pympta & webcam dev tester
This commit is contained in:
parent
5da166a341
commit
ee0071284e
3 changed files with 190 additions and 155 deletions
135
siwatsystem/pympta.py
Normal file
135
siwatsystem/pympta.py
Normal file
|
@ -0,0 +1,135 @@
|
|||
import os
|
||||
import json
|
||||
import logging
|
||||
import torch
|
||||
import cv2
|
||||
import requests
|
||||
import zipfile
|
||||
from ultralytics import YOLO
|
||||
|
||||
def load_pipeline_node(node_config: dict, models_dir: str) -> dict:
|
||||
# Recursively load a model node from configuration.
|
||||
model_path = os.path.join(models_dir, node_config["modelFile"])
|
||||
if not os.path.exists(model_path):
|
||||
logging.error(f"Model file {model_path} not found.")
|
||||
raise FileNotFoundError(f"Model file {model_path} not found.")
|
||||
logging.info(f"Loading model for node {node_config['modelId']} from {model_path}")
|
||||
model = YOLO(model_path)
|
||||
if torch.cuda.is_available():
|
||||
model.to("cuda")
|
||||
node = {
|
||||
"modelId": node_config["modelId"],
|
||||
"modelFile": node_config["modelFile"],
|
||||
"triggerClasses": node_config.get("triggerClasses", []),
|
||||
"crop": node_config.get("crop", False),
|
||||
"minConfidence": node_config.get("minConfidence", None),
|
||||
"model": model,
|
||||
"branches": []
|
||||
}
|
||||
for child in node_config.get("branches", []):
|
||||
node["branches"].append(load_pipeline_node(child, models_dir))
|
||||
return node
|
||||
|
||||
def load_pipeline_from_zip(zip_url: str, target_dir: str) -> dict:
|
||||
# Download, extract, and load a pipeline configuration from a zip (.mpta) file.
|
||||
os.makedirs(target_dir, exist_ok=True)
|
||||
zip_path = os.path.join(target_dir, "pipeline.mpta")
|
||||
try:
|
||||
response = requests.get(zip_url, stream=True)
|
||||
if response.status_code == 200:
|
||||
with open(zip_path, "wb") as f:
|
||||
for chunk in response.iter_content(chunk_size=8192):
|
||||
f.write(chunk)
|
||||
logging.info(f"Downloaded .mpta file from {zip_url} to {zip_path}")
|
||||
else:
|
||||
logging.error(f"Failed to download .mpta file (status {response.status_code})")
|
||||
return None
|
||||
except Exception as e:
|
||||
logging.error(f"Exception downloading .mpta file from {zip_url}: {e}")
|
||||
return None
|
||||
|
||||
try:
|
||||
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
||||
zip_ref.extractall(target_dir)
|
||||
logging.info(f"Extracted .mpta file to {target_dir}")
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to extract .mpta file: {e}")
|
||||
return None
|
||||
finally:
|
||||
if os.path.exists(zip_path):
|
||||
os.remove(zip_path)
|
||||
|
||||
pipeline_json_path = os.path.join(target_dir, "pipeline.json")
|
||||
if not os.path.exists(pipeline_json_path):
|
||||
logging.error("pipeline.json not found in the .mpta file")
|
||||
return None
|
||||
|
||||
try:
|
||||
with open(pipeline_json_path, "r") as f:
|
||||
pipeline_config = json.load(f)
|
||||
return load_pipeline_node(pipeline_config["pipeline"], target_dir)
|
||||
except Exception as e:
|
||||
logging.error(f"Error loading pipeline.json: {e}")
|
||||
return None
|
||||
|
||||
def run_pipeline(frame, node: dict, return_bbox: bool = False):
|
||||
"""
|
||||
Processes the frame with the given pipeline node. When return_bbox is True,
|
||||
the function returns a tuple (detection, bbox) where bbox is (x1,y1,x2,y2)
|
||||
for drawing. Otherwise, returns only the detection.
|
||||
"""
|
||||
try:
|
||||
results = node["model"].track(frame, stream=False, persist=True)
|
||||
detection = None
|
||||
best_box = None
|
||||
max_conf = -1
|
||||
|
||||
for r in results:
|
||||
for box in r.boxes:
|
||||
box_cpu = box.cpu()
|
||||
conf = float(box_cpu.conf[0])
|
||||
if conf > max_conf and hasattr(box, "id") and box.id is not None:
|
||||
max_conf = conf
|
||||
detection = {
|
||||
"class": node["model"].names[int(box_cpu.cls[0])],
|
||||
"confidence": conf,
|
||||
"id": box.id.item()
|
||||
}
|
||||
best_box = box_cpu
|
||||
|
||||
bbox = None
|
||||
if detection and node.get("crop", False) and best_box is not None:
|
||||
coords = best_box.xyxy[0]
|
||||
x1, y1, x2, y2 = map(int, coords)
|
||||
h, w = frame.shape[:2]
|
||||
x1, y1 = max(0, x1), max(0, y1)
|
||||
x2, y2 = min(w, x2), min(h, y2)
|
||||
if x2 > x1 and y2 > y1:
|
||||
bbox = (x1, y1, x2, y2)
|
||||
frame = frame[y1:y2, x1:x2]
|
||||
|
||||
if detection is not None:
|
||||
for branch in node["branches"]:
|
||||
if detection["class"] in branch.get("triggerClasses", []):
|
||||
min_conf = branch.get("minConfidence")
|
||||
if min_conf is not None and detection["confidence"] < min_conf:
|
||||
logging.debug(f"Confidence {detection['confidence']} below threshold {min_conf} for branch {branch['modelId']}.")
|
||||
if return_bbox:
|
||||
return detection, bbox
|
||||
return detection
|
||||
res = run_pipeline(frame, branch, return_bbox)
|
||||
if res is not None:
|
||||
if return_bbox:
|
||||
return res
|
||||
return res
|
||||
if return_bbox:
|
||||
return detection, bbox
|
||||
return detection
|
||||
if return_bbox:
|
||||
return None, None
|
||||
return None
|
||||
except Exception as e:
|
||||
logging.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
|
||||
if return_bbox:
|
||||
return None, None
|
||||
return None
|
Loading…
Add table
Add a link
Reference in a new issue