All checks were successful
Build Worker Base and Application Images / check-base-changes (push) Successful in 8s
Build Worker Base and Application Images / build-base (push) Has been skipped
Build Worker Base and Application Images / build-docker (push) Successful in 2m15s
Build Worker Base and Application Images / deploy-stack (push) Successful in 8s
327 lines
No EOL
17 KiB
Markdown
327 lines
No EOL
17 KiB
Markdown
# pympta: Modular Pipeline Task Executor
|
|
|
|
`pympta` is a Python module designed to load and execute modular, multi-stage AI pipelines defined in a special package format (`.mpta`). It is primarily used within the detector worker to run complex computer vision tasks where the output of one model can trigger a subsequent model on a specific region of interest.
|
|
|
|
## Core Concepts
|
|
|
|
### 1. MPTA Package (`.mpta`)
|
|
|
|
An `.mpta` file is a standard `.zip` archive with a different extension. It bundles all the necessary components for a pipeline to run.
|
|
|
|
A typical `.mpta` file has the following structure:
|
|
|
|
```
|
|
my_pipeline.mpta/
|
|
├── pipeline.json
|
|
├── model1.pt
|
|
├── model2.pt
|
|
└── ...
|
|
```
|
|
|
|
- **`pipeline.json`**: (Required) The manifest file that defines the structure of the pipeline, the models to use, and the logic connecting them.
|
|
- **Model Files (`.pt`, etc.)**: The actual pre-trained model files (e.g., PyTorch, ONNX). The pipeline currently uses `ultralytics.YOLO` models.
|
|
|
|
### 2. Pipeline Structure
|
|
|
|
A pipeline is a tree-like structure of "nodes," defined in `pipeline.json`.
|
|
|
|
- **Root Node**: The entry point of the pipeline. It processes the initial, full-frame image.
|
|
- **Branch Nodes**: Child nodes that are triggered by specific detection results from their parent. For example, a root node might detect a "vehicle," which then triggers a branch node to detect a "license plate" within the vehicle's bounding box.
|
|
|
|
This modular structure allows for creating complex and efficient inference logic, avoiding the need to run every model on every frame.
|
|
|
|
## `pipeline.json` Specification
|
|
|
|
This file defines the entire pipeline logic. The root object contains a `pipeline` key for the pipeline definition, optional `redis` key for Redis configuration, and optional `postgresql` key for database integration.
|
|
|
|
### Top-Level Object Structure
|
|
|
|
| Key | Type | Required | Description |
|
|
| ------------ | ------ | -------- | ------------------------------------------------------- |
|
|
| `pipeline` | Object | Yes | The root node object of the pipeline. |
|
|
| `redis` | Object | No | Configuration for connecting to a Redis server. |
|
|
| `postgresql` | Object | No | Configuration for connecting to a PostgreSQL database. |
|
|
|
|
### Redis Configuration (`redis`)
|
|
|
|
| Key | Type | Required | Description |
|
|
| ---------- | ------ | -------- | ------------------------------------------------------- |
|
|
| `host` | String | Yes | The hostname or IP address of the Redis server. |
|
|
| `port` | Number | Yes | The port number of the Redis server. |
|
|
| `password` | String | No | The password for Redis authentication. |
|
|
| `db` | Number | No | The Redis database number to use. Defaults to `0`. |
|
|
|
|
### PostgreSQL Configuration (`postgresql`)
|
|
|
|
| Key | Type | Required | Description |
|
|
| ---------- | ------ | -------- | ------------------------------------------------------- |
|
|
| `host` | String | Yes | The hostname or IP address of the PostgreSQL server. |
|
|
| `port` | Number | Yes | The port number of the PostgreSQL server. |
|
|
| `database` | String | Yes | The database name to connect to. |
|
|
| `username` | String | Yes | The username for database authentication. |
|
|
| `password` | String | Yes | The password for database authentication. |
|
|
|
|
### Node Object Structure
|
|
|
|
| Key | Type | Required | Description |
|
|
| ------------------- | ------------- | -------- | -------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `modelId` | String | Yes | A unique identifier for this model node (e.g., "vehicle-detector"). |
|
|
| `modelFile` | String | Yes | The path to the model file within the `.mpta` archive (e.g., "yolov8n.pt"). |
|
|
| `minConfidence` | Float | Yes | The minimum confidence score (0.0 to 1.0) required for a detection to be considered valid and potentially trigger a branch. |
|
|
| `triggerClasses` | Array<String> | Yes | A list of class names that, when detected by the parent, can trigger this node. For the root node, this lists all classes of interest. |
|
|
| `crop` | Boolean | No | If `true`, the image is cropped to the parent's detection bounding box before being passed to this node's model. Defaults to `false`. |
|
|
| `cropClass` | String | No | The specific class to use for cropping (e.g., "Frontal" for frontal view cropping). |
|
|
| `multiClass` | Boolean | No | If `true`, enables multi-class detection mode where multiple classes can be detected simultaneously. |
|
|
| `expectedClasses` | Array<String> | No | When `multiClass` is true, defines which classes are expected. At least one must be detected for processing to continue. |
|
|
| `parallel` | Boolean | No | If `true`, this branch will be processed in parallel with other parallel branches. |
|
|
| `branches` | Array<Node> | No | A list of child node objects that can be triggered by this node's detections. |
|
|
| `actions` | Array<Action> | No | A list of actions to execute upon a successful detection in this node. |
|
|
| `parallelActions` | Array<Action> | No | A list of actions to execute after all specified branches have completed. |
|
|
|
|
### Action Object Structure
|
|
|
|
Actions allow the pipeline to interact with Redis and PostgreSQL databases. They are executed sequentially for a given detection.
|
|
|
|
#### Action Context & Dynamic Keys
|
|
|
|
All actions have access to a dynamic context for formatting keys and messages. The context is created for each detection event and includes:
|
|
|
|
- All key-value pairs from the detection result (e.g., `class`, `confidence`, `id`).
|
|
- `{timestamp_ms}`: The current Unix timestamp in milliseconds.
|
|
- `{timestamp}`: Formatted timestamp string (YYYY-MM-DDTHH-MM-SS).
|
|
- `{uuid}`: A unique identifier (UUID4) for the detection event.
|
|
- `{filename}`: Generated filename with UUID.
|
|
- `{camera_id}`: Full camera subscription identifier.
|
|
- `{display_id}`: Display identifier extracted from subscription.
|
|
- `{session_id}`: Session ID for database operations.
|
|
- `{image_key}`: If a `redis_save_image` action has already been executed for this event, this placeholder will be replaced with the key where the image was stored.
|
|
|
|
#### `redis_save_image`
|
|
|
|
Saves the current image frame (or cropped sub-image) to a Redis key.
|
|
|
|
| Key | Type | Required | Description |
|
|
| ---------------- | ------ | -------- | ------------------------------------------------------------------------------------------------------- |
|
|
| `type` | String | Yes | Must be `"redis_save_image"`. |
|
|
| `key` | String | Yes | The Redis key to save the image to. Can contain any of the dynamic placeholders. |
|
|
| `region` | String | No | Specific detected region to crop and save (e.g., "Frontal"). |
|
|
| `format` | String | No | Image format: "jpeg" or "png". Defaults to "jpeg". |
|
|
| `quality` | Number | No | JPEG quality (1-100). Defaults to 90. |
|
|
| `expire_seconds` | Number | No | If provided, sets an expiration time (in seconds) for the Redis key. |
|
|
|
|
#### `redis_publish`
|
|
|
|
Publishes a message to a Redis channel.
|
|
|
|
| Key | Type | Required | Description |
|
|
| --------- | ------ | -------- | ------------------------------------------------------------------------------------------------------- |
|
|
| `type` | String | Yes | Must be `"redis_publish"`. |
|
|
| `channel` | String | Yes | The Redis channel to publish the message to. |
|
|
| `message` | String | Yes | The message to publish. Can contain any of the dynamic placeholders, including `{image_key}`. |
|
|
|
|
#### `postgresql_update_combined`
|
|
|
|
Updates PostgreSQL database with results from multiple branches after they complete.
|
|
|
|
| Key | Type | Required | Description |
|
|
| ------------------ | ------------- | -------- | ------------------------------------------------------------------------------------------------------- |
|
|
| `type` | String | Yes | Must be `"postgresql_update_combined"`. |
|
|
| `table` | String | Yes | The database table name (will be prefixed with `gas_station_1.` schema). |
|
|
| `key_field` | String | Yes | The field to use as the update key (typically "session_id"). |
|
|
| `key_value` | String | Yes | Template for the key value (e.g., "{session_id}"). |
|
|
| `waitForBranches` | Array<String> | Yes | List of branch model IDs to wait for completion before executing update. |
|
|
| `fields` | Object | Yes | Field mapping object where keys are database columns and values are templates (e.g., "{branch.field}").|
|
|
|
|
### Complete Example `pipeline.json`
|
|
|
|
This example demonstrates a comprehensive pipeline for vehicle detection with parallel classification and database integration:
|
|
|
|
```json
|
|
{
|
|
"redis": {
|
|
"host": "10.100.1.3",
|
|
"port": 6379,
|
|
"password": "your-redis-password",
|
|
"db": 0
|
|
},
|
|
"postgresql": {
|
|
"host": "10.100.1.3",
|
|
"port": 5432,
|
|
"database": "inference",
|
|
"username": "root",
|
|
"password": "your-db-password"
|
|
},
|
|
"pipeline": {
|
|
"modelId": "car_frontal_detection_v1",
|
|
"modelFile": "car_frontal_detection_v1.pt",
|
|
"crop": false,
|
|
"triggerClasses": ["Car", "Frontal"],
|
|
"minConfidence": 0.8,
|
|
"multiClass": true,
|
|
"expectedClasses": ["Car", "Frontal"],
|
|
"actions": [
|
|
{
|
|
"type": "redis_save_image",
|
|
"region": "Frontal",
|
|
"key": "inference:{display_id}:{timestamp}:{session_id}:{filename}",
|
|
"expire_seconds": 600,
|
|
"format": "jpeg",
|
|
"quality": 90
|
|
},
|
|
{
|
|
"type": "redis_publish",
|
|
"channel": "car_detections",
|
|
"message": "{\"event\":\"frontal_detected\"}"
|
|
}
|
|
],
|
|
"branches": [
|
|
{
|
|
"modelId": "car_brand_cls_v1",
|
|
"modelFile": "car_brand_cls_v1.pt",
|
|
"crop": true,
|
|
"cropClass": "Frontal",
|
|
"resizeTarget": [224, 224],
|
|
"triggerClasses": ["Frontal"],
|
|
"minConfidence": 0.85,
|
|
"parallel": true,
|
|
"branches": []
|
|
},
|
|
{
|
|
"modelId": "car_bodytype_cls_v1",
|
|
"modelFile": "car_bodytype_cls_v1.pt",
|
|
"crop": true,
|
|
"cropClass": "Car",
|
|
"resizeTarget": [224, 224],
|
|
"triggerClasses": ["Car"],
|
|
"minConfidence": 0.85,
|
|
"parallel": true,
|
|
"branches": []
|
|
}
|
|
],
|
|
"parallelActions": [
|
|
{
|
|
"type": "postgresql_update_combined",
|
|
"table": "car_frontal_info",
|
|
"key_field": "session_id",
|
|
"key_value": "{session_id}",
|
|
"waitForBranches": ["car_brand_cls_v1", "car_bodytype_cls_v1"],
|
|
"fields": {
|
|
"car_brand": "{car_brand_cls_v1.brand}",
|
|
"car_body_type": "{car_bodytype_cls_v1.body_type}"
|
|
}
|
|
}
|
|
]
|
|
}
|
|
}
|
|
```
|
|
|
|
## API Reference
|
|
|
|
The `pympta` module exposes two main functions.
|
|
|
|
### `load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict`
|
|
|
|
Loads, extracts, and parses an `.mpta` file to build a pipeline tree in memory. It also establishes Redis and PostgreSQL connections if configured in `pipeline.json`.
|
|
|
|
- **Parameters:**
|
|
- `zip_source` (str): The file path to the local `.mpta` zip archive.
|
|
- `target_dir` (str): A directory path where the archive's contents will be extracted.
|
|
- **Returns:**
|
|
- A dictionary representing the root node of the pipeline, ready to be used with `run_pipeline`. Returns `None` if loading fails.
|
|
|
|
### `run_pipeline(frame, node: dict, return_bbox: bool = False, context: dict = None)`
|
|
|
|
Executes the inference pipeline on a single image frame.
|
|
|
|
- **Parameters:**
|
|
- `frame`: The input image frame (e.g., a NumPy array from OpenCV).
|
|
- `node` (dict): The pipeline node to execute (typically the root node returned by `load_pipeline_from_zip`).
|
|
- `return_bbox` (bool): If `True`, the function returns a tuple `(detection, bounding_box)`. Otherwise, it returns only the `detection`.
|
|
- `context` (dict): Optional context dictionary containing camera_id, display_id, session_id for action formatting.
|
|
- **Returns:**
|
|
- The final detection result from the last executed node in the chain. A detection is a dictionary like `{'class': 'car', 'confidence': 0.95, 'id': 1}`. If no detection meets the criteria, it returns `None` (or `(None, None)` if `return_bbox` is `True`).
|
|
|
|
## Database Integration
|
|
|
|
The pipeline system includes automatic PostgreSQL database management:
|
|
|
|
### Table Schema (`gas_station_1.car_frontal_info`)
|
|
|
|
The system automatically creates and manages the following table structure:
|
|
|
|
```sql
|
|
CREATE TABLE IF NOT EXISTS gas_station_1.car_frontal_info (
|
|
display_id VARCHAR(255),
|
|
captured_timestamp VARCHAR(255),
|
|
session_id VARCHAR(255) PRIMARY KEY,
|
|
license_character VARCHAR(255) DEFAULT NULL,
|
|
license_type VARCHAR(255) DEFAULT 'No model available',
|
|
car_brand VARCHAR(255) DEFAULT NULL,
|
|
car_model VARCHAR(255) DEFAULT NULL,
|
|
car_body_type VARCHAR(255) DEFAULT NULL,
|
|
created_at TIMESTAMP DEFAULT NOW(),
|
|
updated_at TIMESTAMP DEFAULT NOW()
|
|
);
|
|
```
|
|
|
|
### Workflow
|
|
|
|
1. **Initial Record Creation**: When both "Car" and "Frontal" are detected, an initial database record is created with a UUID session_id.
|
|
2. **Redis Storage**: Vehicle images are stored in Redis with keys containing the session_id.
|
|
3. **Parallel Classification**: Brand and body type classification run concurrently.
|
|
4. **Database Update**: After all branches complete, the database record is updated with classification results.
|
|
|
|
## Usage Example
|
|
|
|
This snippet shows how to use `pympta` with the enhanced features:
|
|
|
|
```python
|
|
import cv2
|
|
from siwatsystem.pympta import load_pipeline_from_zip, run_pipeline
|
|
|
|
# 1. Define paths
|
|
MPTA_FILE = "path/to/your/pipeline.mpta"
|
|
CACHE_DIR = ".mptacache"
|
|
|
|
# 2. Load the pipeline from the .mpta file
|
|
# This reads pipeline.json and loads the YOLO models into memory.
|
|
model_tree = load_pipeline_from_zip(MPTA_FILE, CACHE_DIR)
|
|
|
|
if not model_tree:
|
|
print("Failed to load pipeline.")
|
|
exit()
|
|
|
|
# 3. Open a video source
|
|
cap = cv2.VideoCapture(0)
|
|
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
# 4. Run the pipeline on the current frame with context
|
|
context = {
|
|
"camera_id": "display-001;cam-001",
|
|
"display_id": "display-001",
|
|
"session_id": None # Will be generated automatically
|
|
}
|
|
|
|
detection_result, bounding_box = run_pipeline(frame, model_tree, return_bbox=True, context=context)
|
|
|
|
# 5. Display the results
|
|
if detection_result:
|
|
print(f"Detected: {detection_result['class']} with confidence {detection_result['confidence']:.2f}")
|
|
if bounding_box:
|
|
x1, y1, x2, y2 = bounding_box
|
|
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
|
cv2.putText(frame, detection_result['class'], (x1, y1 - 10),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
|
|
|
|
cv2.imshow("Pipeline Output", frame)
|
|
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
break
|
|
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|
|
``` |