refactor run_pipeline function for improved clarity and efficiency; add trigger class index handling and streamline detection logic
	
		
			
	
		
	
	
		
	
		
			All checks were successful
		
		
	
	
		
			
				
	
				Build Backend Application and Docker Image / build-docker (push) Successful in 9m27s
				
			
		
		
	
	
				
					
				
			
		
			All checks were successful
		
		
	
	Build Backend Application and Docker Image / build-docker (push) Successful in 9m27s
				
			This commit is contained in:
		
							parent
							
								
									d4754fcd27
								
							
						
					
					
						commit
						f6014abb7a
					
				
					 1 changed files with 96 additions and 119 deletions
				
			
		| 
						 | 
				
			
			@ -27,10 +27,21 @@ def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
 | 
			
		|||
        model.to("cuda")
 | 
			
		||||
    else:
 | 
			
		||||
        logger.info(f"CUDA not available. Using CPU for model {node_config['modelId']}")
 | 
			
		||||
 | 
			
		||||
    # Prepare trigger class indices for optimization
 | 
			
		||||
    trigger_classes = node_config.get("triggerClasses", [])
 | 
			
		||||
    trigger_class_indices = None
 | 
			
		||||
    if trigger_classes and hasattr(model, "names"):
 | 
			
		||||
        # Convert class names to indices for the model
 | 
			
		||||
        trigger_class_indices = [i for i, name in model.names.items() 
 | 
			
		||||
                                if name in trigger_classes]
 | 
			
		||||
        logger.debug(f"Converted trigger classes to indices: {trigger_class_indices}")
 | 
			
		||||
 | 
			
		||||
    node = {
 | 
			
		||||
        "modelId": node_config["modelId"],
 | 
			
		||||
        "modelFile": node_config["modelFile"],
 | 
			
		||||
        "triggerClasses": node_config.get("triggerClasses", []),
 | 
			
		||||
        "triggerClasses": trigger_classes,
 | 
			
		||||
        "triggerClassIndices": trigger_class_indices,
 | 
			
		||||
        "crop": node_config.get("crop", False),
 | 
			
		||||
        "minConfidence": node_config.get("minConfidence", None),
 | 
			
		||||
        "model": model,
 | 
			
		||||
| 
						 | 
				
			
			@ -158,130 +169,96 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
 | 
			
		|||
        logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
def run_pipeline(frame, node: dict, return_bbox: bool = False, is_last_stage: bool = True):
 | 
			
		||||
def run_pipeline(frame, node: dict, return_bbox: bool=False):
 | 
			
		||||
    """
 | 
			
		||||
    Processes the frame with the given pipeline node. When return_bbox is True,
 | 
			
		||||
    the function returns a tuple (detection, bbox) where bbox is (x1,y1,x2,y2)
 | 
			
		||||
    for drawing. Otherwise, returns only the detection.
 | 
			
		||||
    
 | 
			
		||||
    The is_last_stage parameter controls whether this node is considered the last
 | 
			
		||||
    in the pipeline chain. Only the last stage will return detection results.
 | 
			
		||||
    - For detection nodes (task != 'classify'):
 | 
			
		||||
        • runs `track(..., classes=triggerClassIndices)`
 | 
			
		||||
        • picks top box ≥ minConfidence
 | 
			
		||||
        • optionally crops & resizes → recurse into child
 | 
			
		||||
        • else returns (det_dict, bbox)
 | 
			
		||||
    - For classify nodes:
 | 
			
		||||
        • runs `predict()`
 | 
			
		||||
        • returns top (class,confidence) and no bbox
 | 
			
		||||
    """
 | 
			
		||||
    try:
 | 
			
		||||
        # Check model type and use appropriate method
 | 
			
		||||
        model_task = getattr(node["model"], "task", None)
 | 
			
		||||
        
 | 
			
		||||
        if model_task == "classify":
 | 
			
		||||
            # Classification models need to use predict() instead of track()
 | 
			
		||||
            logger.debug(f"Running classification model: {node.get('modelId')}")
 | 
			
		||||
        task = getattr(node["model"], "task", None)
 | 
			
		||||
 | 
			
		||||
        # ─── Classification stage ───────────────────────────────────
 | 
			
		||||
        if task == "classify":
 | 
			
		||||
            # run the classifier and grab its top-1 directly via the Probs API
 | 
			
		||||
            results = node["model"].predict(frame, stream=False)
 | 
			
		||||
            detection = None
 | 
			
		||||
            best_box = None
 | 
			
		||||
            
 | 
			
		||||
            # Process classification results
 | 
			
		||||
            for r in results:
 | 
			
		||||
                probs = r.probs
 | 
			
		||||
                if probs is not None and len(probs) > 0:
 | 
			
		||||
                    # Get the most confident class
 | 
			
		||||
                    class_id = int(probs.top1)
 | 
			
		||||
                    conf = float(probs.top1conf)
 | 
			
		||||
                    detection = {
 | 
			
		||||
                        "class": node["model"].names[class_id],
 | 
			
		||||
                        "confidence": conf,
 | 
			
		||||
                        "id": None  # Classification doesn't have tracking IDs
 | 
			
		||||
                    }
 | 
			
		||||
                    logger.debug(f"Classification detection: {detection}")
 | 
			
		||||
                else:
 | 
			
		||||
                    logger.debug(f"Empty classification results for model {node.get('modelId')}")
 | 
			
		||||
            
 | 
			
		||||
            # Classification doesn't produce bounding boxes
 | 
			
		||||
            bbox = None
 | 
			
		||||
            
 | 
			
		||||
        else:
 | 
			
		||||
            # Detection/segmentation models use tracking
 | 
			
		||||
            logger.debug(f"Running detection/tracking model: {node.get('modelId')}")
 | 
			
		||||
            results = node["model"].track(frame, stream=False, persist=True)
 | 
			
		||||
            detection = None
 | 
			
		||||
            best_box = None
 | 
			
		||||
            max_conf = -1
 | 
			
		||||
            # nothing returned?
 | 
			
		||||
            if not results:
 | 
			
		||||
                return (None, None) if return_bbox else None
 | 
			
		||||
 | 
			
		||||
            # Log raw detection count
 | 
			
		||||
            detection_count = 0
 | 
			
		||||
            for r in results:
 | 
			
		||||
                if hasattr(r.boxes, 'cpu') and len(r.boxes.cpu()) > 0:
 | 
			
		||||
                    detection_count += len(r.boxes.cpu())
 | 
			
		||||
            
 | 
			
		||||
            if detection_count == 0:
 | 
			
		||||
                logger.debug(f"Empty detection results (no objects found) for model {node.get('modelId')}")
 | 
			
		||||
            else:
 | 
			
		||||
                logger.debug(f"Detection model {node.get('modelId')} found {detection_count} objects")
 | 
			
		||||
            # take the first result's probs object
 | 
			
		||||
            r     = results[0]
 | 
			
		||||
            probs = r.probs
 | 
			
		||||
            if probs is None:
 | 
			
		||||
                return (None, None) if return_bbox else None
 | 
			
		||||
 | 
			
		||||
            for r in results:
 | 
			
		||||
                for box in r.boxes:
 | 
			
		||||
                    box_cpu = box.cpu()
 | 
			
		||||
                    conf = float(box_cpu.conf[0])
 | 
			
		||||
                    if conf > max_conf and hasattr(box, "id") and box.id is not None:
 | 
			
		||||
                        max_conf = conf
 | 
			
		||||
                        detection = {
 | 
			
		||||
                            "class": node["model"].names[int(box_cpu.cls[0])],
 | 
			
		||||
                            "confidence": conf,
 | 
			
		||||
                            "id": box.id.item()
 | 
			
		||||
                        }
 | 
			
		||||
                        best_box = box_cpu
 | 
			
		||||
            
 | 
			
		||||
            if detection:
 | 
			
		||||
                logger.debug(f"Best detection: {detection}")
 | 
			
		||||
            else:
 | 
			
		||||
                logger.debug(f"No valid detection with tracking ID for model {node.get('modelId')}")
 | 
			
		||||
            # get the top-1 class index and its confidence
 | 
			
		||||
            top1_idx  = int(probs.top1)
 | 
			
		||||
            top1_conf = float(probs.top1conf)
 | 
			
		||||
 | 
			
		||||
            bbox = None
 | 
			
		||||
            # Calculate bbox if best_box exists
 | 
			
		||||
            if detection and best_box is not None:
 | 
			
		||||
                coords = best_box.xyxy[0]
 | 
			
		||||
                x1, y1, x2, y2 = map(int, coords)
 | 
			
		||||
                h, w = frame.shape[:2]
 | 
			
		||||
                x1, y1 = max(0, x1), max(0, y1)
 | 
			
		||||
                x2, y2 = min(w, x2), min(h, y2)
 | 
			
		||||
                if x2 > x1 and y2 > y1:
 | 
			
		||||
                    bbox = (x1, y1, x2, y2)
 | 
			
		||||
                    logger.debug(f"Detection bounding box: {bbox}")
 | 
			
		||||
                    if node.get("crop", False):
 | 
			
		||||
                        frame = frame[y1:y2, x1:x2]
 | 
			
		||||
                        logger.debug(f"Cropped frame to {frame.shape}")
 | 
			
		||||
            det = {
 | 
			
		||||
                "class": node["model"].names[top1_idx],
 | 
			
		||||
                "confidence": top1_conf,
 | 
			
		||||
                "id": None
 | 
			
		||||
            }
 | 
			
		||||
            return (det, None) if return_bbox else det
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        # ─── Detection stage ────────────────────────────────────────
 | 
			
		||||
        # only look for your triggerClasses
 | 
			
		||||
        tk = node["triggerClassIndices"]
 | 
			
		||||
        res = node["model"].track(
 | 
			
		||||
            frame,
 | 
			
		||||
            stream=False,
 | 
			
		||||
            persist=True,
 | 
			
		||||
            **({"classes": tk} if tk else {})
 | 
			
		||||
        )[0]
 | 
			
		||||
 | 
			
		||||
        dets, boxes = [], []
 | 
			
		||||
        for box in res.boxes:
 | 
			
		||||
            conf = float(box.cpu().conf[0])
 | 
			
		||||
            cid  = int(box.cpu().cls[0])
 | 
			
		||||
            name = node["model"].names[cid]
 | 
			
		||||
            if conf < node["minConfidence"]:
 | 
			
		||||
                continue
 | 
			
		||||
            xy = box.cpu().xyxy[0]
 | 
			
		||||
            x1,y1,x2,y2 = map(int, xy)
 | 
			
		||||
            dets.append({"class": name, "confidence": conf,
 | 
			
		||||
                         "id": box.id.item() if hasattr(box, "id") else None})
 | 
			
		||||
            boxes.append((x1, y1, x2, y2))
 | 
			
		||||
 | 
			
		||||
        if not dets:
 | 
			
		||||
            return (None, None) if return_bbox else None
 | 
			
		||||
 | 
			
		||||
        # take highest‐confidence
 | 
			
		||||
        best_idx = max(range(len(dets)), key=lambda i: dets[i]["confidence"])
 | 
			
		||||
        best_det = dets[best_idx]
 | 
			
		||||
        best_box = boxes[best_idx]
 | 
			
		||||
 | 
			
		||||
        # ─── Branch (classification) ───────────────────────────────
 | 
			
		||||
        for br in node["branches"]:
 | 
			
		||||
            if (best_det["class"] in br["triggerClasses"]
 | 
			
		||||
                    and best_det["confidence"] >= br["minConfidence"]):
 | 
			
		||||
                # crop if requested
 | 
			
		||||
                sub = frame
 | 
			
		||||
                if br["crop"]:
 | 
			
		||||
                    x1,y1,x2,y2 = best_box
 | 
			
		||||
                    sub = frame[y1:y2, x1:x2]
 | 
			
		||||
                    sub = cv2.resize(sub, (224, 224))
 | 
			
		||||
 | 
			
		||||
                det2, _ = run_pipeline(sub, br, return_bbox=True)
 | 
			
		||||
                if det2:
 | 
			
		||||
                    # return classification result + original bbox
 | 
			
		||||
                    return (det2, best_box) if return_bbox else det2
 | 
			
		||||
 | 
			
		||||
        # ─── No branch matched → return this detection ─────────────
 | 
			
		||||
        return (best_det, best_box) if return_bbox else best_det
 | 
			
		||||
 | 
			
		||||
        # Check if we should process branches
 | 
			
		||||
        if detection is not None:
 | 
			
		||||
            for branch in node["branches"]:
 | 
			
		||||
                if detection["class"] in branch.get("triggerClasses", []):
 | 
			
		||||
                    min_conf = branch.get("minConfidence")
 | 
			
		||||
                    if min_conf is not None and detection["confidence"] < min_conf:
 | 
			
		||||
                        logger.debug(f"Confidence {detection['confidence']} below threshold {min_conf} for branch {branch['modelId']}.")
 | 
			
		||||
                        break
 | 
			
		||||
                    
 | 
			
		||||
                    # If we have branches, this is not the last stage
 | 
			
		||||
                    branch_result = run_pipeline(frame, branch, return_bbox, is_last_stage=True)
 | 
			
		||||
                    
 | 
			
		||||
                    # This node is no longer the last stage, so its results shouldn't be returned
 | 
			
		||||
                    is_last_stage = False
 | 
			
		||||
                    
 | 
			
		||||
                    if branch_result is not None:
 | 
			
		||||
                        if return_bbox:
 | 
			
		||||
                            return branch_result
 | 
			
		||||
                        return branch_result
 | 
			
		||||
                    break
 | 
			
		||||
            
 | 
			
		||||
            # Return this node's detection only if it's considered the last stage
 | 
			
		||||
            if is_last_stage:
 | 
			
		||||
                if return_bbox:
 | 
			
		||||
                    return detection, bbox
 | 
			
		||||
                return detection
 | 
			
		||||
            
 | 
			
		||||
        # No detection or not the last stage
 | 
			
		||||
        if return_bbox:
 | 
			
		||||
            return None, None
 | 
			
		||||
        return None
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logger.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
 | 
			
		||||
        if return_bbox:
 | 
			
		||||
            return None, None
 | 
			
		||||
        return None
 | 
			
		||||
        logging.error(f"Error in node {node.get('modelId')}: {e}")
 | 
			
		||||
        return (None, None) if return_bbox else None
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue