Compare commits

...
Sign in to create a new pull request.

16 commits

Author SHA1 Message Date
e6716bbe73 feat: add comprehensive documentation for Python Detector Worker; include project overview, architecture, core components, and configuration details
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 8m47s
2025-07-16 03:24:40 +07:00
f50585f26d feat: enhance Redis action handling; add dynamic context for actions and support for expiration time
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 9m3s
2025-07-15 00:35:22 +07:00
769371a1a3 feat: integrate Redis support in pipeline execution; add actions for saving images and publishing messages 2025-07-15 00:30:09 +07:00
a1f797f564 feat: add HTTP API for image retrieval from camera; implement endpoint for accessing latest image frames 2025-07-15 00:18:28 +07:00
pixchy-commits
428f7a9671 feat: enhance session management in worker communication protocol; implement session ID handling and crop frame processing 2025-07-14 23:40:19 +07:00
c7bb46e1e3 refactor documentation for worker communication protocol; improve formatting and clarify crop coordinates and session ID handling
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 8m50s
2025-07-14 11:19:11 +07:00
112ca9325d refactor session ID handling in worker communication protocol; replace subscriptionIdentifier with displayIdentifier
Some checks failed
Build Backend Application and Docker Image / build-docker (push) Failing after 8s
2025-07-14 11:05:17 +07:00
700d3b3efe add subscription identifier format and session ID association details to worker communication protocol
Some checks failed
Build Backend Application and Docker Image / build-docker (push) Failing after 8s
2025-07-14 11:02:05 +07:00
3edcd286fd update session ID handling in worker communication protocol; allow null session ID to indicate no active session
Some checks failed
Build Backend Application and Docker Image / build-docker (push) Has been cancelled
2025-07-14 10:57:06 +07:00
8f32de1510 add session ID handling to worker communication protocol; allow backend to associate session IDs with subscriptions
Some checks failed
Build Backend Application and Docker Image / build-docker (push) Has been cancelled
2025-07-14 10:49:59 +07:00
3c67fa933c add crop coordinates handling in camera stream management; update logging and refactor subscription identifiers
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 8m38s
2025-07-14 01:46:22 +07:00
39d49ba617 update crop coordinate fields in worker communication protocol to support rectangular cropping
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 11m5s
2025-07-14 01:01:01 +07:00
8e14897a69 add crop coordinates to state report messages for camera connections
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 8m43s
2025-07-13 23:59:51 +07:00
1ff6108d08 update worker communication protocol to use subscription identifiers; add crop coordinates for camera streams and clarify handling of multiple subscriptions
Some checks failed
Build Backend Application and Docker Image / build-docker (push) Has been cancelled
2025-07-13 23:58:01 +07:00
162f29ec21 remove license plate confidence from detection messages for simplified reporting
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 8m49s
2025-07-13 19:43:46 +07:00
5cf1bf08cc add WebSocket communication protocol documentation for detector worker; outline connection, message types, and dynamic configuration
Some checks are pending
Build Backend Application and Docker Image / build-docker (push) Waiting to run
2025-07-13 19:39:17 +07:00
7 changed files with 1321 additions and 118 deletions

188
CLAUDE.md Normal file
View file

@ -0,0 +1,188 @@
# Python Detector Worker - CLAUDE.md
## Project Overview
This is a FastAPI-based computer vision detection worker that processes video streams from RTSP/HTTP sources and runs YOLO-based machine learning pipelines for object detection and classification. The system is designed to work within a larger CMS (Content Management System) architecture.
## Architecture & Technology Stack
- **Framework**: FastAPI with WebSocket support
- **ML/CV**: PyTorch, Ultralytics YOLO, OpenCV
- **Containerization**: Docker (Python 3.13-bookworm base)
- **Data Storage**: Redis integration for action handling
- **Communication**: WebSocket-based real-time protocol
## Core Components
### Main Application (`app.py`)
- **FastAPI WebSocket server** for real-time communication
- **Multi-camera stream management** with shared stream optimization
- **HTTP REST endpoint** for image retrieval (`/camera/{camera_id}/image`)
- **Threading-based frame readers** for RTSP streams and HTTP snapshots
- **Model loading and inference** using MPTA (Machine Learning Pipeline Archive) format
- **Session management** with display identifier mapping
- **Resource monitoring** (CPU, memory, GPU usage via psutil)
### Pipeline System (`siwatsystem/pympta.py`)
- **MPTA file handling** - ZIP archives containing model configurations
- **Hierarchical pipeline execution** with detection → classification branching
- **Redis action system** for image saving and message publishing
- **Dynamic model loading** with GPU optimization
- **Configurable trigger classes and confidence thresholds**
### Testing & Debugging
- **Protocol test script** (`test_protocol.py`) for WebSocket communication validation
- **Pipeline webcam utility** (`pipeline_webcam.py`) for local testing with visual output
- **RTSP streaming debug tool** (`debug/rtsp_webcam.py`) using GStreamer
## Code Conventions & Patterns
### Logging
- **Structured logging** using Python's logging module
- **File + console output** to `detector_worker.log`
- **Debug level separation** for detailed troubleshooting
- **Context-aware messages** with camera IDs and model information
### Error Handling
- **Graceful failure handling** with retry mechanisms (configurable max_retries)
- **Thread-safe operations** using locks for streams and models
- **WebSocket disconnect handling** with proper cleanup
- **Model loading validation** with detailed error reporting
### Configuration
- **JSON configuration** (`config.json`) for runtime parameters:
- `poll_interval_ms`: Frame processing interval
- `max_streams`: Concurrent stream limit
- `target_fps`: Target frame rate
- `reconnect_interval_sec`: Stream reconnection delay
- `max_retries`: Maximum retry attempts (-1 for unlimited)
### Threading Model
- **Frame reader threads** for each camera stream (RTSP/HTTP)
- **Shared stream optimization** - multiple subscriptions can reuse the same camera stream
- **Async WebSocket handling** with concurrent task management
- **Thread-safe data structures** with proper locking mechanisms
## WebSocket Protocol
### Message Types
- **subscribe**: Start camera stream with model pipeline
- **unsubscribe**: Stop camera stream processing
- **requestState**: Request current worker status
- **setSessionId**: Associate display with session identifier
- **patchSession**: Update session data
- **stateReport**: Periodic heartbeat with system metrics
- **imageDetection**: Detection results with timestamp and model info
### Subscription Format
```json
{
"type": "subscribe",
"payload": {
"subscriptionIdentifier": "display-001;cam-001",
"rtspUrl": "rtsp://...", // OR snapshotUrl
"snapshotUrl": "http://...",
"snapshotInterval": 5000,
"modelUrl": "http://...model.mpta",
"modelId": 101,
"modelName": "Vehicle Detection",
"cropX1": 100, "cropY1": 200,
"cropX2": 300, "cropY2": 400
}
}
```
## Model Pipeline (MPTA) Format
### Structure
- **ZIP archive** containing models and configuration
- **pipeline.json** - Main configuration file
- **Model files** - YOLO .pt files for detection/classification
- **Redis configuration** - Optional for action execution
### Pipeline Flow
1. **Detection stage** - YOLO object detection with bounding boxes
2. **Trigger evaluation** - Check if detected class matches trigger conditions
3. **Classification stage** - Crop detected region and run classification model
4. **Action execution** - Redis operations (image saving, message publishing)
### Branch Configuration
```json
{
"modelId": "detector-v1",
"modelFile": "detector.pt",
"triggerClasses": ["car", "truck"],
"minConfidence": 0.5,
"branches": [{
"modelId": "classifier-v1",
"modelFile": "classifier.pt",
"crop": true,
"triggerClasses": ["car"],
"minConfidence": 0.3,
"actions": [...]
}]
}
```
## Stream Management
### Shared Streams
- Multiple subscriptions can share the same camera URL
- Reference counting prevents premature stream termination
- Automatic cleanup when last subscription ends
### Frame Processing
- **Queue-based buffering** with single frame capacity (latest frame only)
- **Configurable polling interval** based on target FPS
- **Automatic reconnection** with exponential backoff
## Development & Testing
### Local Development
```bash
# Install dependencies
pip install -r requirements.txt
# Run the worker
python app.py
# Test protocol compliance
python test_protocol.py
# Test pipeline with webcam
python pipeline_webcam.py --mpta-file path/to/model.mpta --video 0
```
### Docker Deployment
```bash
# Build container
docker build -t detector-worker .
# Run with volume mounts for models
docker run -p 8000:8000 -v ./models:/app/models detector-worker
```
### Testing Commands
- **Protocol testing**: `python test_protocol.py`
- **Pipeline validation**: `python pipeline_webcam.py --mpta-file <path> --video 0`
- **RTSP debugging**: `python debug/rtsp_webcam.py`
## Dependencies
- **fastapi[standard]**: Web framework with WebSocket support
- **uvicorn**: ASGI server
- **torch, torchvision**: PyTorch for ML inference
- **ultralytics**: YOLO implementation
- **opencv-python**: Computer vision operations
- **websockets**: WebSocket client/server
- **redis**: Redis client for action execution
## Security Considerations
- Model files are loaded from trusted sources only
- Redis connections use authentication when configured
- WebSocket connections handle disconnects gracefully
- Resource usage is monitored to prevent DoS
## Performance Optimizations
- GPU acceleration when CUDA is available
- Shared camera streams reduce resource usage
- Frame queue optimization (single latest frame)
- Model caching across subscriptions
- Trigger class filtering for faster inference

368
app.py
View file

@ -29,6 +29,12 @@ app = FastAPI()
# "models" now holds a nested dict: { camera_id: { modelId: model_tree } }
models: Dict[str, Dict[str, Any]] = {}
streams: Dict[str, Dict[str, Any]] = {}
# Store session IDs per display
session_ids: Dict[str, int] = {}
# Track shared camera streams by camera URL
camera_streams: Dict[str, Dict[str, Any]] = {}
# Map subscriptions to their camera URL
subscription_to_camera: Dict[str, str] = {}
with open("config.json", "r") as f:
config = json.load(f)
@ -122,6 +128,15 @@ def fetch_snapshot(url: str):
logger.error(f"Exception fetching snapshot from {url}: {str(e)}")
return None
# Helper to get crop coordinates from stream
def get_crop_coords(stream):
return {
"cropX1": stream.get("cropX1"),
"cropY1": stream.get("cropY1"),
"cropX2": stream.get("cropX2"),
"cropY2": stream.get("cropY2")
}
####################################################
# REST API endpoint for image retrieval
####################################################
@ -133,20 +148,24 @@ async def get_camera_image(camera_id: str):
try:
with streams_lock:
if camera_id not in streams:
logger.warning(f"Camera ID '{camera_id}' not found in streams. Current streams: {list(streams.keys())}")
raise HTTPException(status_code=404, detail=f"Camera {camera_id} not found or not active")
stream = streams[camera_id]
buffer = stream["buffer"]
logger.debug(f"Camera '{camera_id}' buffer size: {buffer.qsize()}, buffer empty: {buffer.empty()}")
logger.debug(f"Buffer queue contents: {getattr(buffer, 'queue', None)}")
if buffer.empty():
logger.warning(f"No frame available for camera '{camera_id}'. Buffer is empty.")
raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
# Get the latest frame (non-blocking)
try:
frame = buffer.queue[-1] # Get the most recent frame without removing it
except IndexError:
logger.warning(f"Buffer queue is empty for camera '{camera_id}' when trying to access last frame.")
raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
# Encode frame as JPEG
success, buffer_img = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 85])
if not success:
@ -171,9 +190,16 @@ async def detect(websocket: WebSocket):
async def handle_detection(camera_id, stream, frame, websocket, model_tree, persistent_data):
try:
# Apply crop if specified
cropped_frame = frame
if all(coord is not None for coord in [stream.get("cropX1"), stream.get("cropY1"), stream.get("cropX2"), stream.get("cropY2")]):
cropX1, cropY1, cropX2, cropY2 = stream["cropX1"], stream["cropY1"], stream["cropX2"], stream["cropY2"]
cropped_frame = frame[cropY1:cropY2, cropX1:cropX2]
logger.debug(f"Applied crop coordinates ({cropX1}, {cropY1}, {cropX2}, {cropY2}) to frame for camera {camera_id}")
logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}")
start_time = time.time()
detection_result = run_pipeline(frame, model_tree)
detection_result = run_pipeline(cropped_frame, model_tree)
process_time = (time.time() - start_time) * 1000
logger.debug(f"Detection for camera {camera_id} completed in {process_time:.2f}ms")
@ -222,22 +248,48 @@ async def detect(websocket: WebSocket):
"box": [0, 0, 0, 0]
}
# Convert detection format to match protocol - flatten detection attributes
detection_dict = {}
# Handle different detection result formats
if isinstance(highest_confidence_detection, dict):
# Copy all fields from the detection result
for key, value in highest_confidence_detection.items():
if key not in ["box", "id"]: # Skip internal fields
detection_dict[key] = value
# Extract display identifier for session ID lookup
subscription_parts = stream["subscriptionIdentifier"].split(';')
display_identifier = subscription_parts[0] if subscription_parts else None
session_id = session_ids.get(display_identifier) if display_identifier else None
detection_data = {
"type": "imageDetection",
"cameraIdentifier": camera_id,
"timestamp": time.time(),
"subscriptionIdentifier": stream["subscriptionIdentifier"],
"timestamp": time.strftime("%Y-%m-%dT%H:%M:%S.%fZ", time.gmtime()),
"data": {
"detection": highest_confidence_detection, # Send only the highest confidence detection
"detection": detection_dict,
"modelId": stream["modelId"],
"modelName": stream["modelName"]
}
}
# Add session ID if available
if session_id is not None:
detection_data["sessionId"] = session_id
if highest_confidence_detection["class"] != "none":
logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {highest_confidence_detection['confidence']:.2f} using model {stream['modelName']}")
# Log session ID if available
subscription_parts = stream["subscriptionIdentifier"].split(';')
display_identifier = subscription_parts[0] if subscription_parts else None
session_id = session_ids.get(display_identifier) if display_identifier else None
if session_id:
logger.debug(f"Detection associated with session ID: {session_id}")
await websocket.send_json(detection_data)
logger.debug(f"Sent detection data to client for camera {camera_id}:\n{json.dumps(detection_data, indent=2)}")
logger.debug(f"Sent detection data to client for camera {camera_id}")
return persistent_data
except Exception as e:
logger.error(f"Error in handle_detection for camera {camera_id}: {str(e)}", exc_info=True)
@ -304,12 +356,11 @@ async def detect(websocket: WebSocket):
if not buffer.empty():
try:
buffer.get_nowait()
logger.debug(f"Removed old frame from buffer for camera {camera_id}")
logger.debug(f"[frame_reader] Removed old frame from buffer for camera {camera_id}")
except queue.Empty:
pass
buffer.put(frame)
logger.debug(f"Added new frame to buffer for camera {camera_id}")
logger.debug(f"[frame_reader] Added new frame to buffer for camera {camera_id}. Buffer size: {buffer.qsize()}")
# Short sleep to avoid CPU overuse
time.sleep(0.01)
@ -380,12 +431,11 @@ async def detect(websocket: WebSocket):
if not buffer.empty():
try:
buffer.get_nowait()
logger.debug(f"Removed old snapshot from buffer for camera {camera_id}")
logger.debug(f"[snapshot_reader] Removed old snapshot from buffer for camera {camera_id}")
except queue.Empty:
pass
buffer.put(frame)
logger.debug(f"Added new snapshot to buffer for camera {camera_id}")
logger.debug(f"[snapshot_reader] Added new snapshot to buffer for camera {camera_id}. Buffer size: {buffer.qsize()}")
# Wait for the specified interval
elapsed = time.time() - start_time
@ -456,18 +506,19 @@ async def detect(websocket: WebSocket):
cpu_usage = psutil.cpu_percent()
memory_usage = psutil.virtual_memory().percent
if torch.cuda.is_available():
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2) # MB
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2) # MB
gpu_usage = torch.cuda.utilization() if hasattr(torch.cuda, 'utilization') else None
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)
else:
gpu_usage = None
gpu_memory_usage = None
camera_connections = [
{
"cameraIdentifier": camera_id,
"subscriptionIdentifier": stream["subscriptionIdentifier"],
"modelId": stream["modelId"],
"modelName": stream["modelName"],
"online": True
"online": True,
**{k: v for k, v in get_crop_coords(stream).items() if v is not None}
}
for camera_id, stream in streams.items()
]
@ -497,56 +548,70 @@ async def detect(websocket: WebSocket):
if msg_type == "subscribe":
payload = data.get("payload", {})
camera_id = payload.get("cameraIdentifier")
subscriptionIdentifier = payload.get("subscriptionIdentifier")
rtsp_url = payload.get("rtspUrl")
snapshot_url = payload.get("snapshotUrl")
snapshot_interval = payload.get("snapshotInterval") # in milliseconds
model_url = payload.get("modelUrl") # may be remote or local
snapshot_interval = payload.get("snapshotInterval")
model_url = payload.get("modelUrl")
modelId = payload.get("modelId")
modelName = payload.get("modelName")
cropX1 = payload.get("cropX1")
cropY1 = payload.get("cropY1")
cropX2 = payload.get("cropX2")
cropY2 = payload.get("cropY2")
# Extract camera_id from subscriptionIdentifier (format: displayIdentifier;cameraIdentifier)
parts = subscriptionIdentifier.split(';')
if len(parts) != 2:
logger.error(f"Invalid subscriptionIdentifier format: {subscriptionIdentifier}")
continue
display_identifier, camera_identifier = parts
camera_id = subscriptionIdentifier # Use full subscriptionIdentifier as camera_id for mapping
if model_url:
with models_lock:
if (camera_id not in models) or (modelId not in models[camera_id]):
logger.info(f"Loading model from {model_url} for camera {camera_id}, modelId {modelId}")
extraction_dir = os.path.join("models", camera_id, str(modelId))
extraction_dir = os.path.join("models", camera_identifier, str(modelId))
os.makedirs(extraction_dir, exist_ok=True)
# If model_url is remote, download it first.
parsed = urlparse(model_url)
if parsed.scheme in ("http", "https"):
logger.info(f"Downloading remote model from {model_url}")
local_mpta = os.path.join(extraction_dir, os.path.basename(parsed.path))
logger.info(f"Downloading remote .mpta file from {model_url}")
filename = os.path.basename(parsed.path) or f"model_{modelId}.mpta"
local_mpta = os.path.join(extraction_dir, filename)
logger.debug(f"Download destination: {local_mpta}")
local_path = download_mpta(model_url, local_mpta)
if not local_path:
logger.error(f"Failed to download the remote mpta file from {model_url}")
logger.error(f"Failed to download the remote .mpta file from {model_url}")
error_response = {
"type": "error",
"cameraIdentifier": camera_id,
"subscriptionIdentifier": subscriptionIdentifier,
"error": f"Failed to download model from {model_url}"
}
await websocket.send_json(error_response)
continue
model_tree = load_pipeline_from_zip(local_path, extraction_dir)
else:
logger.info(f"Loading local model from {model_url}")
logger.info(f"Loading local .mpta file from {model_url}")
# Check if file exists before attempting to load
if not os.path.exists(model_url):
logger.error(f"Local model file not found: {model_url}")
logger.error(f"Local .mpta file not found: {model_url}")
logger.debug(f"Current working directory: {os.getcwd()}")
error_response = {
"type": "error",
"cameraIdentifier": camera_id,
"subscriptionIdentifier": subscriptionIdentifier,
"error": f"Model file not found: {model_url}"
}
await websocket.send_json(error_response)
continue
model_tree = load_pipeline_from_zip(model_url, extraction_dir)
if model_tree is None:
logger.error(f"Failed to load model {modelId} from mpta file for camera {camera_id}")
logger.error(f"Failed to load model {modelId} from .mpta file for camera {camera_id}")
error_response = {
"type": "error",
"cameraIdentifier": camera_id,
"subscriptionIdentifier": subscriptionIdentifier,
"error": f"Failed to load model {modelId}"
}
await websocket.send_json(error_response)
@ -555,95 +620,137 @@ async def detect(websocket: WebSocket):
models[camera_id] = {}
models[camera_id][modelId] = model_tree
logger.info(f"Successfully loaded model {modelId} for camera {camera_id}")
success_response = {
"type": "modelLoaded",
"cameraIdentifier": camera_id,
"modelId": modelId
}
await websocket.send_json(success_response)
logger.debug(f"Model extraction directory: {extraction_dir}")
if camera_id and (rtsp_url or snapshot_url):
with streams_lock:
# Determine camera URL for shared stream management
camera_url = snapshot_url if snapshot_url else rtsp_url
if camera_id not in streams and len(streams) < max_streams:
buffer = queue.Queue(maxsize=1)
stop_event = threading.Event()
# Check if we already have a stream for this camera URL
shared_stream = camera_streams.get(camera_url)
# Choose between snapshot and RTSP based on availability
if snapshot_url and snapshot_interval:
logger.info(f"Using snapshot mode for camera {camera_id}: {snapshot_url}")
thread = threading.Thread(target=snapshot_reader, args=(camera_id, snapshot_url, snapshot_interval, buffer, stop_event))
thread.daemon = True
thread.start()
streams[camera_id] = {
"buffer": buffer,
"thread": thread,
"snapshot_url": snapshot_url,
"snapshot_interval": snapshot_interval,
"stop_event": stop_event,
"modelId": modelId,
"modelName": modelName,
"mode": "snapshot"
}
logger.info(f"Subscribed to camera {camera_id} (snapshot mode) with modelId {modelId}, modelName {modelName}, URL {snapshot_url}, interval {snapshot_interval}ms")
elif rtsp_url:
logger.info(f"Using RTSP mode for camera {camera_id}: {rtsp_url}")
cap = cv2.VideoCapture(rtsp_url)
if not cap.isOpened():
logger.error(f"Failed to open RTSP stream for camera {camera_id}")
continue
thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
thread.daemon = True
thread.start()
streams[camera_id] = {
"cap": cap,
"buffer": buffer,
"thread": thread,
"rtsp_url": rtsp_url,
"stop_event": stop_event,
"modelId": modelId,
"modelName": modelName,
"mode": "rtsp"
}
logger.info(f"Subscribed to camera {camera_id} (RTSP mode) with modelId {modelId}, modelName {modelName}, URL {rtsp_url}")
if shared_stream:
# Reuse existing stream
logger.info(f"Reusing existing stream for camera URL: {camera_url}")
buffer = shared_stream["buffer"]
stop_event = shared_stream["stop_event"]
thread = shared_stream["thread"]
mode = shared_stream["mode"]
# Increment reference count
shared_stream["ref_count"] = shared_stream.get("ref_count", 0) + 1
else:
logger.error(f"No valid URL provided for camera {camera_id}")
continue
# Create new stream
buffer = queue.Queue(maxsize=1)
stop_event = threading.Event()
if snapshot_url and snapshot_interval:
logger.info(f"Creating new snapshot stream for camera {camera_id}: {snapshot_url}")
thread = threading.Thread(target=snapshot_reader, args=(camera_identifier, snapshot_url, snapshot_interval, buffer, stop_event))
thread.daemon = True
thread.start()
mode = "snapshot"
# Store shared stream info
shared_stream = {
"buffer": buffer,
"thread": thread,
"stop_event": stop_event,
"mode": mode,
"url": snapshot_url,
"snapshot_interval": snapshot_interval,
"ref_count": 1
}
camera_streams[camera_url] = shared_stream
elif rtsp_url:
logger.info(f"Creating new RTSP stream for camera {camera_id}: {rtsp_url}")
cap = cv2.VideoCapture(rtsp_url)
if not cap.isOpened():
logger.error(f"Failed to open RTSP stream for camera {camera_id}")
continue
thread = threading.Thread(target=frame_reader, args=(camera_identifier, cap, buffer, stop_event))
thread.daemon = True
thread.start()
mode = "rtsp"
# Store shared stream info
shared_stream = {
"buffer": buffer,
"thread": thread,
"stop_event": stop_event,
"mode": mode,
"url": rtsp_url,
"cap": cap,
"ref_count": 1
}
camera_streams[camera_url] = shared_stream
else:
logger.error(f"No valid URL provided for camera {camera_id}")
continue
# Create stream info for this subscription
stream_info = {
"buffer": buffer,
"thread": thread,
"stop_event": stop_event,
"modelId": modelId,
"modelName": modelName,
"subscriptionIdentifier": subscriptionIdentifier,
"cropX1": cropX1,
"cropY1": cropY1,
"cropX2": cropX2,
"cropY2": cropY2,
"mode": mode,
"camera_url": camera_url
}
if mode == "snapshot":
stream_info["snapshot_url"] = snapshot_url
stream_info["snapshot_interval"] = snapshot_interval
elif mode == "rtsp":
stream_info["rtsp_url"] = rtsp_url
stream_info["cap"] = shared_stream["cap"]
streams[camera_id] = stream_info
subscription_to_camera[camera_id] = camera_url
elif camera_id and camera_id in streams:
# If already subscribed, unsubscribe first
stream = streams.pop(camera_id)
stream["stop_event"].set()
stream["thread"].join()
if "cap" in stream:
stream["cap"].release()
logger.info(f"Unsubscribed from camera {camera_id} for resubscription")
with models_lock:
if camera_id in models and modelId in models[camera_id]:
del models[camera_id][modelId]
if not models[camera_id]:
del models[camera_id]
logger.info(f"Resubscribing to camera {camera_id}")
# Note: Keep models in memory for reuse across subscriptions
elif msg_type == "unsubscribe":
payload = data.get("payload", {})
camera_id = payload.get("cameraIdentifier")
logger.debug(f"Unsubscribing from camera {camera_id}")
subscriptionIdentifier = payload.get("subscriptionIdentifier")
camera_id = subscriptionIdentifier
with streams_lock:
if camera_id and camera_id in streams:
stream = streams.pop(camera_id)
stream["stop_event"].set()
stream["thread"].join()
# Only release cap if it exists (RTSP mode)
if "cap" in stream:
stream["cap"].release()
logger.info(f"Released RTSP capture for camera {camera_id}")
else:
logger.info(f"Released snapshot reader for camera {camera_id}")
camera_url = subscription_to_camera.pop(camera_id, None)
if camera_url and camera_url in camera_streams:
shared_stream = camera_streams[camera_url]
shared_stream["ref_count"] -= 1
# If no more references, stop the shared stream
if shared_stream["ref_count"] <= 0:
logger.info(f"Stopping shared stream for camera URL: {camera_url}")
shared_stream["stop_event"].set()
shared_stream["thread"].join()
if "cap" in shared_stream:
shared_stream["cap"].release()
del camera_streams[camera_url]
else:
logger.info(f"Shared stream for {camera_url} still has {shared_stream['ref_count']} references")
logger.info(f"Unsubscribed from camera {camera_id}")
with models_lock:
if camera_id in models:
del models[camera_id]
# Note: Keep models in memory for potential reuse
elif msg_type == "requestState":
cpu_usage = psutil.cpu_percent()
memory_usage = psutil.virtual_memory().percent
if torch.cuda.is_available():
gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2)
gpu_usage = torch.cuda.utilization() if hasattr(torch.cuda, 'utilization') else None
gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)
else:
gpu_usage = None
@ -651,10 +758,11 @@ async def detect(websocket: WebSocket):
camera_connections = [
{
"cameraIdentifier": camera_id,
"subscriptionIdentifier": stream["subscriptionIdentifier"],
"modelId": stream["modelId"],
"modelName": stream["modelName"],
"online": True
"online": True,
**{k: v for k, v in get_crop_coords(stream).items() if v is not None}
}
for camera_id, stream in streams.items()
]
@ -668,6 +776,37 @@ async def detect(websocket: WebSocket):
"cameraConnections": camera_connections
}
await websocket.send_text(json.dumps(state_report))
elif msg_type == "setSessionId":
payload = data.get("payload", {})
display_identifier = payload.get("displayIdentifier")
session_id = payload.get("sessionId")
if display_identifier:
# Store session ID for this display
if session_id is None:
session_ids.pop(display_identifier, None)
logger.info(f"Cleared session ID for display {display_identifier}")
else:
session_ids[display_identifier] = session_id
logger.info(f"Set session ID {session_id} for display {display_identifier}")
elif msg_type == "patchSession":
session_id = data.get("sessionId")
patch_data = data.get("data", {})
# For now, just acknowledge the patch - actual implementation depends on backend requirements
response = {
"type": "patchSessionResult",
"payload": {
"sessionId": session_id,
"success": True,
"message": "Session patch acknowledged"
}
}
await websocket.send_json(response)
logger.info(f"Acknowledged patch for session {session_id}")
else:
logger.error(f"Unknown message type: {msg_type}")
except json.JSONDecodeError:
@ -678,7 +817,6 @@ async def detect(websocket: WebSocket):
except Exception as e:
logger.error(f"Error handling message: {e}")
break
try:
await websocket.accept()
stream_task = asyncio.create_task(process_streams())
@ -691,19 +829,23 @@ async def detect(websocket: WebSocket):
stream_task.cancel()
await stream_task
with streams_lock:
for camera_id, stream in streams.items():
stream["stop_event"].set()
stream["thread"].join()
# Only release cap if it exists (RTSP mode)
if "cap" in stream:
stream["cap"].release()
while not stream["buffer"].empty():
# Clean up shared camera streams
for camera_url, shared_stream in camera_streams.items():
shared_stream["stop_event"].set()
shared_stream["thread"].join()
if "cap" in shared_stream:
shared_stream["cap"].release()
while not shared_stream["buffer"].empty():
try:
stream["buffer"].get_nowait()
shared_stream["buffer"].get_nowait()
except queue.Empty:
pass
logger.info(f"Released camera {camera_id} and cleaned up resources")
logger.info(f"Released shared camera stream for {camera_url}")
streams.clear()
camera_streams.clear()
subscription_to_camera.clear()
with models_lock:
models.clear()
session_ids.clear()
logger.info("WebSocket connection closed")

204
pympta.md Normal file
View file

@ -0,0 +1,204 @@
# pympta: Modular Pipeline Task Executor
`pympta` is a Python module designed to load and execute modular, multi-stage AI pipelines defined in a special package format (`.mpta`). It is primarily used within the detector worker to run complex computer vision tasks where the output of one model can trigger a subsequent model on a specific region of interest.
## Core Concepts
### 1. MPTA Package (`.mpta`)
An `.mpta` file is a standard `.zip` archive with a different extension. It bundles all the necessary components for a pipeline to run.
A typical `.mpta` file has the following structure:
```
my_pipeline.mpta/
├── pipeline.json
├── model1.pt
├── model2.pt
└── ...
```
- **`pipeline.json`**: (Required) The manifest file that defines the structure of the pipeline, the models to use, and the logic connecting them.
- **Model Files (`.pt`, etc.)**: The actual pre-trained model files (e.g., PyTorch, ONNX). The pipeline currently uses `ultralytics.YOLO` models.
### 2. Pipeline Structure
A pipeline is a tree-like structure of "nodes," defined in `pipeline.json`.
- **Root Node**: The entry point of the pipeline. It processes the initial, full-frame image.
- **Branch Nodes**: Child nodes that are triggered by specific detection results from their parent. For example, a root node might detect a "vehicle," which then triggers a branch node to detect a "license plate" within the vehicle's bounding box.
This modular structure allows for creating complex and efficient inference logic, avoiding the need to run every model on every frame.
## `pipeline.json` Specification
This file defines the entire pipeline logic. The root object contains a `pipeline` key for the pipeline definition and an optional `redis` key for Redis configuration.
### Top-Level Object Structure
| Key | Type | Required | Description |
| ---------- | ------ | -------- | ------------------------------------------------------- |
| `pipeline` | Object | Yes | The root node object of the pipeline. |
| `redis` | Object | No | Configuration for connecting to a Redis server. |
### Redis Configuration (`redis`)
| Key | Type | Required | Description |
| ---------- | ------ | -------- | ------------------------------------------------------- |
| `host` | String | Yes | The hostname or IP address of the Redis server. |
| `port` | Number | Yes | The port number of the Redis server. |
| `password` | String | No | The password for Redis authentication. |
| `db` | Number | No | The Redis database number to use. Defaults to `0`. |
### Node Object Structure
| Key | Type | Required | Description |
| ------------------- | ------------- | -------- | -------------------------------------------------------------------------------------------------------------------------------------- |
| `modelId` | String | Yes | A unique identifier for this model node (e.g., "vehicle-detector"). |
| `modelFile` | String | Yes | The path to the model file within the `.mpta` archive (e.g., "yolov8n.pt"). |
| `minConfidence` | Float | Yes | The minimum confidence score (0.0 to 1.0) required for a detection to be considered valid and potentially trigger a branch. |
| `triggerClasses` | Array<String> | Yes | A list of class names that, when detected by the parent, can trigger this node. For the root node, this lists all classes of interest. |
| `crop` | Boolean | No | If `true`, the image is cropped to the parent's detection bounding box before being passed to this node's model. Defaults to `false`. |
| `branches` | Array<Node> | No | A list of child node objects that can be triggered by this node's detections. |
| `actions` | Array<Action> | No | A list of actions to execute upon a successful detection in this node. |
### Action Object Structure
Actions allow the pipeline to interact with Redis. They are executed sequentially for a given detection.
#### Action Context & Dynamic Keys
All actions have access to a dynamic context for formatting keys and messages. The context is created for each detection event and includes:
- All key-value pairs from the detection result (e.g., `class`, `confidence`, `id`).
- `{timestamp_ms}`: The current Unix timestamp in milliseconds.
- `{uuid}`: A unique identifier (UUID4) for the detection event.
- `{image_key}`: If a `redis_save_image` action has already been executed for this event, this placeholder will be replaced with the key where the image was stored.
#### `redis_save_image`
Saves the current image frame (or cropped sub-image) to a Redis key.
| Key | Type | Required | Description |
| ---------------- | ------ | -------- | ------------------------------------------------------------------------------------------------------- |
| `type` | String | Yes | Must be `"redis_save_image"`. |
| `key` | String | Yes | The Redis key to save the image to. Can contain any of the dynamic placeholders. |
| `expire_seconds` | Number | No | If provided, sets an expiration time (in seconds) for the Redis key. |
#### `redis_publish`
Publishes a message to a Redis channel.
| Key | Type | Required | Description |
| --------- | ------ | -------- | ------------------------------------------------------------------------------------------------------- |
| `type` | String | Yes | Must be `"redis_publish"`. |
| `channel` | String | Yes | The Redis channel to publish the message to. |
| `message` | String | Yes | The message to publish. Can contain any of the dynamic placeholders, including `{image_key}`. |
### Example `pipeline.json` with Redis
This example demonstrates a pipeline that detects vehicles, saves a uniquely named image of each detection that expires in one hour, and then publishes a notification with the image key.
```json
{
"redis": {
"host": "redis.local",
"port": 6379,
"password": "your-super-secret-password"
},
"pipeline": {
"modelId": "vehicle-detector",
"modelFile": "vehicle_model.pt",
"minConfidence": 0.6,
"triggerClasses": ["car", "truck"],
"actions": [
{
"type": "redis_save_image",
"key": "detections:{class}:{timestamp_ms}:{uuid}",
"expire_seconds": 3600
},
{
"type": "redis_publish",
"channel": "vehicle_events",
"message": "{\"event\":\"new_detection\",\"class\":\"{class}\",\"confidence\":{confidence},\"image_key\":\"{image_key}\"}"
}
],
"branches": []
}
}
```
## API Reference
The `pympta` module exposes two main functions.
### `load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict`
Loads, extracts, and parses an `.mpta` file to build a pipeline tree in memory. It also establishes a Redis connection if configured in `pipeline.json`.
- **Parameters:**
- `zip_source` (str): The file path to the local `.mpta` zip archive.
- `target_dir` (str): A directory path where the archive's contents will be extracted.
- **Returns:**
- A dictionary representing the root node of the pipeline, ready to be used with `run_pipeline`. Returns `None` if loading fails.
### `run_pipeline(frame, node: dict, return_bbox: bool = False)`
Executes the inference pipeline on a single image frame.
- **Parameters:**
- `frame`: The input image frame (e.g., a NumPy array from OpenCV).
- `node` (dict): The pipeline node to execute (typically the root node returned by `load_pipeline_from_zip`).
- `return_bbox` (bool): If `True`, the function returns a tuple `(detection, bounding_box)`. Otherwise, it returns only the `detection`.
- **Returns:**
- The final detection result from the last executed node in the chain. A detection is a dictionary like `{'class': 'car', 'confidence': 0.95, 'id': 1}`. If no detection meets the criteria, it returns `None` (or `(None, None)` if `return_bbox` is `True`).
## Usage Example
This snippet, inspired by `pipeline_webcam.py`, shows how to use `pympta` to load a pipeline and process an image from a webcam.
```python
import cv2
from siwatsystem.pympta import load_pipeline_from_zip, run_pipeline
# 1. Define paths
MPTA_FILE = "path/to/your/pipeline.mpta"
CACHE_DIR = ".mptacache"
# 2. Load the pipeline from the .mpta file
# This reads pipeline.json and loads the YOLO models into memory.
model_tree = load_pipeline_from_zip(MPTA_FILE, CACHE_DIR)
if not model_tree:
print("Failed to load pipeline.")
exit()
# 3. Open a video source
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
if not ret:
break
# 4. Run the pipeline on the current frame
# The function will handle the entire logic tree (e.g., find a car, then find its license plate).
detection_result, bounding_box = run_pipeline(frame, model_tree, return_bbox=True)
# 5. Display the results
if detection_result:
print(f"Detected: {detection_result['class']} with confidence {detection_result['confidence']:.2f}")
if bounding_box:
x1, y1, x2, y2 = bounding_box
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, detection_result['class'], (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
cv2.imshow("Pipeline Output", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
```

View file

@ -5,4 +5,5 @@ torchvision
ultralytics
opencv-python
websockets
fastapi[standard]
fastapi[standard]
redis

View file

@ -7,13 +7,16 @@ import requests
import zipfile
import shutil
import traceback
import redis
import time
import uuid
from ultralytics import YOLO
from urllib.parse import urlparse
# Create a logger specifically for this module
logger = logging.getLogger("detector_worker.pympta")
def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client) -> dict:
# Recursively load a model node from configuration.
model_path = os.path.join(mpta_dir, node_config["modelFile"])
if not os.path.exists(model_path):
@ -44,13 +47,15 @@ def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
"triggerClassIndices": trigger_class_indices,
"crop": node_config.get("crop", False),
"minConfidence": node_config.get("minConfidence", None),
"actions": node_config.get("actions", []),
"model": model,
"branches": []
"branches": [],
"redis_client": redis_client
}
logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
for child in node_config.get("branches", []):
logger.debug(f"Loading branch for parent node {node_config['modelId']}")
node["branches"].append(load_pipeline_node(child, mpta_dir))
node["branches"].append(load_pipeline_node(child, mpta_dir, redis_client))
return node
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
@ -158,7 +163,26 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
pipeline_config = json.load(f)
logger.info(f"Successfully loaded pipeline configuration from {pipeline_json_path}")
logger.debug(f"Pipeline config: {json.dumps(pipeline_config, indent=2)}")
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir)
# Establish Redis connection if configured
redis_client = None
if "redis" in pipeline_config:
redis_config = pipeline_config["redis"]
try:
redis_client = redis.Redis(
host=redis_config["host"],
port=redis_config["port"],
password=redis_config.get("password"),
db=redis_config.get("db", 0),
decode_responses=True
)
redis_client.ping()
logger.info(f"Successfully connected to Redis at {redis_config['host']}:{redis_config['port']}")
except redis.exceptions.ConnectionError as e:
logger.error(f"Failed to connect to Redis: {e}")
redis_client = None
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir, redis_client)
except json.JSONDecodeError as e:
logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
return None
@ -169,6 +193,39 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
return None
def execute_actions(node, frame, detection_result):
if not node["redis_client"] or not node["actions"]:
return
# Create a dynamic context for this detection event
action_context = {
**detection_result,
"timestamp_ms": int(time.time() * 1000),
"uuid": str(uuid.uuid4()),
}
for action in node["actions"]:
try:
if action["type"] == "redis_save_image":
key = action["key"].format(**action_context)
_, buffer = cv2.imencode('.jpg', frame)
expire_seconds = action.get("expire_seconds")
if expire_seconds:
node["redis_client"].setex(key, expire_seconds, buffer.tobytes())
logger.info(f"Saved image to Redis with key: {key} (expires in {expire_seconds}s)")
else:
node["redis_client"].set(key, buffer.tobytes())
logger.info(f"Saved image to Redis with key: {key}")
# Add the generated key to the context for subsequent actions
action_context["image_key"] = key
elif action["type"] == "redis_publish":
channel = action["channel"]
message = action["message"].format(**action_context)
node["redis_client"].publish(channel, message)
logger.info(f"Published message to Redis channel '{channel}': {message}")
except Exception as e:
logger.error(f"Error executing action {action['type']}: {e}")
def run_pipeline(frame, node: dict, return_bbox: bool=False):
"""
- For detection nodes (task != 'classify'):
@ -206,6 +263,7 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False):
"confidence": top1_conf,
"id": None
}
execute_actions(node, frame, det)
return (det, None) if return_bbox else det
@ -254,9 +312,11 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False):
det2, _ = run_pipeline(sub, br, return_bbox=True)
if det2:
# return classification result + original bbox
execute_actions(br, sub, det2)
return (det2, best_box) if return_bbox else det2
# ─── No branch matched → return this detection ─────────────
execute_actions(node, frame, best_det)
return (best_det, best_box) if return_bbox else best_det
except Exception as e:

125
test_protocol.py Normal file
View file

@ -0,0 +1,125 @@
#!/usr/bin/env python3
"""
Test script to verify the worker implementation follows the protocol
"""
import json
import asyncio
import websockets
import time
async def test_protocol():
"""Test the worker protocol implementation"""
uri = "ws://localhost:8000"
try:
async with websockets.connect(uri) as websocket:
print("✓ Connected to worker")
# Test 1: Check if we receive heartbeat (stateReport)
print("\n1. Testing heartbeat...")
try:
message = await asyncio.wait_for(websocket.recv(), timeout=5)
data = json.loads(message)
if data.get("type") == "stateReport":
print("✓ Received stateReport heartbeat")
print(f" - CPU Usage: {data.get('cpuUsage', 'N/A')}%")
print(f" - Memory Usage: {data.get('memoryUsage', 'N/A')}%")
print(f" - Camera Connections: {len(data.get('cameraConnections', []))}")
else:
print(f"✗ Expected stateReport, got {data.get('type')}")
except asyncio.TimeoutError:
print("✗ No heartbeat received within 5 seconds")
# Test 2: Request state
print("\n2. Testing requestState...")
await websocket.send(json.dumps({"type": "requestState"}))
try:
message = await asyncio.wait_for(websocket.recv(), timeout=5)
data = json.loads(message)
if data.get("type") == "stateReport":
print("✓ Received stateReport response")
else:
print(f"✗ Expected stateReport, got {data.get('type')}")
except asyncio.TimeoutError:
print("✗ No response to requestState within 5 seconds")
# Test 3: Set session ID
print("\n3. Testing setSessionId...")
session_message = {
"type": "setSessionId",
"payload": {
"displayIdentifier": "display-001",
"sessionId": 12345
}
}
await websocket.send(json.dumps(session_message))
print("✓ Sent setSessionId message")
# Test 4: Test patchSession
print("\n4. Testing patchSession...")
patch_message = {
"type": "patchSession",
"sessionId": 12345,
"data": {
"currentCar": {
"carModel": "Civic",
"carBrand": "Honda"
}
}
}
await websocket.send(json.dumps(patch_message))
# Wait for patchSessionResult
try:
message = await asyncio.wait_for(websocket.recv(), timeout=5)
data = json.loads(message)
if data.get("type") == "patchSessionResult":
print("✓ Received patchSessionResult")
print(f" - Success: {data.get('payload', {}).get('success')}")
print(f" - Message: {data.get('payload', {}).get('message')}")
else:
print(f"✗ Expected patchSessionResult, got {data.get('type')}")
except asyncio.TimeoutError:
print("✗ No patchSessionResult received within 5 seconds")
# Test 5: Test subscribe message format (without actual camera)
print("\n5. Testing subscribe message format...")
subscribe_message = {
"type": "subscribe",
"payload": {
"subscriptionIdentifier": "display-001;cam-001",
"snapshotUrl": "http://example.com/snapshot.jpg",
"snapshotInterval": 5000,
"modelUrl": "http://example.com/model.mpta",
"modelName": "Test Model",
"modelId": 101,
"cropX1": 100,
"cropY1": 200,
"cropX2": 300,
"cropY2": 400
}
}
await websocket.send(json.dumps(subscribe_message))
print("✓ Sent subscribe message (will fail without actual camera/model)")
# Listen for a few more messages to catch any errors
print("\n6. Listening for additional messages...")
for i in range(3):
try:
message = await asyncio.wait_for(websocket.recv(), timeout=2)
data = json.loads(message)
msg_type = data.get("type")
print(f" - Received {msg_type}")
if msg_type == "error":
print(f" Error: {data.get('error')}")
except asyncio.TimeoutError:
break
print("\n✓ Protocol test completed successfully!")
except Exception as e:
print(f"✗ Connection failed: {e}")
print("Make sure the worker is running on localhost:8000")
if __name__ == "__main__":
asyncio.run(test_protocol())

483
worker.md Normal file
View file

@ -0,0 +1,483 @@
# Worker Communication Protocol
This document outlines the WebSocket-based communication protocol between the CMS backend and a detector worker. As a worker developer, your primary responsibility is to implement a WebSocket server that adheres to this protocol.
## 1. Connection
The worker must run a WebSocket server, preferably on port `8000`. The backend system, which is managed by a container orchestration service, will automatically discover and establish a WebSocket connection to your worker.
Upon a successful connection from the backend, you should begin sending `stateReport` messages as heartbeats.
## 2. Communication Overview
Communication is bidirectional and asynchronous. All messages are JSON objects with a `type` field that indicates the message's purpose, and an optional `payload` field containing the data.
- **Worker -> Backend:** You will send messages to the backend to report status, forward detection events, or request changes to session data.
- **Backend -> Worker:** The backend will send commands to you to manage camera subscriptions.
## 3. Dynamic Configuration via MPTA File
To enable modularity and dynamic configuration, the backend will send you a URL to a `.mpta` file when it issues a `subscribe` command. This file is a renamed `.zip` archive that contains everything your worker needs to perform its task.
**Your worker is responsible for:**
1. Fetching this file from the provided URL.
2. Extracting its contents.
3. Interpreting the contents to configure its internal pipeline.
**The contents of the `.mpta` file are entirely up to the user who configures the model in the CMS.** This allows for maximum flexibility. For example, the archive could contain:
- AI/ML Models: Pre-trained models for libraries like TensorFlow, PyTorch, or ONNX.
- Configuration Files: A `config.json` or `pipeline.yaml` that defines a sequence of operations, specifies model paths, or sets detection thresholds.
- Scripts: Custom Python scripts for pre-processing or post-processing.
- API Integration Details: A JSON file with endpoint information and credentials for interacting with third-party detection services.
Essentially, the `.mpta` file is a self-contained package that tells your worker *how* to process the video stream for a given subscription.
## 4. Messages from Worker to Backend
These are the messages your worker is expected to send to the backend.
### 4.1. State Report (Heartbeat)
This message is crucial for the backend to monitor your worker's health and status, including GPU usage.
- **Type:** `stateReport`
- **When to Send:** Periodically (e.g., every 2 seconds) after a connection is established.
**Payload:**
```json
{
"type": "stateReport",
"cpuUsage": 75.5,
"memoryUsage": 40.2,
"gpuUsage": 60.0,
"gpuMemoryUsage": 25.1,
"cameraConnections": [
{
"subscriptionIdentifier": "display-001;cam-001",
"modelId": 101,
"modelName": "General Object Detection",
"online": true,
"cropX1": 100,
"cropY1": 200,
"cropX2": 300,
"cropY2": 400
}
]
}
```
> **Note:**
>
> - `cropX1`, `cropY1`, `cropX2`, `cropY2` (optional, integer) should be included in each camera connection to indicate the crop coordinates for that subscription.
### 4.2. Image Detection
Sent when the worker detects a relevant object. The `detection` object should be flat and contain key-value pairs corresponding to the detected attributes.
- **Type:** `imageDetection`
**Payload Example:**
```json
{
"type": "imageDetection",
"subscriptionIdentifier": "display-001;cam-001",
"timestamp": "2025-07-14T12:34:56.789Z",
"data": {
"detection": {
"carModel": "Civic",
"carBrand": "Honda",
"carYear": 2023,
"bodyType": "Sedan",
"licensePlateText": "ABCD1234",
"licensePlateConfidence": 0.95
},
"modelId": 101,
"modelName": "US-LPR-and-Vehicle-ID"
}
}
```
### 4.3. Patch Session
> **Note:** Patch messages are only used when the worker can't keep up and needs to retroactively send detections. Normally, detections should be sent in real-time using `imageDetection` messages. Use `patchSession` only to update session data after the fact.
Allows the worker to request a modification to an active session's data. The `data` payload must be a partial object of the `DisplayPersistentData` structure.
- **Type:** `patchSession`
**Payload Example:**
```json
{
"type": "patchSession",
"sessionId": 12345,
"data": {
"currentCar": {
"carModel": "Civic",
"carBrand": "Honda",
"licensePlateText": "ABCD1234"
}
}
}
```
The backend will respond with a `patchSessionResult` command.
#### `DisplayPersistentData` Structure
The `data` object in the `patchSession` message is merged with the existing `DisplayPersistentData` on the backend. Here is its structure:
```typescript
interface DisplayPersistentData {
progressionStage: "welcome" | "car_fueling" | "car_waitpayment" | "car_postpayment" | null;
qrCode: string | null;
adsPlayback: {
playlistSlotOrder: number; // The 'order' of the current slot
adsId: number | null;
adsUrl: string | null;
} | null;
currentCar: {
carModel?: string;
carBrand?: string;
carYear?: number;
bodyType?: string;
licensePlateText?: string;
licensePlateType?: string;
} | null;
fuelPump: { /* FuelPumpData structure */ } | null;
weatherData: { /* WeatherResponse structure */ } | null;
sessionId: number | null;
}
```
#### Patching Behavior
- The patch is a **deep merge**.
- **`undefined`** values are ignored.
- **`null`** values will set the corresponding field to `null`.
- Nested objects are merged recursively.
## 5. Commands from Backend to Worker
These are the commands your worker will receive from the backend.
### 5.1. Subscribe to Camera
Instructs the worker to process a camera's RTSP stream using the configuration from the specified `.mpta` file.
- **Type:** `subscribe`
**Payload:**
```json
{
"type": "subscribe",
"payload": {
"subscriptionIdentifier": "display-001;cam-002",
"rtspUrl": "rtsp://user:pass@host:port/stream",
"snapshotUrl": "http://go2rtc/snapshot/1",
"snapshotInterval": 5000,
"modelUrl": "http://storage/models/us-lpr.mpta",
"modelName": "US-LPR-and-Vehicle-ID",
"modelId": 102,
"cropX1": 100,
"cropY1": 200,
"cropX2": 300,
"cropY2": 400
}
}
```
> **Note:**
>
> - `cropX1`, `cropY1`, `cropX2`, `cropY2` (optional, integer) specify the crop coordinates for the camera stream. These values are configured per display and passed in the subscription payload. If not provided, the worker should process the full frame.
>
> **Important:**
> If multiple displays are bound to the same camera, your worker must ensure that only **one stream** is opened per camera. When you receive multiple subscriptions for the same camera (with different `subscriptionIdentifier` values), you should:
>
> - Open the RTSP stream **once** for that camera if using RTSP.
> - Capture each snapshot only once per cycle, and reuse it for all display subscriptions sharing that camera.
> - Capture each frame/image only once per cycle.
> - Reuse the same captured image and snapshot for all display subscriptions that share the camera, processing and routing detection results separately for each display as needed.
> This avoids unnecessary load and bandwidth usage, and ensures consistent detection results and snapshots across all displays sharing the same camera.
### 5.2. Unsubscribe from Camera
Instructs the worker to stop processing a camera's stream.
- **Type:** `unsubscribe`
**Payload:**
```json
{
"type": "unsubscribe",
"payload": {
"subscriptionIdentifier": "display-001;cam-002"
}
}
```
### 5.3. Request State
Direct request for the worker's current state. Respond with a `stateReport` message.
- **Type:** `requestState`
**Payload:**
```json
{
"type": "requestState"
}
```
### 5.4. Patch Session Result
Backend's response to a `patchSession` message.
- **Type:** `patchSessionResult`
**Payload:**
```json
{
"type": "patchSessionResult",
"payload": {
"sessionId": 12345,
"success": true,
"message": "Session updated successfully."
}
}
```
### 5.5. Set Session ID
Allows the backend to instruct the worker to associate a session ID with a subscription. This is useful for linking detection events to a specific session. The session ID can be `null` to indicate no active session.
- **Type:** `setSessionId`
**Payload:**
```json
{
"type": "setSessionId",
"payload": {
"displayIdentifier": "display-001",
"sessionId": 12345
}
}
```
Or to clear the session:
```json
{
"type": "setSessionId",
"payload": {
"displayIdentifier": "display-001",
"sessionId": null
}
}
```
> **Note:**
>
> - The worker should store the session ID for the given subscription and use it in subsequent detection or patch messages as appropriate. If `sessionId` is `null`, the worker should treat the subscription as having no active session.
## Subscription Identifier Format
The `subscriptionIdentifier` used in all messages is constructed as:
```
displayIdentifier;cameraIdentifier
```
This uniquely identifies a camera subscription for a specific display.
### Session ID Association
When the backend sends a `setSessionId` command, it will only provide the `displayIdentifier` (not the full `subscriptionIdentifier`).
**Worker Responsibility:**
- The worker must match the `displayIdentifier` to all active subscriptions for that display (i.e., all `subscriptionIdentifier` values that start with `displayIdentifier;`).
- The worker should set or clear the session ID for all matching subscriptions.
## 6. Example Communication Log
This section shows a typical sequence of messages between the backend and the worker. Patch messages are not included, as they are only used when the worker cannot keep up.
> **Note:** Unsubscribe is triggered when a user removes a camera or when the node is too heavily loaded and needs rebalancing.
1. **Connection Established** & **Heartbeat**
* **Worker -> Backend**
```json
{
"type": "stateReport",
"cpuUsage": 70.2,
"memoryUsage": 38.1,
"gpuUsage": 55.0,
"gpuMemoryUsage": 20.0,
"cameraConnections": []
}
```
2. **Backend Subscribes Camera**
* **Backend -> Worker**
```json
{
"type": "subscribe",
"payload": {
"subscriptionIdentifier": "display-001;entry-cam-01",
"rtspUrl": "rtsp://192.168.1.100/stream1",
"modelUrl": "http://storage/models/vehicle-id.mpta",
"modelName": "Vehicle Identification",
"modelId": 201
}
}
```
3. **Worker Acknowledges in Heartbeat**
* **Worker -> Backend**
```json
{
"type": "stateReport",
"cpuUsage": 72.5,
"memoryUsage": 39.0,
"gpuUsage": 57.0,
"gpuMemoryUsage": 21.0,
"cameraConnections": [
{
"subscriptionIdentifier": "display-001;entry-cam-01",
"modelId": 201,
"modelName": "Vehicle Identification",
"online": true
}
]
}
```
4. **Worker Detects a Car**
* **Worker -> Backend**
```json
{
"type": "imageDetection",
"subscriptionIdentifier": "display-001;entry-cam-01",
"timestamp": "2025-07-15T10:00:00.000Z",
"data": {
"detection": {
"carBrand": "Honda",
"carModel": "CR-V",
"bodyType": "SUV",
"licensePlateText": "GEMINI-AI",
"licensePlateConfidence": 0.98
},
"modelId": 201,
"modelName": "Vehicle Identification"
}
}
```
* **Worker -> Backend**
```json
{
"type": "imageDetection",
"subscriptionIdentifier": "display-001;entry-cam-01",
"timestamp": "2025-07-15T10:00:01.000Z",
"data": {
"detection": {
"carBrand": "Toyota",
"carModel": "Corolla",
"bodyType": "Sedan",
"licensePlateText": "CMS-1234",
"licensePlateConfidence": 0.97
},
"modelId": 201,
"modelName": "Vehicle Identification"
}
}
```
* **Worker -> Backend**
```json
{
"type": "imageDetection",
"subscriptionIdentifier": "display-001;entry-cam-01",
"timestamp": "2025-07-15T10:00:02.000Z",
"data": {
"detection": {
"carBrand": "Ford",
"carModel": "Focus",
"bodyType": "Hatchback",
"licensePlateText": "CMS-5678",
"licensePlateConfidence": 0.96
},
"modelId": 201,
"modelName": "Vehicle Identification"
}
}
```
5. **Backend Unsubscribes Camera**
* **Backend -> Worker**
```json
{
"type": "unsubscribe",
"payload": {
"subscriptionIdentifier": "display-001;entry-cam-01"
}
}
```
6. **Worker Acknowledges Unsubscription**
* **Worker -> Backend**
```json
{
"type": "stateReport",
"cpuUsage": 68.0,
"memoryUsage": 37.0,
"gpuUsage": 50.0,
"gpuMemoryUsage": 18.0,
"cameraConnections": []
}
```
## 7. HTTP API: Image Retrieval
In addition to the WebSocket protocol, the worker exposes an HTTP endpoint for retrieving the latest image frame from a camera.
### Endpoint
```
GET /camera/{camera_id}/image
```
- **`camera_id`**: The full `subscriptionIdentifier` (e.g., `display-001;cam-001`).
### Response
- **Success (200):** Returns the latest JPEG image from the camera stream.
- `Content-Type: image/jpeg`
- Binary JPEG data.
- **Error (404):** If the camera is not found or no frame is available.
- JSON error response.
- **Error (500):** Internal server error.
### Example Request
```
GET /camera/display-001;cam-001/image
```
### Example Response
- **Headers:**
```
Content-Type: image/jpeg
```
- **Body:** Binary JPEG image.
### Notes
- The endpoint returns the most recent frame available for the specified camera subscription.
- If multiple displays share the same camera, each subscription has its own buffer; the endpoint uses the buffer for the given `camera_id`.
- This API is useful for debugging, monitoring, or integrating with external systems that require direct image access.