
from ultralytics import YOLO
|
|
|
|
# Import shared pipeline functions
|
|
from siwatsystem.pympta import load_pipeline_from_zip, run_pipeline
|
|
|
|
app = FastAPI()
|
|
|
|
# Global dictionaries to keep track of models and streams
|
|
# "models" now holds a nested dict: { camera_id: { modelId: model_tree } }
|
|
models: Dict[str, Dict[str, Any]] = {}
|
|
streams: Dict[str, Dict[str, Any]] = {}
|
|
|
|
with open("config.json", "r") as f:
|
|
config = json.load(f)
|
|
|
|
poll_interval = config.get("poll_interval_ms", 100)
|
|
reconnect_interval = config.get("reconnect_interval_sec", 5)
|
|
TARGET_FPS = config.get("target_fps", 10)
|
|
poll_interval = 1000 / TARGET_FPS
|
|
logging.info(f"Poll interval: {poll_interval}ms")
|
|
max_streams = config.get("max_streams", 5)
|
|
max_retries = config.get("max_retries", 3)
|
|
|
|
# Configure logging
|
|
logging.basicConfig(
|
|
level=logging.INFO, # Set to INFO level for less verbose output
|
|
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
|
|
handlers=[
|
|
logging.FileHandler("detector_worker.log"), # Write logs to a file
|
|
logging.StreamHandler() # Also output to console
|
|
]
|
|
)
|
|
|
|
# Create a logger specifically for this application
|
|
logger = logging.getLogger("detector_worker")
|
|
logger.setLevel(logging.DEBUG) # Set app-specific logger to DEBUG level
|
|
|
|
# Ensure all other libraries (including root) use at least INFO level
|
|
logging.getLogger().setLevel(logging.INFO)
|
|
|
|
logger.info("Starting detector worker application")
|
|
logger.info(f"Configuration: Target FPS: {TARGET_FPS}, Max streams: {max_streams}, Max retries: {max_retries}")
|
|
|
|
# Ensure the models directory exists
|
|
os.makedirs("models", exist_ok=True)
|
|
logger.info("Ensured models directory exists")
|
|
|
|
# Constants for heartbeat and timeouts
|
|
HEARTBEAT_INTERVAL = 2 # seconds
|
|
WORKER_TIMEOUT_MS = 10000
|
|
logger.debug(f"Heartbeat interval set to {HEARTBEAT_INTERVAL} seconds")
|
|
|
|
# Locks for thread-safe operations
|
|
streams_lock = threading.Lock()
|
|
models_lock = threading.Lock()
|
|
logger.debug("Initialized thread locks")
|
|
|
|
# Add helper to download mpta ZIP file from a remote URL
|
|
def download_mpta(url: str, dest_path: str) -> str:
|
|
try:
|
|
logger.info(f"Starting download of model from {url} to {dest_path}")
|
|
os.makedirs(os.path.dirname(dest_path), exist_ok=True)
|
|
response = requests.get(url, stream=True)
|
|
if response.status_code == 200:
|
|
file_size = int(response.headers.get('content-length', 0))
|
|
logger.info(f"Model file size: {file_size/1024/1024:.2f} MB")
|
|
downloaded = 0
|
|
with open(dest_path, "wb") as f:
|
|
for chunk in response.iter_content(chunk_size=8192):
|
|
f.write(chunk)
|
|
downloaded += len(chunk)
|
|
if file_size > 0 and downloaded % (file_size // 10) < 8192: # Log approximately every 10%
|
|
logger.debug(f"Download progress: {downloaded/file_size*100:.1f}%")
|
|
logger.info(f"Successfully downloaded mpta file from {url} to {dest_path}")
|
|
return dest_path
|
|
else:
|
|
logger.error(f"Failed to download mpta file (status code {response.status_code}): {response.text}")
|
|
return None
|
|
except Exception as e:
|
|
logger.error(f"Exception downloading mpta file from {url}: {str(e)}", exc_info=True)
|
|
return None
|
|
|
|
# Add helper to fetch snapshot image from HTTP/HTTPS URL
|
|
def fetch_snapshot(url: str):
|
|
try:
|
|
response = requests.get(url, timeout=10)
|
|
if response.status_code == 200:
|
|
# Convert response content to numpy array
|
|
nparr = np.frombuffer(response.content, np.uint8)
|
|
# Decode image
|
|
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
|
if frame is not None:
|
|
logger.debug(f"Successfully fetched snapshot from {url}, shape: {frame.shape}")
|
|
return frame
|
|
else:
|
|
logger.error(f"Failed to decode image from snapshot URL: {url}")
|
|
return None
|
|
else:
|
|
logger.error(f"Failed to fetch snapshot (status code {response.status_code}): {url}")
|
|
return None
|
|
except Exception as e:
|
|
logger.error(f"Exception fetching snapshot from {url}: {str(e)}")
|
|
return None
|
|
|
|
####################################################
|
|
# REST API endpoint for image retrieval
|
|
####################################################
|
|
@app.get("/camera/{camera_id}/image")
|
|
async def get_camera_image(camera_id: str):
|
|
"""
|
|
Get the current frame from a camera as JPEG image
|
|
"""
|
|
try:
|
|
with streams_lock:
|
|
if camera_id not in streams:
|
|
raise HTTPException(status_code=404, detail=f"Camera {camera_id} not found or not active")
|
|
|
|
stream = streams[camera_id]
|
|
buffer = stream["buffer"]
|
|
|
|
if buffer.empty():
|
|
raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
|
|
|
|
# Get the latest frame (non-blocking)
|
|
try:
|
|
frame = buffer.queue[-1] # Get the most recent frame without removing it
|
|
except IndexError:
|
|
raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
|
|
|
|
# Encode frame as JPEG
|
|
success, buffer_img = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 85])
|
|
if not success:
|
|
raise HTTPException(status_code=500, detail="Failed to encode image as JPEG")
|
|
|
|
# Return image as binary response
|
|
return Response(content=buffer_img.tobytes(), media_type="image/jpeg")
|
|
|
|
except HTTPException:
|
|
raise
|
|
except Exception as e:
|
|
logger.error(f"Error retrieving image for camera {camera_id}: {str(e)}", exc_info=True)
|
|
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
|
|
|
####################################################
|
|
# Detection and frame processing functions
|
|
####################################################
|
|
@app.websocket("/")
|
|
async def detect(websocket: WebSocket):
|
|
logger.info("WebSocket connection accepted")
|
|
persistent_data_dict = {}
|
|
|
|
async def handle_detection(camera_id, stream, frame, websocket, model_tree, persistent_data):
|
|
try:
|
|
logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}")
|
|
start_time = time.time()
|
|
detection_result = run_pipeline(frame, model_tree)
|
|
process_time = (time.time() - start_time) * 1000
|
|
logger.debug(f"Detection for camera {camera_id} completed in {process_time:.2f}ms")
|
|
|
|
# Log the raw detection result for debugging
|
|
logger.debug(f"Raw detection result for camera {camera_id}:\n{json.dumps(detection_result, indent=2, default=str)}")
|
|
|
|
# Direct class result (no detections/classifications structure)
|
|
if detection_result and isinstance(detection_result, dict) and "class" in detection_result and "confidence" in detection_result:
|
|
highest_confidence_detection = {
|
|
"class": detection_result.get("class", "none"),
|
|
"confidence": detection_result.get("confidence", 1.0),
|
|
"box": [0, 0, 0, 0] # Empty bounding box for classifications
|
|
}
|
|
# Handle case when no detections found or result is empty
|
|
elif not detection_result or not detection_result.get("detections"):
|
|
# Check if we have classification results
|
|
if detection_result and detection_result.get("classifications"):
|
|
# Get the highest confidence classification
|
|
classifications = detection_result.get("classifications", [])
|
|
highest_confidence_class = max(classifications, key=lambda x: x.get("confidence", 0)) if classifications else None
|
|
|
|
if highest_confidence_class:
|
|
highest_confidence_detection = {
|
|
"class": highest_confidence_class.get("class", "none"),
|
|
"confidence": highest_confidence_class.get("confidence", 1.0),
|
|
"box": [0, 0, 0, 0] # Empty bounding box for classifications
|
|
}
|
|
else:
|
|
highest_confidence_detection = {
|
|
"class": "none",
|
|
"confidence": 1.0,
|
|
"box": [0, 0, 0, 0]
|
|
}
|
|
else:
|
|
highest_confidence_detection = {
|
|
"class": "none",
|
|
"confidence": 1.0,
|
|
"box": [0, 0, 0, 0]
|
|
}
|
|
else:
|
|
# Find detection with highest confidence
|
|
detections = detection_result.get("detections", [])
|
|
highest_confidence_detection = max(detections, key=lambda x: x.get("confidence", 0)) if detections else {
|
|
"class": "none",
|
|
"confidence": 1.0,
|
|
"box": [0, 0, 0, 0]
|
|
}
|
|
|
|
detection_data = {
|
|
"type": "imageDetection",
|
|
"cameraIdentifier": camera_id,
|
|
"timestamp": time.time(),
|
|
"data": {
|
|
"detection": highest_confidence_detection, # Send only the highest confidence detection
|
|
"modelId": stream["modelId"],
|
|
"modelName": stream["modelName"]
|
|
}
|
|
}
|
|
|
|
if highest_confidence_detection["class"] != "none":
|
|
logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {highest_confidence_detection['confidence']:.2f} using model {stream['modelName']}")
|
|
|
|
await websocket.send_json(detection_data)
|
|
logger.debug(f"Sent detection data to client for camera {camera_id}:\n{json.dumps(detection_data, indent=2)}")
|
|
return persistent_data
|
|
except Exception as e:
|
|
logger.error(f"Error in handle_detection for camera {camera_id}: {str(e)}", exc_info=True)
|
|
return persistent_data
|
|
|
|
def frame_reader(camera_id, cap, buffer, stop_event):
|
|
retries = 0
|
|
logger.info(f"Starting frame reader thread for camera {camera_id}")
|
|
frame_count = 0
|
|
last_log_time = time.time()
|
|
|
|
try:
|
|
# Log initial camera status and properties
|
|
if cap.isOpened():
|
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
fps = cap.get(cv2.CAP_PROP_FPS)
|
|
logger.info(f"Camera {camera_id} opened successfully with resolution {width}x{height}, FPS: {fps}")
|
|
else:
|
|
logger.error(f"Camera {camera_id} failed to open initially")
|
|
|
|
while not stop_event.is_set():
|
|
try:
|
|
if not cap.isOpened():
|
|
logger.error(f"Camera {camera_id} is not open before trying to read")
|
|
# Attempt to reopen
|
|
cap = cv2.VideoCapture(streams[camera_id]["rtsp_url"])
|
|
time.sleep(reconnect_interval)
|
|
continue
|
|
|
|
logger.debug(f"Attempting to read frame from camera {camera_id}")
|
|
ret, frame = cap.read()
|
|
|
|
if not ret:
|
|
logger.warning(f"Connection lost for camera: {camera_id}, retry {retries+1}/{max_retries}")
|
|
cap.release()
|
|
time.sleep(reconnect_interval)
|
|
retries += 1
|
|
if retries > max_retries and max_retries != -1:
|
|
logger.error(f"Max retries reached for camera: {camera_id}, stopping frame reader")
|
|
break
|
|
# Re-open
|
|
logger.info(f"Attempting to reopen RTSP stream for camera: {camera_id}")
|
|
cap = cv2.VideoCapture(streams[camera_id]["rtsp_url"])
|
|
if not cap.isOpened():
|
|
logger.error(f"Failed to reopen RTSP stream for camera: {camera_id}")
|
|
continue
|
|
logger.info(f"Successfully reopened RTSP stream for camera: {camera_id}")
|
|
continue
|
|
|
|
# Successfully read a frame
|
|
frame_count += 1
|
|
current_time = time.time()
|
|
# Log frame stats every 5 seconds
|
|
if current_time - last_log_time > 5:
|
|
logger.info(f"Camera {camera_id}: Read {frame_count} frames in the last {current_time - last_log_time:.1f} seconds")
|
|
frame_count = 0
|
|
last_log_time = current_time
|
|
|
|
logger.debug(f"Successfully read frame from camera {camera_id}, shape: {frame.shape}")
|
|
retries = 0
|
|
|
|
# Overwrite old frame if buffer is full
|
|
if not buffer.empty():
|
|
try:
|
|
buffer.get_nowait()
|
|
logger.debug(f"Removed old frame from buffer for camera {camera_id}")
|
|
except queue.Empty:
|
|
pass
|
|
|
|
buffer.put(frame)
|
|
logger.debug(f"Added new frame to buffer for camera {camera_id}")
|
|
|
|
# Short sleep to avoid CPU overuse
|
|
time.sleep(0.01)
|
|
|
|
except cv2.error as e:
|
|
logger.error(f"OpenCV error for camera {camera_id}: {e}", exc_info=True)
|
|
cap.release()
|
|
time.sleep(reconnect_interval)
|
|
retries += 1
|
|
if retries > max_retries and max_retries != -1:
|
|
logger.error(f"Max retries reached after OpenCV error for camera {camera_id}")
|
|
break
|
|
logger.info(f"Attempting to reopen RTSP stream after OpenCV error for camera: {camera_id}")
|
|
cap = cv2.VideoCapture(streams[camera_id]["rtsp_url"])
|
|
if not cap.isOpened():
|
|
logger.error(f"Failed to reopen RTSP stream for camera {camera_id} after OpenCV error")
|
|
continue
|
|
logger.info(f"Successfully reopened RTSP stream after OpenCV error for camera: {camera_id}")
|
|
except Exception as e:
|
|
logger.error(f"Unexpected error for camera {camera_id}: {str(e)}", exc_info=True)
|
|
cap.release()
|
|
break
|
|
except Exception as e:
|
|
logger.error(f"Error in frame_reader thread for camera {camera_id}: {str(e)}", exc_info=True)
|
|
finally:
|
|
logger.info(f"Frame reader thread for camera {camera_id} is exiting")
|
|
if cap and cap.isOpened():
|
|
cap.release()
|
|
|
|
def snapshot_reader(camera_id, snapshot_url, snapshot_interval, buffer, stop_event):
|
|
"""Frame reader that fetches snapshots from HTTP/HTTPS URL at specified intervals"""
|
|
retries = 0
|
|
logger.info(f"Starting snapshot reader thread for camera {camera_id} from {snapshot_url}")
|
|
frame_count = 0
|
|
last_log_time = time.time()
|
|
|
|
try:
|
|
interval_seconds = snapshot_interval / 1000.0 # Convert milliseconds to seconds
|
|
logger.info(f"Snapshot interval for camera {camera_id}: {interval_seconds}s")
|
|
|
|
while not stop_event.is_set():
|
|
try:
|
|
start_time = time.time()
|
|
frame = fetch_snapshot(snapshot_url)
|
|
|
|
if frame is None:
|
|
logger.warning(f"Failed to fetch snapshot for camera: {camera_id}, retry {retries+1}/{max_retries}")
|
|
retries += 1
|
|
if retries > max_retries and max_retries != -1:
|
|
logger.error(f"Max retries reached for snapshot camera: {camera_id}, stopping reader")
|
|
break
|
|
time.sleep(min(interval_seconds, reconnect_interval))
|
|
continue
|
|
|
|
# Successfully fetched a frame
|
|
frame_count += 1
|
|
current_time = time.time()
|
|
# Log frame stats every 5 seconds
|
|
if current_time - last_log_time > 5:
|
|
logger.info(f"Camera {camera_id}: Fetched {frame_count} snapshots in the last {current_time - last_log_time:.1f} seconds")
|
|
frame_count = 0
|
|
last_log_time = current_time
|
|
|
|
logger.debug(f"Successfully fetched snapshot from camera {camera_id}, shape: {frame.shape}")
|
|
retries = 0
|
|
|
|
# Overwrite old frame if buffer is full
|
|
if not buffer.empty():
|
|
try:
|
|
buffer.get_nowait()
|
|
logger.debug(f"Removed old snapshot from buffer for camera {camera_id}")
|
|
except queue.Empty:
|
|
pass
|
|
|
|
buffer.put(frame)
|
|
logger.debug(f"Added new snapshot to buffer for camera {camera_id}")
|
|
|
|
# Wait for the specified interval
|
|
elapsed = time.time() - start_time
|
|
sleep_time = max(interval_seconds - elapsed, 0)
|
|
if sleep_time > 0:
|
|
time.sleep(sleep_time)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Unexpected error fetching snapshot for camera {camera_id}: {str(e)}", exc_info=True)
|
|
retries += 1
|
|
if retries > max_retries and max_retries != -1:
|
|
logger.error(f"Max retries reached after error for snapshot camera {camera_id}")
|
|
break
|
|
time.sleep(min(interval_seconds, reconnect_interval))
|
|
except Exception as e:
|
|
logger.error(f"Error in snapshot_reader thread for camera {camera_id}: {str(e)}", exc_info=True)
|
|
finally:
|
|
logger.info(f"Snapshot reader thread for camera {camera_id} is exiting")
|
|
|
|
async def process_streams():
|
|
logger.info("Started processing streams")
|
|
try:
|
|
while True:
|
|
start_time = time.time()
|
|
with streams_lock:
|
|
current_streams = list(streams.items())
|
|
if current_streams:
|
|
logger.debug(f"Processing {len(current_streams)} active streams")
|
|
else:
|
|
logger.debug("No active streams to process")
|
|
|
|
for camera_id, stream in current_streams:
|
|
buffer = stream["buffer"]
|
|
if buffer.empty():
|
|
logger.debug(f"Frame buffer is empty for camera {camera_id}")
|
|
continue
|
|
|
|
logger.debug(f"Got frame from buffer for camera {camera_id}")
|
|
frame = buffer.get()
|
|
|
|
with models_lock:
|
|
model_tree = models.get(camera_id, {}).get(stream["modelId"])
|
|
if not model_tree:
|
|
logger.warning(f"Model not found for camera {camera_id}, modelId {stream['modelId']}")
|
|
continue
|
|
logger.debug(f"Found model tree for camera {camera_id}, modelId {stream['modelId']}")
|
|
|
|
key = (camera_id, stream["modelId"])
|
|
persistent_data = persistent_data_dict.get(key, {})
|
|
logger.debug(f"Starting detection for camera {camera_id} with modelId {stream['modelId']}")
|
|
updated_persistent_data = await handle_detection(
|
|
camera_id, stream, frame, websocket, model_tree, persistent_data
|
|
)
|
|
persistent_data_dict[key] = updated_persistent_data
|
|
|
|
elapsed_time = (time.time() - start_time) * 1000 # ms
|
|
sleep_time = max(poll_interval - elapsed_time, 0)
|
|
logger.debug(f"Frame processing cycle: {elapsed_time:.2f}ms, sleeping for: {sleep_time:.2f}ms")
|
|
await asyncio.sleep(sleep_time / 1000.0)
|
|
except asyncio.CancelledError:
|
|
logger.info("Stream processing task cancelled")
|
|
except Exception as e:
|
|
logger.error(f"Error in process_streams: {str(e)}", exc_info=True)
|
|
|
|
async def send_heartbeat():
|
|
while True:
|
|
try:
|
|
cpu_usage = psutil.cpu_percent()
|
|
memory_usage = psutil.virtual_memory().percent
|
|
if torch.cuda.is_available():
|
|
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2) # MB
|
|
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2) # MB
|
|
else:
|
|
gpu_usage = None
|
|
gpu_memory_usage = None
|
|
|
|
camera_connections = [
|
|
{
|
|
"cameraIdentifier": camera_id,
|
|
"modelId": stream["modelId"],
|
|
"modelName": stream["modelName"],
|
|
"online": True
|
|
}
|
|
for camera_id, stream in streams.items()
|
|
]
|
|
|
|
state_report = {
|
|
"type": "stateReport",
|
|
"cpuUsage": cpu_usage,
|
|
"memoryUsage": memory_usage,
|
|
"gpuUsage": gpu_usage,
|
|
"gpuMemoryUsage": gpu_memory_usage,
|
|
"cameraConnections": camera_connections
|
|
}
|
|
await websocket.send_text(json.dumps(state_report))
|
|
logger.debug(f"Sent stateReport as heartbeat: CPU {cpu_usage:.1f}%, Memory {memory_usage:.1f}%, {len(camera_connections)} active cameras")
|
|
await asyncio.sleep(HEARTBEAT_INTERVAL)
|
|
except Exception as e:
|
|
logger.error(f"Error sending stateReport heartbeat: {e}")
|
|
break
|
|
|
|
async def on_message():
|
|
while True:
|
|
try:
|
|
msg = await websocket.receive_text()
|
|
logger.debug(f"Received message: {msg}")
|
|
data = json.loads(msg)
|
|
msg_type = data.get("type")
|
|
|
|
if msg_type == "subscribe":
|
|
payload = data.get("payload", {})
|
|
camera_id = payload.get("cameraIdentifier")
|
|
rtsp_url = payload.get("rtspUrl")
|
|
snapshot_url = payload.get("snapshotUrl")
|
|
snapshot_interval = payload.get("snapshotInterval") # in milliseconds
|
|
model_url = payload.get("modelUrl") # may be remote or local
|
|
modelId = payload.get("modelId")
|
|
modelName = payload.get("modelName")
|
|
|
|
if model_url:
|
|
with models_lock:
|
|
if (camera_id not in models) or (modelId not in models[camera_id]):
|
|
logger.info(f"Loading model from {model_url} for camera {camera_id}, modelId {modelId}")
|
|
extraction_dir = os.path.join("models", camera_id, str(modelId))
|
|
os.makedirs(extraction_dir, exist_ok=True)
|
|
# If model_url is remote, download it first.
|
|
parsed = urlparse(model_url)
|
|
if parsed.scheme in ("http", "https"):
|
|
logger.info(f"Downloading remote model from {model_url}")
|
|
local_mpta = os.path.join(extraction_dir, os.path.basename(parsed.path))
|
|
logger.debug(f"Download destination: {local_mpta}")
|
|
local_path = download_mpta(model_url, local_mpta)
|
|
if not local_path:
|
|
logger.error(f"Failed to download the remote mpta file from {model_url}")
|
|
error_response = {
|
|
"type": "error",
|
|
"cameraIdentifier": camera_id,
|
|
"error": f"Failed to download model from {model_url}"
|
|
}
|
|
await websocket.send_json(error_response)
|
|
continue
|
|
model_tree = load_pipeline_from_zip(local_path, extraction_dir)
|
|
else:
|
|
logger.info(f"Loading local model from {model_url}")
|
|
# Check if file exists before attempting to load
|
|
if not os.path.exists(model_url):
|
|
logger.error(f"Local model file not found: {model_url}")
|
|
logger.debug(f"Current working directory: {os.getcwd()}")
|
|
error_response = {
|
|
"type": "error",
|
|
"cameraIdentifier": camera_id,
|
|
"error": f"Model file not found: {model_url}"
|
|
}
|
|
await websocket.send_json(error_response)
|
|
continue
|
|
model_tree = load_pipeline_from_zip(model_url, extraction_dir)
|
|
if model_tree is None:
|
|
logger.error(f"Failed to load model {modelId} from mpta file for camera {camera_id}")
|
|
error_response = {
|
|
"type": "error",
|
|
"cameraIdentifier": camera_id,
|
|
"error": f"Failed to load model {modelId}"
|
|
}
|
|
await websocket.send_json(error_response)
|
|
continue
|
|
if camera_id not in models:
|
|
models[camera_id] = {}
|
|
models[camera_id][modelId] = model_tree
|
|
logger.info(f"Successfully loaded model {modelId} for camera {camera_id}")
|
|
success_response = {
|
|
"type": "modelLoaded",
|
|
"cameraIdentifier": camera_id,
|
|
"modelId": modelId
|
|
}
|
|
await websocket.send_json(success_response)
|
|
if camera_id and (rtsp_url or snapshot_url):
|
|
with streams_lock:
|
|
if camera_id not in streams and len(streams) < max_streams:
|
|
buffer = queue.Queue(maxsize=1)
|
|
stop_event = threading.Event()
|
|
|
|
# Choose between snapshot and RTSP based on availability
|
|
if snapshot_url and snapshot_interval:
|
|
logger.info(f"Using snapshot mode for camera {camera_id}: {snapshot_url}")
|
|
thread = threading.Thread(target=snapshot_reader, args=(camera_id, snapshot_url, snapshot_interval, buffer, stop_event))
|
|
thread.daemon = True
|
|
thread.start()
|
|
streams[camera_id] = {
|
|
"buffer": buffer,
|
|
"thread": thread,
|
|
"snapshot_url": snapshot_url,
|
|
"snapshot_interval": snapshot_interval,
|
|
"stop_event": stop_event,
|
|
"modelId": modelId,
|
|
"modelName": modelName,
|
|
"mode": "snapshot"
|
|
}
|
|
logger.info(f"Subscribed to camera {camera_id} (snapshot mode) with modelId {modelId}, modelName {modelName}, URL {snapshot_url}, interval {snapshot_interval}ms")
|
|
elif rtsp_url:
|
|
logger.info(f"Using RTSP mode for camera {camera_id}: {rtsp_url}")
|
|
cap = cv2.VideoCapture(rtsp_url)
|
|
if not cap.isOpened():
|
|
logger.error(f"Failed to open RTSP stream for camera {camera_id}")
|
|
continue
|
|
thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
|
|
thread.daemon = True
|
|
thread.start()
|
|
streams[camera_id] = {
|
|
"cap": cap,
|
|
"buffer": buffer,
|
|
"thread": thread,
|
|
"rtsp_url": rtsp_url,
|
|
"stop_event": stop_event,
|
|
"modelId": modelId,
|
|
"modelName": modelName,
|
|
"mode": "rtsp"
|
|
}
|
|
logger.info(f"Subscribed to camera {camera_id} (RTSP mode) with modelId {modelId}, modelName {modelName}, URL {rtsp_url}")
|
|
else:
|
|
logger.error(f"No valid URL provided for camera {camera_id}")
|
|
continue
|
|
elif camera_id and camera_id in streams:
|
|
# If already subscribed, unsubscribe first
|
|
stream = streams.pop(camera_id)
|
|
stream["stop_event"].set()
|
|
stream["thread"].join()
|
|
if "cap" in stream:
|
|
stream["cap"].release()
|
|
logger.info(f"Unsubscribed from camera {camera_id} for resubscription")
|
|
with models_lock:
|
|
if camera_id in models and modelId in models[camera_id]:
|
|
del models[camera_id][modelId]
|
|
if not models[camera_id]:
|
|
del models[camera_id]
|
|
elif msg_type == "unsubscribe":
|
|
payload = data.get("payload", {})
|
|
camera_id = payload.get("cameraIdentifier")
|
|
logger.debug(f"Unsubscribing from camera {camera_id}")
|
|
with streams_lock:
|
|
if camera_id and camera_id in streams:
|
|
stream = streams.pop(camera_id)
|
|
stream["stop_event"].set()
|
|
stream["thread"].join()
|
|
# Only release cap if it exists (RTSP mode)
|
|
if "cap" in stream:
|
|
stream["cap"].release()
|
|
logger.info(f"Released RTSP capture for camera {camera_id}")
|
|
else:
|
|
logger.info(f"Released snapshot reader for camera {camera_id}")
|
|
logger.info(f"Unsubscribed from camera {camera_id}")
|
|
with models_lock:
|
|
if camera_id in models:
|
|
del models[camera_id]
|
|
elif msg_type == "requestState":
|
|
cpu_usage = psutil.cpu_percent()
|
|
memory_usage = psutil.virtual_memory().percent
|
|
if torch.cuda.is_available():
|
|
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2)
|
|
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)
|
|
else:
|
|
gpu_usage = None
|
|
gpu_memory_usage = None
|
|
|
|
camera_connections = [
|
|
{
|
|
"cameraIdentifier": camera_id,
|
|
"modelId": stream["modelId"],
|
|
"modelName": stream["modelName"],
|
|
"online": True
|
|
}
|
|
for camera_id, stream in streams.items()
|
|
]
|
|
|
|
state_report = {
|
|
"type": "stateReport",
|
|
"cpuUsage": cpu_usage,
|
|
"memoryUsage": memory_usage,
|
|
"gpuUsage": gpu_usage,
|
|
"gpuMemoryUsage": gpu_memory_usage,
|
|
"cameraConnections": camera_connections
|
|
}
|
|
await websocket.send_text(json.dumps(state_report))
|
|
else:
|
|
logger.error(f"Unknown message type: {msg_type}")
|
|
except json.JSONDecodeError:
|
|
logger.error("Received invalid JSON message")
|
|
except (WebSocketDisconnect, ConnectionClosedError) as e:
|
|
logger.warning(f"WebSocket disconnected: {e}")
|
|
break
|
|
except Exception as e:
|
|
logger.error(f"Error handling message: {e}")
|
|
break
|
|
|
|
try:
|
|
await websocket.accept()
|
|
stream_task = asyncio.create_task(process_streams())
|
|
heartbeat_task = asyncio.create_task(send_heartbeat())
|
|
message_task = asyncio.create_task(on_message())
|
|
await asyncio.gather(heartbeat_task, message_task)
|
|
except Exception as e:
|
|
logger.error(f"Error in detect websocket: {e}")
|
|
finally:
|
|
stream_task.cancel()
|
|
await stream_task
|
|
with streams_lock:
|
|
for camera_id, stream in streams.items():
|
|
stream["stop_event"].set()
|
|
stream["thread"].join()
|
|
# Only release cap if it exists (RTSP mode)
|
|
if "cap" in stream:
|
|
stream["cap"].release()
|
|
while not stream["buffer"].empty():
|
|
try:
|
|
stream["buffer"].get_nowait()
|
|
except queue.Empty:
|
|
pass
|
|
logger.info(f"Released camera {camera_id} and cleaned up resources")
|
|
streams.clear()
|
|
with models_lock:
|
|
models.clear()
|
|
logger.info("WebSocket connection closed")
|