pympta & webcam dev tester
This commit is contained in:
parent
5da166a341
commit
ee0071284e
3 changed files with 190 additions and 155 deletions
158
app.py
158
app.py
|
@ -18,6 +18,9 @@ from fastapi.websockets import WebSocketDisconnect
|
||||||
from websockets.exceptions import ConnectionClosedError
|
from websockets.exceptions import ConnectionClosedError
|
||||||
from ultralytics import YOLO
|
from ultralytics import YOLO
|
||||||
|
|
||||||
|
# Import shared pipeline functions
|
||||||
|
from siwatsystem.pympta import load_pipeline_from_zip, run_pipeline
|
||||||
|
|
||||||
app = FastAPI()
|
app = FastAPI()
|
||||||
|
|
||||||
# Global dictionaries to keep track of models and streams
|
# Global dictionaries to keep track of models and streams
|
||||||
|
@ -57,161 +60,6 @@ WORKER_TIMEOUT_MS = 10000
|
||||||
streams_lock = threading.Lock()
|
streams_lock = threading.Lock()
|
||||||
models_lock = threading.Lock()
|
models_lock = threading.Lock()
|
||||||
|
|
||||||
####################################################
|
|
||||||
# Pipeline (Model)-loading helper functions
|
|
||||||
####################################################
|
|
||||||
def load_pipeline_node(node_config: dict, models_dir: str) -> dict:
|
|
||||||
"""
|
|
||||||
Recursively load a model node.
|
|
||||||
Expects node_config to have:
|
|
||||||
- modelId: a unique identifier
|
|
||||||
- modelFile: the .pt file in models_dir
|
|
||||||
- triggerClasses: list of class names that activate child branches
|
|
||||||
- crop: boolean; if True, we crop to the bounding box for the next model
|
|
||||||
- minConfidence: (optional) minimum confidence required to enter this branch
|
|
||||||
- branches: list of child node configurations
|
|
||||||
"""
|
|
||||||
model_path = os.path.join(models_dir, node_config["modelFile"])
|
|
||||||
if not os.path.exists(model_path):
|
|
||||||
logging.error(f"Model file {model_path} not found.")
|
|
||||||
raise FileNotFoundError(f"Model file {model_path} not found.")
|
|
||||||
|
|
||||||
logging.info(f"Loading model for node {node_config['modelId']} from {model_path}")
|
|
||||||
model = YOLO(model_path)
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
model.to("cuda")
|
|
||||||
|
|
||||||
node = {
|
|
||||||
"modelId": node_config["modelId"],
|
|
||||||
"modelFile": node_config["modelFile"],
|
|
||||||
"triggerClasses": node_config.get("triggerClasses", []),
|
|
||||||
"crop": node_config.get("crop", False),
|
|
||||||
"minConfidence": node_config.get("minConfidence", None), # NEW FIELD
|
|
||||||
"model": model,
|
|
||||||
"branches": []
|
|
||||||
}
|
|
||||||
for child_config in node_config.get("branches", []):
|
|
||||||
child_node = load_pipeline_node(child_config, models_dir)
|
|
||||||
node["branches"].append(child_node)
|
|
||||||
return node
|
|
||||||
|
|
||||||
def load_pipeline_from_zip(zip_url: str, target_dir: str) -> dict:
|
|
||||||
"""
|
|
||||||
Download the .mpta file from zip_url, extract it to target_dir,
|
|
||||||
and load the pipeline configuration (pipeline.json).
|
|
||||||
Returns the model tree (root node) loaded with YOLO models.
|
|
||||||
"""
|
|
||||||
os.makedirs(target_dir, exist_ok=True)
|
|
||||||
zip_path = os.path.join(target_dir, "pipeline.mpta")
|
|
||||||
|
|
||||||
try:
|
|
||||||
response = requests.get(zip_url, stream=True)
|
|
||||||
if response.status_code == 200:
|
|
||||||
with open(zip_path, "wb") as f:
|
|
||||||
for chunk in response.iter_content(chunk_size=8192):
|
|
||||||
f.write(chunk)
|
|
||||||
logging.info(f"Downloaded .mpta file from {zip_url} to {zip_path}")
|
|
||||||
else:
|
|
||||||
logging.error(f"Failed to download .mpta file (status {response.status_code})")
|
|
||||||
return None
|
|
||||||
except Exception as e:
|
|
||||||
logging.error(f"Exception downloading .mpta file from {zip_url}: {e}")
|
|
||||||
return None
|
|
||||||
|
|
||||||
# Extract the .mpta file
|
|
||||||
try:
|
|
||||||
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
|
||||||
zip_ref.extractall(target_dir)
|
|
||||||
logging.info(f"Extracted .mpta file to {target_dir}")
|
|
||||||
except Exception as e:
|
|
||||||
logging.error(f"Failed to extract .mpta file: {e}")
|
|
||||||
return None
|
|
||||||
finally:
|
|
||||||
if os.path.exists(zip_path):
|
|
||||||
os.remove(zip_path)
|
|
||||||
|
|
||||||
# Load pipeline.json
|
|
||||||
pipeline_json_path = os.path.join(target_dir, "pipeline.json")
|
|
||||||
if not os.path.exists(pipeline_json_path):
|
|
||||||
logging.error("pipeline.json not found in the .mpta file")
|
|
||||||
return None
|
|
||||||
|
|
||||||
try:
|
|
||||||
with open(pipeline_json_path, "r") as f:
|
|
||||||
pipeline_config = json.load(f)
|
|
||||||
# Build the model tree recursively
|
|
||||||
model_tree = load_pipeline_node(pipeline_config["pipeline"], target_dir)
|
|
||||||
return model_tree
|
|
||||||
except Exception as e:
|
|
||||||
logging.error(f"Error loading pipeline.json: {e}")
|
|
||||||
return None
|
|
||||||
|
|
||||||
####################################################
|
|
||||||
# Model execution function
|
|
||||||
####################################################
|
|
||||||
def run_pipeline(frame, node: dict):
|
|
||||||
"""
|
|
||||||
Run the model at the current node.
|
|
||||||
- Select the highest-confidence detection (if any).
|
|
||||||
- If 'crop' is True, crop to the bounding box for the next stage.
|
|
||||||
- If the detected class matches a branch's triggerClasses, check the confidence.
|
|
||||||
If the detection's confidence is below branch["minConfidence"] (if specified),
|
|
||||||
do not enter the branch and return the current detection.
|
|
||||||
Returns the final detection result (dict) or None.
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
results = node["model"].track(frame, stream=False, persist=True)
|
|
||||||
detection = None
|
|
||||||
max_conf = -1
|
|
||||||
best_box = None
|
|
||||||
|
|
||||||
for r in results:
|
|
||||||
for box in r.boxes:
|
|
||||||
box_cpu = box.cpu()
|
|
||||||
conf = float(box_cpu.conf[0])
|
|
||||||
if conf > max_conf and hasattr(box, "id") and box.id is not None:
|
|
||||||
max_conf = conf
|
|
||||||
detection = {
|
|
||||||
"class": node["model"].names[int(box_cpu.cls[0])],
|
|
||||||
"confidence": conf,
|
|
||||||
"id": box.id.item(),
|
|
||||||
}
|
|
||||||
best_box = box_cpu
|
|
||||||
|
|
||||||
# If there's a detection and crop is True, crop frame to bounding box
|
|
||||||
if detection and node.get("crop", False) and best_box is not None:
|
|
||||||
coords = best_box.xyxy[0] # [x1, y1, x2, y2]
|
|
||||||
x1, y1, x2, y2 = map(int, coords)
|
|
||||||
h, w = frame.shape[:2]
|
|
||||||
x1 = max(0, x1)
|
|
||||||
y1 = max(0, y1)
|
|
||||||
x2 = min(w, x2)
|
|
||||||
y2 = min(h, y2)
|
|
||||||
|
|
||||||
if x2 > x1 and y2 > y1:
|
|
||||||
frame = frame[y1:y2, x1:x2] # crop the frame
|
|
||||||
|
|
||||||
if detection is not None:
|
|
||||||
# Check if any branch should be entered based on trigger classes
|
|
||||||
for branch in node["branches"]:
|
|
||||||
if detection["class"] in branch.get("triggerClasses", []):
|
|
||||||
# Check for a minimum confidence threshold for this branch
|
|
||||||
min_conf = branch.get("minConfidence")
|
|
||||||
if min_conf is not None and detection["confidence"] < min_conf:
|
|
||||||
logging.debug(
|
|
||||||
f"Detection confidence {detection['confidence']} below threshold "
|
|
||||||
f"{min_conf} for branch {branch['modelId']}. Ending pipeline at current node."
|
|
||||||
)
|
|
||||||
return detection
|
|
||||||
branch_detection = run_pipeline(frame, branch)
|
|
||||||
if branch_detection is not None:
|
|
||||||
return branch_detection
|
|
||||||
return detection
|
|
||||||
return None
|
|
||||||
except Exception as e:
|
|
||||||
logging.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
|
|
||||||
return None
|
|
||||||
|
|
||||||
####################################################
|
####################################################
|
||||||
# Detection and frame processing functions
|
# Detection and frame processing functions
|
||||||
####################################################
|
####################################################
|
||||||
|
|
52
pipeline_webcam.py
Normal file
52
pipeline_webcam.py
Normal file
|
@ -0,0 +1,52 @@
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import cv2
|
||||||
|
import time
|
||||||
|
import logging
|
||||||
|
|
||||||
|
from siwatsystem.pympta import load_pipeline_from_zip, run_pipeline
|
||||||
|
|
||||||
|
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s [%(levelname)s] %(message)s")
|
||||||
|
|
||||||
|
def main(mpta_url: str, video_source: str):
|
||||||
|
extraction_dir = os.path.join("models", "webcam_pipeline")
|
||||||
|
logging.info(f"Loading pipeline from {mpta_url}")
|
||||||
|
model_tree = load_pipeline_from_zip(mpta_url, extraction_dir)
|
||||||
|
if model_tree is None:
|
||||||
|
logging.error("Failed to load pipeline.")
|
||||||
|
return
|
||||||
|
|
||||||
|
cap = cv2.VideoCapture(video_source)
|
||||||
|
if not cap.isOpened():
|
||||||
|
logging.error(f"Cannot open video source {video_source}")
|
||||||
|
return
|
||||||
|
|
||||||
|
logging.info("Press 'q' to exit.")
|
||||||
|
while True:
|
||||||
|
ret, frame = cap.read()
|
||||||
|
if not ret:
|
||||||
|
logging.error("Failed to capture frame.")
|
||||||
|
break
|
||||||
|
|
||||||
|
detection, bbox = run_pipeline(frame, model_tree, return_bbox=True)
|
||||||
|
if bbox:
|
||||||
|
x1, y1, x2, y2 = bbox
|
||||||
|
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||||||
|
label = detection["class"] if detection else "Detection"
|
||||||
|
cv2.putText(frame, label, (x1, y1 - 10),
|
||||||
|
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
|
||||||
|
|
||||||
|
cv2.imshow("Pipeline Webcam", frame)
|
||||||
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||||
|
break
|
||||||
|
|
||||||
|
cap.release()
|
||||||
|
cv2.destroyAllWindows()
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(description="Run pipeline webcam utility.")
|
||||||
|
parser.add_argument("--mpta-url", type=str, required=True, help="URL to the pipeline mpta (ZIP) file.")
|
||||||
|
parser.add_argument("--video", type=str, default="0", help="Video source (default webcam index 0).")
|
||||||
|
args = parser.parse_args()
|
||||||
|
video_source = int(args.video) if args.video.isdigit() else args.video
|
||||||
|
main(args.mpta_url, video_source)
|
135
siwatsystem/pympta.py
Normal file
135
siwatsystem/pympta.py
Normal file
|
@ -0,0 +1,135 @@
|
||||||
|
import os
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
import torch
|
||||||
|
import cv2
|
||||||
|
import requests
|
||||||
|
import zipfile
|
||||||
|
from ultralytics import YOLO
|
||||||
|
|
||||||
|
def load_pipeline_node(node_config: dict, models_dir: str) -> dict:
|
||||||
|
# Recursively load a model node from configuration.
|
||||||
|
model_path = os.path.join(models_dir, node_config["modelFile"])
|
||||||
|
if not os.path.exists(model_path):
|
||||||
|
logging.error(f"Model file {model_path} not found.")
|
||||||
|
raise FileNotFoundError(f"Model file {model_path} not found.")
|
||||||
|
logging.info(f"Loading model for node {node_config['modelId']} from {model_path}")
|
||||||
|
model = YOLO(model_path)
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
model.to("cuda")
|
||||||
|
node = {
|
||||||
|
"modelId": node_config["modelId"],
|
||||||
|
"modelFile": node_config["modelFile"],
|
||||||
|
"triggerClasses": node_config.get("triggerClasses", []),
|
||||||
|
"crop": node_config.get("crop", False),
|
||||||
|
"minConfidence": node_config.get("minConfidence", None),
|
||||||
|
"model": model,
|
||||||
|
"branches": []
|
||||||
|
}
|
||||||
|
for child in node_config.get("branches", []):
|
||||||
|
node["branches"].append(load_pipeline_node(child, models_dir))
|
||||||
|
return node
|
||||||
|
|
||||||
|
def load_pipeline_from_zip(zip_url: str, target_dir: str) -> dict:
|
||||||
|
# Download, extract, and load a pipeline configuration from a zip (.mpta) file.
|
||||||
|
os.makedirs(target_dir, exist_ok=True)
|
||||||
|
zip_path = os.path.join(target_dir, "pipeline.mpta")
|
||||||
|
try:
|
||||||
|
response = requests.get(zip_url, stream=True)
|
||||||
|
if response.status_code == 200:
|
||||||
|
with open(zip_path, "wb") as f:
|
||||||
|
for chunk in response.iter_content(chunk_size=8192):
|
||||||
|
f.write(chunk)
|
||||||
|
logging.info(f"Downloaded .mpta file from {zip_url} to {zip_path}")
|
||||||
|
else:
|
||||||
|
logging.error(f"Failed to download .mpta file (status {response.status_code})")
|
||||||
|
return None
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Exception downloading .mpta file from {zip_url}: {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
try:
|
||||||
|
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
||||||
|
zip_ref.extractall(target_dir)
|
||||||
|
logging.info(f"Extracted .mpta file to {target_dir}")
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Failed to extract .mpta file: {e}")
|
||||||
|
return None
|
||||||
|
finally:
|
||||||
|
if os.path.exists(zip_path):
|
||||||
|
os.remove(zip_path)
|
||||||
|
|
||||||
|
pipeline_json_path = os.path.join(target_dir, "pipeline.json")
|
||||||
|
if not os.path.exists(pipeline_json_path):
|
||||||
|
logging.error("pipeline.json not found in the .mpta file")
|
||||||
|
return None
|
||||||
|
|
||||||
|
try:
|
||||||
|
with open(pipeline_json_path, "r") as f:
|
||||||
|
pipeline_config = json.load(f)
|
||||||
|
return load_pipeline_node(pipeline_config["pipeline"], target_dir)
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error loading pipeline.json: {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
def run_pipeline(frame, node: dict, return_bbox: bool = False):
|
||||||
|
"""
|
||||||
|
Processes the frame with the given pipeline node. When return_bbox is True,
|
||||||
|
the function returns a tuple (detection, bbox) where bbox is (x1,y1,x2,y2)
|
||||||
|
for drawing. Otherwise, returns only the detection.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
results = node["model"].track(frame, stream=False, persist=True)
|
||||||
|
detection = None
|
||||||
|
best_box = None
|
||||||
|
max_conf = -1
|
||||||
|
|
||||||
|
for r in results:
|
||||||
|
for box in r.boxes:
|
||||||
|
box_cpu = box.cpu()
|
||||||
|
conf = float(box_cpu.conf[0])
|
||||||
|
if conf > max_conf and hasattr(box, "id") and box.id is not None:
|
||||||
|
max_conf = conf
|
||||||
|
detection = {
|
||||||
|
"class": node["model"].names[int(box_cpu.cls[0])],
|
||||||
|
"confidence": conf,
|
||||||
|
"id": box.id.item()
|
||||||
|
}
|
||||||
|
best_box = box_cpu
|
||||||
|
|
||||||
|
bbox = None
|
||||||
|
if detection and node.get("crop", False) and best_box is not None:
|
||||||
|
coords = best_box.xyxy[0]
|
||||||
|
x1, y1, x2, y2 = map(int, coords)
|
||||||
|
h, w = frame.shape[:2]
|
||||||
|
x1, y1 = max(0, x1), max(0, y1)
|
||||||
|
x2, y2 = min(w, x2), min(h, y2)
|
||||||
|
if x2 > x1 and y2 > y1:
|
||||||
|
bbox = (x1, y1, x2, y2)
|
||||||
|
frame = frame[y1:y2, x1:x2]
|
||||||
|
|
||||||
|
if detection is not None:
|
||||||
|
for branch in node["branches"]:
|
||||||
|
if detection["class"] in branch.get("triggerClasses", []):
|
||||||
|
min_conf = branch.get("minConfidence")
|
||||||
|
if min_conf is not None and detection["confidence"] < min_conf:
|
||||||
|
logging.debug(f"Confidence {detection['confidence']} below threshold {min_conf} for branch {branch['modelId']}.")
|
||||||
|
if return_bbox:
|
||||||
|
return detection, bbox
|
||||||
|
return detection
|
||||||
|
res = run_pipeline(frame, branch, return_bbox)
|
||||||
|
if res is not None:
|
||||||
|
if return_bbox:
|
||||||
|
return res
|
||||||
|
return res
|
||||||
|
if return_bbox:
|
||||||
|
return detection, bbox
|
||||||
|
return detection
|
||||||
|
if return_bbox:
|
||||||
|
return None, None
|
||||||
|
return None
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
|
||||||
|
if return_bbox:
|
||||||
|
return None, None
|
||||||
|
return None
|
Loading…
Add table
Add a link
Reference in a new issue