refactor run_pipeline function for improved clarity and efficiency; add trigger class index handling and streamline detection logic
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 9m27s
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 9m27s
This commit is contained in:
parent
d4754fcd27
commit
f6014abb7a
1 changed files with 96 additions and 119 deletions
|
@ -27,10 +27,21 @@ def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
|
|||
model.to("cuda")
|
||||
else:
|
||||
logger.info(f"CUDA not available. Using CPU for model {node_config['modelId']}")
|
||||
|
||||
# Prepare trigger class indices for optimization
|
||||
trigger_classes = node_config.get("triggerClasses", [])
|
||||
trigger_class_indices = None
|
||||
if trigger_classes and hasattr(model, "names"):
|
||||
# Convert class names to indices for the model
|
||||
trigger_class_indices = [i for i, name in model.names.items()
|
||||
if name in trigger_classes]
|
||||
logger.debug(f"Converted trigger classes to indices: {trigger_class_indices}")
|
||||
|
||||
node = {
|
||||
"modelId": node_config["modelId"],
|
||||
"modelFile": node_config["modelFile"],
|
||||
"triggerClasses": node_config.get("triggerClasses", []),
|
||||
"triggerClasses": trigger_classes,
|
||||
"triggerClassIndices": trigger_class_indices,
|
||||
"crop": node_config.get("crop", False),
|
||||
"minConfidence": node_config.get("minConfidence", None),
|
||||
"model": model,
|
||||
|
@ -158,130 +169,96 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
|||
logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
|
||||
return None
|
||||
|
||||
def run_pipeline(frame, node: dict, return_bbox: bool = False, is_last_stage: bool = True):
|
||||
def run_pipeline(frame, node: dict, return_bbox: bool=False):
|
||||
"""
|
||||
Processes the frame with the given pipeline node. When return_bbox is True,
|
||||
the function returns a tuple (detection, bbox) where bbox is (x1,y1,x2,y2)
|
||||
for drawing. Otherwise, returns only the detection.
|
||||
|
||||
The is_last_stage parameter controls whether this node is considered the last
|
||||
in the pipeline chain. Only the last stage will return detection results.
|
||||
- For detection nodes (task != 'classify'):
|
||||
• runs `track(..., classes=triggerClassIndices)`
|
||||
• picks top box ≥ minConfidence
|
||||
• optionally crops & resizes → recurse into child
|
||||
• else returns (det_dict, bbox)
|
||||
- For classify nodes:
|
||||
• runs `predict()`
|
||||
• returns top (class,confidence) and no bbox
|
||||
"""
|
||||
try:
|
||||
# Check model type and use appropriate method
|
||||
model_task = getattr(node["model"], "task", None)
|
||||
|
||||
if model_task == "classify":
|
||||
# Classification models need to use predict() instead of track()
|
||||
logger.debug(f"Running classification model: {node.get('modelId')}")
|
||||
task = getattr(node["model"], "task", None)
|
||||
|
||||
# ─── Classification stage ───────────────────────────────────
|
||||
if task == "classify":
|
||||
# run the classifier and grab its top-1 directly via the Probs API
|
||||
results = node["model"].predict(frame, stream=False)
|
||||
detection = None
|
||||
best_box = None
|
||||
|
||||
# Process classification results
|
||||
for r in results:
|
||||
probs = r.probs
|
||||
if probs is not None and len(probs) > 0:
|
||||
# Get the most confident class
|
||||
class_id = int(probs.top1)
|
||||
conf = float(probs.top1conf)
|
||||
detection = {
|
||||
"class": node["model"].names[class_id],
|
||||
"confidence": conf,
|
||||
"id": None # Classification doesn't have tracking IDs
|
||||
}
|
||||
logger.debug(f"Classification detection: {detection}")
|
||||
else:
|
||||
logger.debug(f"Empty classification results for model {node.get('modelId')}")
|
||||
|
||||
# Classification doesn't produce bounding boxes
|
||||
bbox = None
|
||||
|
||||
else:
|
||||
# Detection/segmentation models use tracking
|
||||
logger.debug(f"Running detection/tracking model: {node.get('modelId')}")
|
||||
results = node["model"].track(frame, stream=False, persist=True)
|
||||
detection = None
|
||||
best_box = None
|
||||
max_conf = -1
|
||||
# nothing returned?
|
||||
if not results:
|
||||
return (None, None) if return_bbox else None
|
||||
|
||||
# Log raw detection count
|
||||
detection_count = 0
|
||||
for r in results:
|
||||
if hasattr(r.boxes, 'cpu') and len(r.boxes.cpu()) > 0:
|
||||
detection_count += len(r.boxes.cpu())
|
||||
|
||||
if detection_count == 0:
|
||||
logger.debug(f"Empty detection results (no objects found) for model {node.get('modelId')}")
|
||||
else:
|
||||
logger.debug(f"Detection model {node.get('modelId')} found {detection_count} objects")
|
||||
# take the first result's probs object
|
||||
r = results[0]
|
||||
probs = r.probs
|
||||
if probs is None:
|
||||
return (None, None) if return_bbox else None
|
||||
|
||||
for r in results:
|
||||
for box in r.boxes:
|
||||
box_cpu = box.cpu()
|
||||
conf = float(box_cpu.conf[0])
|
||||
if conf > max_conf and hasattr(box, "id") and box.id is not None:
|
||||
max_conf = conf
|
||||
detection = {
|
||||
"class": node["model"].names[int(box_cpu.cls[0])],
|
||||
"confidence": conf,
|
||||
"id": box.id.item()
|
||||
}
|
||||
best_box = box_cpu
|
||||
|
||||
if detection:
|
||||
logger.debug(f"Best detection: {detection}")
|
||||
else:
|
||||
logger.debug(f"No valid detection with tracking ID for model {node.get('modelId')}")
|
||||
# get the top-1 class index and its confidence
|
||||
top1_idx = int(probs.top1)
|
||||
top1_conf = float(probs.top1conf)
|
||||
|
||||
bbox = None
|
||||
# Calculate bbox if best_box exists
|
||||
if detection and best_box is not None:
|
||||
coords = best_box.xyxy[0]
|
||||
x1, y1, x2, y2 = map(int, coords)
|
||||
h, w = frame.shape[:2]
|
||||
x1, y1 = max(0, x1), max(0, y1)
|
||||
x2, y2 = min(w, x2), min(h, y2)
|
||||
if x2 > x1 and y2 > y1:
|
||||
bbox = (x1, y1, x2, y2)
|
||||
logger.debug(f"Detection bounding box: {bbox}")
|
||||
if node.get("crop", False):
|
||||
frame = frame[y1:y2, x1:x2]
|
||||
logger.debug(f"Cropped frame to {frame.shape}")
|
||||
det = {
|
||||
"class": node["model"].names[top1_idx],
|
||||
"confidence": top1_conf,
|
||||
"id": None
|
||||
}
|
||||
return (det, None) if return_bbox else det
|
||||
|
||||
|
||||
# ─── Detection stage ────────────────────────────────────────
|
||||
# only look for your triggerClasses
|
||||
tk = node["triggerClassIndices"]
|
||||
res = node["model"].track(
|
||||
frame,
|
||||
stream=False,
|
||||
persist=True,
|
||||
**({"classes": tk} if tk else {})
|
||||
)[0]
|
||||
|
||||
dets, boxes = [], []
|
||||
for box in res.boxes:
|
||||
conf = float(box.cpu().conf[0])
|
||||
cid = int(box.cpu().cls[0])
|
||||
name = node["model"].names[cid]
|
||||
if conf < node["minConfidence"]:
|
||||
continue
|
||||
xy = box.cpu().xyxy[0]
|
||||
x1,y1,x2,y2 = map(int, xy)
|
||||
dets.append({"class": name, "confidence": conf,
|
||||
"id": box.id.item() if hasattr(box, "id") else None})
|
||||
boxes.append((x1, y1, x2, y2))
|
||||
|
||||
if not dets:
|
||||
return (None, None) if return_bbox else None
|
||||
|
||||
# take highest‐confidence
|
||||
best_idx = max(range(len(dets)), key=lambda i: dets[i]["confidence"])
|
||||
best_det = dets[best_idx]
|
||||
best_box = boxes[best_idx]
|
||||
|
||||
# ─── Branch (classification) ───────────────────────────────
|
||||
for br in node["branches"]:
|
||||
if (best_det["class"] in br["triggerClasses"]
|
||||
and best_det["confidence"] >= br["minConfidence"]):
|
||||
# crop if requested
|
||||
sub = frame
|
||||
if br["crop"]:
|
||||
x1,y1,x2,y2 = best_box
|
||||
sub = frame[y1:y2, x1:x2]
|
||||
sub = cv2.resize(sub, (224, 224))
|
||||
|
||||
det2, _ = run_pipeline(sub, br, return_bbox=True)
|
||||
if det2:
|
||||
# return classification result + original bbox
|
||||
return (det2, best_box) if return_bbox else det2
|
||||
|
||||
# ─── No branch matched → return this detection ─────────────
|
||||
return (best_det, best_box) if return_bbox else best_det
|
||||
|
||||
# Check if we should process branches
|
||||
if detection is not None:
|
||||
for branch in node["branches"]:
|
||||
if detection["class"] in branch.get("triggerClasses", []):
|
||||
min_conf = branch.get("minConfidence")
|
||||
if min_conf is not None and detection["confidence"] < min_conf:
|
||||
logger.debug(f"Confidence {detection['confidence']} below threshold {min_conf} for branch {branch['modelId']}.")
|
||||
break
|
||||
|
||||
# If we have branches, this is not the last stage
|
||||
branch_result = run_pipeline(frame, branch, return_bbox, is_last_stage=True)
|
||||
|
||||
# This node is no longer the last stage, so its results shouldn't be returned
|
||||
is_last_stage = False
|
||||
|
||||
if branch_result is not None:
|
||||
if return_bbox:
|
||||
return branch_result
|
||||
return branch_result
|
||||
break
|
||||
|
||||
# Return this node's detection only if it's considered the last stage
|
||||
if is_last_stage:
|
||||
if return_bbox:
|
||||
return detection, bbox
|
||||
return detection
|
||||
|
||||
# No detection or not the last stage
|
||||
if return_bbox:
|
||||
return None, None
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
|
||||
if return_bbox:
|
||||
return None, None
|
||||
return None
|
||||
logging.error(f"Error in node {node.get('modelId')}: {e}")
|
||||
return (None, None) if return_bbox else None
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue