python-detector-worker/ARCHITECTURE.md
2025-09-12 21:44:09 +07:00

46 KiB

Detector Worker - Architecture & Workflow Documentation

Table of Contents

  1. Architecture Overview
  2. Module Structure
  3. System Startup Flow
  4. WebSocket Communication Flow
  5. Detection Pipeline Flow
  6. Data Storage Flow
  7. Error Handling & Recovery
  8. Testing Architecture
  9. Development Workflow

Architecture Overview

The Detector Worker has been refactored from a monolithic 4,115-line application into a modular, maintainable system with clear separation of concerns. The new architecture follows modern software engineering principles including dependency injection, thread safety, and comprehensive testing.

High-Level System Diagram

graph TB
    Client[WebSocket Client] --> WS[WebSocket Handler]
    WS --> MP[Message Processor]
    MP --> SM[Stream Manager]
    MP --> MM[Model Manager]
    MP --> PE[Pipeline Executor]
    
    SM --> FR[Frame Reader]
    FR --> YD[YOLO Detector]
    YD --> TM[Tracking Manager]
    TM --> SV[Stability Validator]
    
    PE --> AE[Action Executor]
    PE --> FM[Field Mapper]
    AE --> DM[Database Manager]
    AE --> RC[Redis Client]
    AE --> SC[Session Cache]
    
    subgraph "Singleton Managers"
        MSM[Model State Manager]
        SSM[Stream State Manager]
        SeSM[Session State Manager]
        CSM[Cache State Manager]
        CaSM[Camera State Manager]
        PSM[Pipeline State Manager]
    end
    
    subgraph "Storage Layer"
        PostgreSQL[(PostgreSQL)]
        Redis[(Redis)]
        LocalCache[Local Cache]
    end
    
    DM --> PostgreSQL
    RC --> Redis
    SC --> LocalCache

Key Architectural Principles

  1. Modular Design: Each module has a single responsibility
  2. Dependency Injection: IoC container manages object dependencies
  3. Thread Safety: Singleton managers with proper locking
  4. Async/Await: Non-blocking I/O operations throughout
  5. Type Safety: Comprehensive type hints and validation
  6. Error Resilience: Proper exception handling and recovery

Module Structure

Core Modules (detector_worker/core/)

config.py - Configuration Management

# Central configuration with multi-source loading
Configuration()
    ├── load_from_file(path)     # JSON/YAML config files
    ├── load_from_env()          # Environment variables
    └── validate_config()        # Configuration validation

ConfigurationProvider(ABC)      # Abstract base for config sources
    ├── JSONConfigProvider
    ├── YAMLConfigProvider
    └── EnvironmentConfigProvider

dependency_injection.py - IoC Container

ServiceContainer()
    ├── register_singleton()     # Single instance per container
    ├── register_transient()     # New instance per request
    ├── register_scoped()        # Instance per scope
    └── resolve()                # Dependency resolution with auto-injection

singleton_managers.py - Thread-Safe State Management

# Six singleton managers replacing global dictionaries
ModelStateManager()        # Model loading states
StreamStateManager()       # Active stream connections
SessionStateManager()      # Client session tracking
CacheStateManager()        # Cache state management  
CameraStateManager()       # Camera connection states
PipelineStateManager()     # Pipeline execution states

exceptions.py - Exception Hierarchy

DetectorWorkerError          # Base exception
├── ConfigurationError       # Configuration issues
├── StreamError             # Stream-related errors
├── ModelError              # Model loading/inference errors
├── PipelineError           # Pipeline execution errors
├── DatabaseError           # Database operation errors
├── RedisError              # Redis operation errors
└── MessageProcessingError  # WebSocket message errors

Communication Layer (detector_worker/communication/)

websocket_handler.py - WebSocket Management

WebSocketHandler()
    ├── handle_websocket()      # Main WebSocket connection handler
    ├── _heartbeat_loop()       # Keep-alive mechanism
    └── _cleanup_connections()  # Connection cleanup

ConnectionManager()
    ├── add_connection()        # Register new client
    ├── remove_connection()     # Cleanup disconnected client
    ├── broadcast()            # Send to all clients
    └── broadcast_to_subscription()  # Send to specific subscription

WebSocketConnection()          # Per-client connection wrapper
    ├── accept()               # Accept WebSocket connection
    ├── send_message()         # Send JSON/text message
    ├── receive_message()      # Receive and parse message
    └── ping()                 # Send keep-alive ping

message_processor.py - Message Processing Pipeline

MessageProcessor()
    ├── process_message()      # Main message dispatcher
    ├── _handle_subscribe()    # Process subscription requests
    ├── _handle_unsubscribe()  # Process unsubscription
    ├── _handle_state_request() # System state requests
    └── _handle_session_ops()  # Session management operations

MessageType(Enum)            # Supported message types
    ├── SUBSCRIBE
    ├── UNSUBSCRIBE  
    ├── REQUEST_STATE
    ├── SET_SESSION_ID
    └── PATCH_SESSION

Stream Management (detector_worker/streams/)

stream_manager.py - Stream Lifecycle Management

StreamManager()
    ├── create_stream()        # Create RTSP/HTTP stream
    ├── remove_stream()        # Stop and cleanup stream
    ├── get_latest_frame()     # Get current frame
    ├── reconnect_stream()     # Handle connection failures
    └── stop_all_streams()     # Cleanup all streams

StreamConfig()               # Stream configuration
    ├── stream_url            # RTSP/HTTP URL
    ├── stream_type           # "rtsp" or "http_snapshot"
    ├── target_fps            # Target frame rate
    └── reconnect_interval    # Reconnection delay

StreamReader()              # Individual stream handler
    ├── start()              # Start frame capture
    ├── stop()               # Stop and cleanup
    ├── get_latest_frame()   # Get most recent frame
    └── _reader_loop()       # Main capture loop

frame_reader.py - Frame Capture Implementation

RTSPReader()                # RTSP stream handler
    ├── connect()           # Establish RTSP connection
    ├── read_frame()        # Capture single frame
    └── handle_reconnection() # Connection recovery

HTTPSnapshotReader()        # HTTP snapshot handler
    ├── fetch_snapshot()    # HTTP GET request
    ├── decode_image()      # Image decoding
    └── schedule_next()     # Schedule next capture

Detection System (detector_worker/detection/)

yolo_detector.py - Object Detection

YOLODetector()
    ├── load_model()           # Load YOLO model
    ├── detect()               # Run inference
    ├── _preprocess_frame()    # Input preprocessing
    ├── _postprocess_results() # Output processing
    └── _filter_detections()   # Confidence filtering

DetectionResult()            # Detection output structure
    ├── class_name           # Detected class
    ├── confidence           # Detection confidence
    ├── bounding_box         # Spatial coordinates
    ├── track_id            # Tracking identifier
    └── timestamp           # Detection timestamp

tracking_manager.py - Multi-Object Tracking

TrackingManager()
    ├── update_tracks()        # Update tracker with detections
    ├── _associate_detections() # Data association
    ├── _create_new_tracks()   # Initialize new tracks
    ├── _update_existing_tracks() # Update track states
    └── _cleanup_lost_tracks() # Remove stale tracks

Track()                     # Individual object track
    ├── update()            # Update with new detection
    ├── predict()           # Predict next state
    ├── is_confirmed()      # Track confirmation status
    └── time_since_update() # Track age

stability_validator.py - Detection Validation

StabilityValidator()
    ├── add_detection()        # Add detection to history
    ├── is_detection_stable()  # Check stability criteria
    ├── _calculate_stability() # Stability metrics
    └── _cleanup_old_detections() # History management

Pipeline System (detector_worker/pipeline/)

pipeline_executor.py - ML Pipeline Orchestration

PipelineExecutor()
    ├── execute_pipeline()     # Main pipeline execution
    ├── _run_detection_stage() # Object detection phase
    ├── _run_classification_branches() # Parallel classification
    ├── _execute_actions()     # Post-processing actions
    └── _wait_for_branches()   # Synchronization

PipelineContext()           # Execution context
    ├── camera_id           # Camera identifier
    ├── session_id          # Session identifier
    ├── frame              # Input frame
    ├── timestamp          # Processing timestamp
    └── intermediate_results # Shared results

action_executor.py - Action Processing

ActionExecutor()
    ├── execute_action()       # Execute single action
    ├── _redis_save_image()    # Redis image storage
    ├── _postgresql_create()   # Database record creation
    ├── _postgresql_update()   # Database record update
    └── _publish_message()     # Message publishing

ActionType(Enum)           # Supported action types
    ├── REDIS_SAVE_IMAGE
    ├── POSTGRESQL_CREATE
    ├── POSTGRESQL_UPDATE
    └── PUBLISH_MESSAGE

field_mapper.py - Dynamic Field Resolution

FieldMapper()
    ├── resolve_fields()       # Resolve template fields
    ├── _substitute_variables() # Variable substitution
    ├── _resolve_branch_results() # Branch result mapping
    └── _validate_mapping()    # Mapping validation

Storage Layer (detector_worker/storage/)

database_manager.py - PostgreSQL Operations

DatabaseManager()
    ├── connect()              # Database connection
    ├── create_record()        # INSERT operations
    ├── update_record()        # UPDATE operations
    ├── get_record()          # SELECT operations
    ├── execute_query()       # Raw SQL execution
    └── _handle_connection_error() # Error recovery

DatabaseConfig()           # Database configuration
    ├── host, port, database  # Connection params
    ├── user, password       # Authentication
    └── connection_pool_size # Pool configuration

redis_client.py - Redis Operations & Image Storage

RedisClient()
    ├── connect()              # Redis connection
    ├── set/get/delete()       # Basic operations
    ├── pipeline()            # Batch operations
    └── scan_keys()           # Key scanning

RedisImageStorage()        # Image-specific operations
    ├── store_image()         # Store with compression
    ├── retrieve_image()      # Retrieve and decode
    ├── delete_image()        # Delete image
    └── cleanup_expired()     # Cleanup expired images

RedisPublisher/Subscriber() # Pub/Sub messaging
    ├── publish()            # Publish message
    ├── subscribe()          # Subscribe to channel
    └── listen()             # Message listening

session_cache.py - High-Performance Caching

SessionCacheManager()      # Singleton cache manager
    ├── cache_detection()     # Cache detection results
    ├── cache_pipeline_result() # Cache pipeline outputs
    ├── create_session()      # Create session entry
    ├── update_session()      # Update session data
    └── cleanup_expired()     # Cache maintenance

SessionCache()             # LRU cache implementation
    ├── put/get/remove()      # Basic cache operations
    ├── _evict_lru()         # LRU eviction
    ├── _check_memory_limit() # Memory management
    └── get_stats()          # Cache statistics

Model Management (detector_worker/models/)

model_manager.py - Model Loading & Caching

ModelManager()
    ├── load_model()          # Load and cache model
    ├── get_model()           # Retrieve cached model
    ├── unload_model()        # Remove from cache
    ├── cleanup_unused()      # Cache maintenance
    └── get_memory_usage()    # Memory tracking

ModelCache()              # Model cache implementation
    ├── put/get/remove()      # Cache operations
    ├── _estimate_memory()    # Memory estimation
    ├── _evict_unused()      # Memory-based eviction
    └── get_cache_stats()    # Cache metrics

pipeline_loader.py - MPTA Pipeline Loading

PipelineLoader()
    ├── load_pipeline()       # Load MPTA file
    ├── _extract_archive()    # ZIP extraction
    ├── _parse_config()       # Configuration parsing
    ├── _validate_pipeline()  # Pipeline validation
    └── _load_models()        # Load pipeline models

System Startup Flow

Application Initialization Sequence

sequenceDiagram
    participant Main as app.py
    participant Config as Configuration
    participant Container as ServiceContainer  
    participant Managers as Singleton Managers
    participant FastAPI as FastAPI App
    
    Main->>Config: load_configuration()
    Config->>Config: load_from_file()
    Config->>Config: load_from_env()
    Config->>Config: validate_config()
    
    Main->>Container: ServiceContainer()
    Main->>Container: register_services()
    Container->>Managers: initialize_singletons()
    
    Main->>FastAPI: create_app()
    FastAPI->>FastAPI: setup_lifespan()
    FastAPI->>FastAPI: add_websocket_routes()
    FastAPI->>FastAPI: add_http_routes()
    
    Note over Main,FastAPI: Application Ready
    FastAPI->>Main: uvicorn.run()

Detailed Startup Process

  1. Configuration Loading (app.py:15-25)

    # Load configuration from multiple sources
    config = Configuration()
    config.load_from_file("config.json")  # Primary config
    config.load_from_env()                # Environment overrides
    config.validate_config()              # Validation
    
  2. Dependency Injection Setup (app.py:27-45)

    # Create and configure IoC container
    container = ServiceContainer()
    
    # Register core services
    container.register_singleton(Configuration, lambda: config)
    container.register_singleton(StreamManager, StreamManager)
    container.register_singleton(ModelManager, ModelManager)
    container.register_singleton(PipelineExecutor, PipelineExecutor)
    
  3. Singleton Manager Initialization (app.py:47-55)

    # Initialize thread-safe singleton managers
    model_state = ModelStateManager()
    stream_state = StreamStateManager()
    session_state = SessionStateManager()
    # ... other managers
    
  4. FastAPI Application Creation (app.py:57-75)

    # Create FastAPI app with lifespan management
    @asynccontextmanager
    async def lifespan(app: FastAPI):
        # Startup logic
        await initialize_services()
        yield
        # Shutdown logic
        await cleanup_services()
    
    app = FastAPI(lifespan=lifespan)
    
  5. Route Registration (app.py:77-85)

    # WebSocket endpoint
    @app.websocket("/")
    async def websocket_endpoint(websocket: WebSocket):
        ws_handler = container.resolve(WebSocketHandler)
        await ws_handler.handle_connection(websocket)
    
    # HTTP endpoints
    @app.get("/camera/{camera_id}/image")
    async def get_camera_image(camera_id: str):
        return stream_manager.get_latest_frame(camera_id)
    

WebSocket Communication Flow

Client Connection Lifecycle

sequenceDiagram
    participant Client as WebSocket Client
    participant WS as WebSocketHandler
    participant CM as ConnectionManager
    participant MP as MessageProcessor
    participant SM as StreamManager
    
    Client->>WS: WebSocket Connection
    WS->>WS: handle_websocket()
    WS->>CM: add_connection()
    CM->>CM: create WebSocketConnection
    WS->>Client: Connection Accepted
    
    loop Message Processing
        Client->>WS: JSON Message
        WS->>MP: process_message()
        
        alt Subscribe Message
            MP->>SM: create_stream()
            SM->>SM: initialize StreamReader
            MP->>Client: subscribeAck
        else Unsubscribe Message  
            MP->>SM: remove_stream()
            SM->>SM: cleanup StreamReader
            MP->>Client: unsubscribeAck
        else State Request
            MP->>MP: collect_system_state()
            MP->>Client: stateReport
        end
    end
    
    Client->>WS: Disconnect
    WS->>CM: remove_connection()
    WS->>SM: cleanup_client_streams()

Message Processing Detail

1. Subscribe Message Flow (message_processor.py:125-185)

async def _handle_subscribe(self, payload: Dict, client_id: str) -> Dict:
    """Process subscription request"""
    
    # 1. Extract subscription parameters
    subscription_id = payload["subscriptionIdentifier"]
    stream_url = payload.get("rtspUrl") or payload.get("snapshotUrl")
    model_url = payload["modelUrl"]
    
    # 2. Create stream configuration
    stream_config = StreamConfig(
        stream_url=stream_url,
        stream_type="rtsp" if "rtsp" in stream_url else "http_snapshot",
        crop_region=[payload.get("cropX1"), payload.get("cropY1"), 
                    payload.get("cropX2"), payload.get("cropY2")]
    )
    
    # 3. Load ML pipeline
    pipeline_config = await pipeline_loader.load_from_url(model_url)
    
    # 4. Create stream (with sharing if same URL)
    stream_info = await stream_manager.create_stream(
        camera_id=subscription_id.split(';')[1],
        config=stream_config,
        subscription_id=subscription_id
    )
    
    # 5. Register client subscription
    connection_manager.add_subscription(client_id, subscription_id)
    
    return {"type": "subscribeAck", "status": "success", 
            "subscriptionId": subscription_id}

2. Detection Result Broadcasting (websocket_handler.py:245-265)

async def broadcast_detection_result(self, subscription_id: str, 
                                   detection_result: Dict):
    """Broadcast detection to subscribed clients"""
    
    message = {
        "type": "imageDetection",
        "payload": {
            "subscriptionId": subscription_id,
            "detections": detection_result["detections"],
            "timestamp": detection_result["timestamp"],
            "modelInfo": detection_result["model_info"]
        }
    }
    
    await self.connection_manager.broadcast_to_subscription(
        subscription_id, message
    )

Detection Pipeline Flow

Complete Detection Workflow

flowchart TD
    A[Frame Captured] --> B[YOLO Detection]
    B --> C{Expected Classes Found?}
    C -->|No| D[Skip Processing]
    C -->|Yes| E[Multi-Object Tracking]
    E --> F[Stability Validation]
    F --> G{Stable Detection?}
    G -->|No| H[Continue Tracking]
    G -->|Yes| I[Create Database Record]
    I --> J[Execute Redis Actions]
    J --> K[Start Classification Branches]
    
    K --> L[Brand Classification]
    K --> M[Body Type Classification]
    K --> N[License Plate Recognition]
    
    L --> O[Wait for All Branches]
    M --> O
    N --> O
    
    O --> P[Field Mapping & Resolution]
    P --> Q[Database Update Combined]
    Q --> R[Broadcast Results]
    R --> S[Update Session Cache]

Detailed Pipeline Execution (pipeline_executor.py:85-250)

1. Detection Stage

async def _run_detection_stage(self, pipeline_config: Dict, 
                              context: PipelineContext) -> List[DetectionResult]:
    """Execute object detection stage"""
    
    # 1. Load detection model
    model = await self.model_manager.load_model(
        ModelConfig.from_dict(pipeline_config)
    )
    
    # 2. Run YOLO inference
    detector = YOLODetector()
    raw_detections = detector.detect(
        frame=context.frame,
        confidence_threshold=pipeline_config["minConfidence"]
    )
    
    # 3. Filter expected classes
    expected_classes = pipeline_config["expectedClasses"]
    filtered_detections = [
        det for det in raw_detections 
        if det.class_name in expected_classes
    ]
    
    # 4. Update tracking
    if len(filtered_detections) > 0:
        tracking_manager = TrackingManager()
        tracked_detections = tracking_manager.update_tracks(
            filtered_detections, context.frame_id
        )
        
        # 5. Validate stability
        stability_validator = StabilityValidator()
        stable_detections = []
        for det in tracked_detections:
            if stability_validator.is_detection_stable(det):
                stable_detections.append(det)
        
        return stable_detections
    
    return []

2. Action Execution Stage

async def _execute_actions(self, actions: List[Dict], 
                          context: PipelineContext) -> Dict:
    """Execute pipeline actions"""
    
    action_results = {}
    action_executor = ActionExecutor()
    
    for action in actions:
        action_type = action["type"]
        
        if action_type == "redis_save_image":
            # Save cropped image to Redis
            result = await action_executor.redis_save_image(
                frame=context.frame,
                region=action["region"],  # e.g., "Frontal"
                key_template=action["key"],
                context=context,
                expire_seconds=action.get("expire_seconds", 3600)
            )
            
        elif action_type == "postgresql_create_record":
            # Create initial database record
            result = await action_executor.postgresql_create(
                table=action["table"],
                fields=action["fields"],
                context=context
            )
            
        action_results[action_type] = result
    
    return action_results

3. Classification Branch Execution

async def _run_classification_branches(self, branches: List[Dict], 
                                     context: PipelineContext) -> Dict:
    """Execute parallel classification branches"""
    
    if not branches:
        return {}
    
    # 1. Create parallel tasks for each branch
    branch_tasks = []
    for branch in branches:
        if branch.get("parallel", False):
            task = asyncio.create_task(
                self._execute_branch(branch, context)
            )
            branch_tasks.append((branch["modelId"], task))
    
    # 2. Wait for all branches to complete
    branch_results = {}
    for model_id, task in branch_tasks:
        try:
            result = await task
            branch_results[model_id] = result
        except Exception as e:
            logging.error(f"Branch {model_id} failed: {e}")
            branch_results[model_id] = {"error": str(e)}
    
    return branch_results

async def _execute_branch(self, branch_config: Dict, 
                         context: PipelineContext) -> Dict:
    """Execute single classification branch"""
    
    # 1. Load classification model
    model = await self.model_manager.load_model(
        ModelConfig.from_dict(branch_config)
    )
    
    # 2. Prepare input (crop if specified)
    input_frame = context.frame
    if branch_config.get("crop", False):
        crop_class = branch_config["cropClass"]
        # Find detection of specified class and crop
        for detection in context.detections:
            if detection.class_name == crop_class:
                bbox = detection.bounding_box
                input_frame = context.frame[bbox.y1:bbox.y2, bbox.x1:bbox.x2]
                break
    
    # 3. Run classification
    classifier = YOLODetector()  # Can handle classification too
    results = classifier.classify(
        frame=input_frame,
        confidence_threshold=branch_config["minConfidence"]
    )
    
    # 4. Format results based on model type
    if "brand" in branch_config["modelId"]:
        return {"brand": results.top_class, "confidence": results.confidence}
    elif "bodytype" in branch_config["modelId"]:
        return {"body_type": results.top_class, "confidence": results.confidence}
    else:
        return {"class": results.top_class, "confidence": results.confidence}

4. Field Mapping & Database Update

async def _execute_parallel_actions(self, actions: List[Dict], 
                                   context: PipelineContext,
                                   branch_results: Dict) -> Dict:
    """Execute actions that depend on branch results"""
    
    for action in actions:
        if action["type"] == "postgresql_update_combined":
            # 1. Wait for specified branches to complete
            wait_for_branches = action.get("waitForBranches", [])
            for branch_id in wait_for_branches:
                if branch_id not in branch_results:
                    logging.warning(f"Branch {branch_id} not completed")
            
            # 2. Resolve field mappings
            field_mapper = FieldMapper()
            resolved_fields = field_mapper.resolve_fields(
                field_templates=action["fields"],
                context=context,
                branch_results=branch_results
            )
            
            # Example field resolution:
            # "{car_brand_cls_v1.brand}" -> "Toyota"
            # "{car_bodytype_cls_v1.body_type}" -> "Sedan"
            
            # 3. Execute database update
            database_manager = DatabaseManager()
            await database_manager.update_record(
                table=action["table"],
                key_value=context.session_id,
                key_field=action["key_field"],
                update_data=resolved_fields
            )
            
            return {"status": "success", "fields_updated": resolved_fields}
    
    return {}

Data Storage Flow

Database Operations Flow

sequenceDiagram
    participant PE as PipelineExecutor
    participant AE as ActionExecutor
    participant DM as DatabaseManager
    participant FM as FieldMapper
    participant DB as PostgreSQL
    
    PE->>AE: postgresql_create_record
    AE->>DM: create_record()
    DM->>DB: INSERT INTO car_frontal_info
    DB->>DM: session_id (UUID)
    DM->>AE: Record created
    
    Note over PE: Classification branches execute...
    
    PE->>FM: resolve_fields(templates, branch_results)
    FM->>FM: substitute variables
    FM->>PE: resolved_fields
    
    PE->>AE: postgresql_update_combined  
    AE->>DM: update_record()
    DM->>DB: UPDATE car_frontal_info SET car_brand=?, car_body_type=?
    DB->>DM: Update successful
    DM->>AE: Record updated

Redis Storage Operations

sequenceDiagram
    participant AE as ActionExecutor
    participant RC as RedisClient
    participant RIS as RedisImageStorage
    participant Redis as Redis Server
    
    AE->>RC: redis_save_image
    RC->>RIS: store_image()
    RIS->>RIS: crop_region_from_frame()
    RIS->>RIS: compress_image()
    RIS->>Redis: SET key encoded_image
    RIS->>Redis: EXPIRE key 600
    Redis->>RIS: OK
    RIS->>RC: Storage successful
    RC->>AE: Image saved

Session Cache Operations

flowchart LR
    A[Detection Event] --> B[Cache Detection Result]
    B --> C[Create Session Entry]
    C --> D[Pipeline Processing]
    D --> E[Update Session with Branch Results]
    E --> F[Cache Pipeline Result]
    F --> G[Broadcast to Clients]
    
    subgraph "Cache Types"
        H[Detection Cache<br/>Latest detection per camera]
        I[Pipeline Cache<br/>Pipeline execution results]
        J[Session Cache<br/>Session tracking data]
    end
    
    B --> H
    F --> I
    C --> J
    E --> J

Error Handling & Recovery

Exception Hierarchy & Handling

classDiagram
    DetectorWorkerError <|-- ConfigurationError
    DetectorWorkerError <|-- StreamError
    DetectorWorkerError <|-- ModelError
    DetectorWorkerError <|-- PipelineError
    DetectorWorkerError <|-- DatabaseError
    DetectorWorkerError <|-- RedisError
    DetectorWorkerError <|-- MessageProcessingError
    
    StreamError <|-- ConnectionError
    StreamError <|-- StreamTimeoutError
    
    ModelError <|-- ModelLoadError
    ModelError <|-- ModelCacheError
    
    PipelineError <|-- ActionExecutionError
    PipelineError <|-- BranchExecutionError

Error Recovery Strategies

1. Stream Connection Recovery (stream_manager.py:245-285)

async def _handle_stream_error(self, stream_id: str, error: Exception):
    """Handle stream errors with exponential backoff retry"""
    
    stream_info = self.get_stream_info(stream_id)
    if not stream_info:
        return
    
    # Increment error count
    stream_info.error_count += 1
    stream_info.update_status("error", error_message=str(error))
    
    # Exponential backoff retry
    max_retries = stream_info.config.max_retries
    if max_retries == -1 or stream_info.error_count <= max_retries:
        
        # Calculate backoff delay
        base_delay = stream_info.config.reconnect_interval
        backoff_delay = base_delay * (2 ** min(stream_info.error_count - 1, 6))
        
        logging.warning(f"Stream {stream_id} error: {error}. "
                       f"Retrying in {backoff_delay} seconds...")
        
        await asyncio.sleep(backoff_delay)
        
        try:
            await self.reconnect_stream(stream_id)
            stream_info.error_count = 0  # Reset on success
            stream_info.update_status("active")
            
        except Exception as retry_error:
            logging.error(f"Stream {stream_id} retry failed: {retry_error}")
            await self._handle_stream_error(stream_id, retry_error)
    else:
        # Max retries exceeded
        logging.error(f"Stream {stream_id} exceeded max retries. Marking as failed.")
        stream_info.update_status("failed")
        await self._notify_stream_failure(stream_id)

2. Database Connection Recovery (database_manager.py:185-220)

async def _execute_with_retry(self, operation: Callable, *args, **kwargs):
    """Execute database operation with connection retry"""
    
    max_retries = 3
    retry_delay = 1.0
    
    for attempt in range(max_retries + 1):
        try:
            return await operation(*args, **kwargs)
            
        except psycopg2.OperationalError as e:
            if attempt == max_retries:
                raise DatabaseError(f"Database operation failed after {max_retries} retries: {e}")
            
            logging.warning(f"Database operation failed (attempt {attempt + 1}): {e}")
            
            # Try to reconnect
            try:
                await self.disconnect()
                await asyncio.sleep(retry_delay)
                await self.connect()
                retry_delay *= 2  # Exponential backoff
                
            except Exception as reconnect_error:
                logging.error(f"Database reconnection failed: {reconnect_error}")
                
        except Exception as e:
            # Non-recoverable error
            raise DatabaseError(f"Database operation failed: {e}")

3. Pipeline Error Isolation (pipeline_executor.py:325-365)

async def _execute_branch_with_isolation(self, branch_config: Dict, 
                                        context: PipelineContext) -> Dict:
    """Execute branch with error isolation"""
    
    branch_id = branch_config["modelId"]
    
    try:
        # Set timeout for branch execution
        timeout = branch_config.get("timeout_seconds", 30)
        
        result = await asyncio.wait_for(
            self._execute_branch(branch_config, context),
            timeout=timeout
        )
        
        return result
        
    except asyncio.TimeoutError:
        error_msg = f"Branch {branch_id} timed out after {timeout} seconds"
        logging.error(error_msg)
        return {"error": error_msg, "type": "timeout"}
        
    except ModelError as e:
        error_msg = f"Branch {branch_id} model error: {e}"
        logging.error(error_msg)
        return {"error": error_msg, "type": "model_error"}
        
    except Exception as e:
        error_msg = f"Branch {branch_id} unexpected error: {e}"
        logging.error(error_msg, exc_info=True)
        return {"error": error_msg, "type": "unexpected_error"}

async def _handle_partial_branch_failure(self, branch_results: Dict, 
                                        required_branches: List[str]) -> bool:
    """Determine if pipeline can continue with partial branch failures"""
    
    successful_branches = [
        branch_id for branch_id, result in branch_results.items()
        if not isinstance(result, dict) or "error" not in result
    ]
    
    failed_branches = [
        branch_id for branch_id, result in branch_results.items()
        if isinstance(result, dict) and "error" in result
    ]
    
    if failed_branches:
        logging.warning(f"Failed branches: {failed_branches}")
        logging.info(f"Successful branches: {successful_branches}")
    
    # Continue if at least one required branch succeeded
    required_successful = any(
        branch_id in successful_branches 
        for branch_id in required_branches
    )
    
    return required_successful

Testing Architecture

Test Structure Overview

tests/
├── unit/                    # Fast, isolated unit tests
│   ├── core/               # Core module tests (config, DI, singletons)
│   ├── detection/          # Detection system tests
│   ├── pipeline/           # Pipeline execution tests
│   ├── streams/            # Stream management tests
│   ├── communication/      # WebSocket & messaging tests
│   ├── storage/            # Storage layer tests
│   └── models/             # Model management tests
├── integration/            # Multi-component integration tests
│   ├── test_complete_detection_workflow.py
│   ├── test_websocket_protocol.py
│   └── test_pipeline_integration.py
├── performance/            # Performance benchmarks
│   ├── test_detection_performance.py
│   ├── test_websocket_performance.py
│   └── test_storage_performance.py
└── conftest.py             # Shared fixtures and configuration

Test Execution Flows

Unit Test Example (tests/unit/detection/test_yolo_detector.py)

class TestYOLODetector:
    """Test YOLO detector functionality"""
    
    def test_detection_basic_functionality(self, mock_frame):
        """Test basic detection pipeline"""
        detector = YOLODetector()
        
        with patch('torch.load') as mock_torch_load:
            # Setup mock model
            mock_model = Mock()
            mock_result = self._create_mock_detection_result()
            mock_model.return_value = mock_result
            mock_torch_load.return_value = mock_model
            
            # Execute detection
            detections = detector.detect(mock_frame, confidence_threshold=0.5)
            
            # Verify results
            assert len(detections) == 2
            assert detections[0].class_name == "car"
            assert detections[0].confidence >= 0.5
            assert isinstance(detections[0].bounding_box, BoundingBox)

Integration Test Example (tests/integration/test_complete_detection_workflow.py)

@pytest.mark.asyncio
async def test_complete_rtsp_detection_workflow(self, temp_config_file, 
                                               sample_mpta_file, mock_frame):
    """Test complete workflow: RTSP stream -> detection -> classification -> database"""
    
    # 1. Initialize all components
    config = Configuration()
    config.load_from_file(temp_config_file)
    
    # 2. Mock external dependencies (Redis, DB, models)
    with patch('cv2.VideoCapture') as mock_video_cap, \
         patch('torch.load') as mock_torch_load, \
         patch('psycopg2.connect') as mock_db_connect:
        
        # Setup mocks...
        
        # 3. Execute complete workflow
        stream_manager = StreamManager()
        pipeline_executor = PipelineExecutor()
        
        # Create stream
        stream_info = await stream_manager.create_stream(camera_id, config, sub_id)
        
        # Run pipeline
        result = await pipeline_executor.execute_pipeline(pipeline_config, context)
        
        # 4. Verify end-to-end results
        assert result["status"] == "completed"
        assert "detections" in result
        assert "classification_results" in result
        
        # Verify database operations occurred
        assert mock_db_cursor.execute.called
        
        # Verify Redis operations occurred  
        assert mock_redis.set.called

Performance Test Example (tests/performance/test_detection_performance.py)

def test_yolo_detection_speed(self, sample_frame, performance_config):
    """Benchmark YOLO detection speed"""
    detector = YOLODetector()
    
    # Warm up
    for _ in range(5):
        detector.detect(sample_frame, confidence_threshold=0.5)
    
    # Benchmark
    detection_times = []
    for _ in range(100):
        start_time = time.perf_counter()
        detections = detector.detect(sample_frame, confidence_threshold=0.5)
        end_time = time.perf_counter()
        
        detection_times.append((end_time - start_time) * 1000)
    
    # Analyze performance
    avg_time = statistics.mean(detection_times)
    theoretical_fps = 1000 / avg_time
    
    # Performance assertions
    assert avg_time < performance_config["max_detection_time_ms"]
    assert theoretical_fps >= performance_config["target_fps"]
    
    print(f"Average detection time: {avg_time:.2f} ms")
    print(f"Theoretical FPS: {theoretical_fps:.1f}")

Development Workflow

Cross-Platform Setup

The Makefile automatically detects the correct Python command for your platform:

  • macOS/Linux: Uses python3 and pip3 if available
  • Windows: Falls back to python and pip
  • Automatic Detection: No manual configuration needed

Step-by-Step Project Setup

1. Clone and Navigate to Project

git clone <repository-url>
cd python-detector-worker

2. Install Dependencies

# Install production dependencies
make install

# Install development dependencies (includes testing tools)
make install-dev

# Check environment information
make env-info

3. Configure Environment (Optional)

# Copy example configuration (if exists)
cp config.example.json config.json

# Set environment variables for development
export DETECTOR_WORKER_ENV=dev
export DETECTOR_WORKER_PORT=8001

4. Run the Application

# For development (staging port 8001 with auto-reload)
make run-staging

# For production (port 8000)
make run-prod

# For debugging (verbose logging on staging port)
make run-debug

5. Verify Installation

# Check system health
curl http://localhost:8001/health

# Run basic tests
make test-fast

# Check code quality
make lint

Development Commands

Environment Management

make env-info                 # Show environment information
make check-deps               # Verify dependency integrity
make update-deps              # List outdated dependencies
make freeze                   # Generate requirements-frozen.txt

Code Development

# Code quality
make format                   # Format code with black & isort
make lint                     # Run code linting (flake8, mypy)
make quality                  # Run all quality checks

# Application execution
make run                      # Run production mode (port 8000) with reload
make run-staging              # Run staging mode (port 8001) with reload
make run-prod                 # Run production mode (port 8000) without reload
make run-debug                # Run debug mode (port 8001) with verbose logging

Testing Framework

# Test execution
make test                     # Run all tests with coverage
make test-unit                # Run unit tests only
make test-integration         # Run integration tests
make test-performance         # Run performance benchmarks
make test-fast                # Run fast tests only (skip slow markers)
make test-coverage            # Generate detailed coverage report
make test-failed              # Rerun only failed tests

# CI/CD testing
make ci-test                  # Run CI-optimized tests
make ci-quality               # Run CI quality checks

Docker Operations

# Container management
make docker-build             # Build Docker image
make docker-run               # Run container (production port 8000)
make docker-run-staging       # Run container (staging port 8001)
make docker-dev               # Run development container with volume mounts

Utilities

# Maintenance
make clean                    # Clean build artifacts and cache
make monitor                  # Start system resource monitor
make profile                  # Run performance profiling
make version                  # Show application version

# Database utilities (when implemented)
make db-migrate               # Run database migrations
make db-reset                 # Reset database to initial state

Using the Test Runner

# Basic test execution
python scripts/run_tests.py --all              # All tests with coverage
python scripts/run_tests.py --unit --verbose   # Unit tests with verbose output
python scripts/run_tests.py --integration      # Integration tests only
python scripts/run_tests.py --performance      # Performance benchmarks

# Advanced options
python scripts/run_tests.py --fast             # Fast tests only (no slow markers)
python scripts/run_tests.py --failed           # Rerun only failed tests
python scripts/run_tests.py --specific "config" # Run tests matching pattern
python scripts/run_tests.py --coverage --open-browser # Generate and open coverage report

# Quality checks
python scripts/run_tests.py --quality          # Run linting and formatting checks

CI/CD Pipeline

The GitHub Actions workflow (.github/workflows/ci.yml) runs:

  1. Code Quality Checks: flake8, mypy, black, isort
  2. Unit Tests: Fast, isolated tests with coverage
  3. Integration Tests: With Redis and PostgreSQL services
  4. Performance Tests: On main branch pushes
  5. Security Scans: safety and bandit
  6. Docker Build: Verify containerization works

Adding New Features

  1. Create Feature Branch

    git checkout -b feature/new-detection-algorithm
    
  2. Implement with TDD

    # 1. Write failing test
    # tests/unit/detection/test_new_algorithm.py
    
    # 2. Implement minimal code to pass
    # detector_worker/detection/new_algorithm.py
    
    # 3. Refactor and improve
    # 4. Add integration tests if needed
    
  3. Run Quality Checks

    make format                    # Auto-format code
    make lint                      # Check code quality  
    make test                      # Run all tests
    
  4. Create Pull Request

    • CI/CD pipeline runs automatically
    • Coverage report posted as comment
    • All checks must pass before merge

Debugging & Monitoring

Logging Configuration

# detector_worker/utils/logging.py
import logging

def setup_logging(level=logging.INFO):
    """Configure structured logging"""
    
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s'
    )
    
    # Console handler
    console_handler = logging.StreamHandler()
    console_handler.setFormatter(formatter)
    
    # File handler
    file_handler = logging.FileHandler('detector_worker.log')
    file_handler.setFormatter(formatter)
    
    # Root logger
    logger = logging.getLogger()
    logger.setLevel(level)
    logger.addHandler(console_handler)
    logger.addHandler(file_handler)
    
    return logger

Performance Monitoring

# detector_worker/utils/monitoring.py
import psutil
import time
from typing import Dict

class SystemMonitor:
    """System resource monitoring"""
    
    def get_system_metrics(self) -> Dict:
        """Get current system metrics"""
        
        return {
            "cpu_percent": psutil.cpu_percent(),
            "memory_percent": psutil.virtual_memory().percent,
            "disk_percent": psutil.disk_usage('/').percent,
            "network_io": psutil.net_io_counters()._asdict(),
            "timestamp": time.time()
        }
    
    def get_process_metrics(self) -> Dict:
        """Get current process metrics"""
        
        process = psutil.Process()
        
        return {
            "pid": process.pid,
            "cpu_percent": process.cpu_percent(),
            "memory_mb": process.memory_info().rss / 1024 / 1024,
            "threads": process.num_threads(),
            "open_files": len(process.open_files()),
            "connections": len(process.connections()),
            "timestamp": time.time()
        }

This comprehensive architecture documentation provides a complete technical overview of the refactored system, enabling any engineer to quickly understand and contribute to the codebase. The modular design, clear separation of concerns, and extensive testing infrastructure ensure the system is maintainable, scalable, and reliable.