pympta & webcam dev tester

This commit is contained in:
Siwat Sirichai 2025-02-23 20:31:36 +07:00
parent 5da166a341
commit ee0071284e
3 changed files with 190 additions and 155 deletions

158
app.py
View file

@ -18,6 +18,9 @@ from fastapi.websockets import WebSocketDisconnect
from websockets.exceptions import ConnectionClosedError
from ultralytics import YOLO
# Import shared pipeline functions
from siwatsystem.pympta import load_pipeline_from_zip, run_pipeline
app = FastAPI()
# Global dictionaries to keep track of models and streams
@ -57,161 +60,6 @@ WORKER_TIMEOUT_MS = 10000
streams_lock = threading.Lock()
models_lock = threading.Lock()
####################################################
# Pipeline (Model)-loading helper functions
####################################################
def load_pipeline_node(node_config: dict, models_dir: str) -> dict:
"""
Recursively load a model node.
Expects node_config to have:
- modelId: a unique identifier
- modelFile: the .pt file in models_dir
- triggerClasses: list of class names that activate child branches
- crop: boolean; if True, we crop to the bounding box for the next model
- minConfidence: (optional) minimum confidence required to enter this branch
- branches: list of child node configurations
"""
model_path = os.path.join(models_dir, node_config["modelFile"])
if not os.path.exists(model_path):
logging.error(f"Model file {model_path} not found.")
raise FileNotFoundError(f"Model file {model_path} not found.")
logging.info(f"Loading model for node {node_config['modelId']} from {model_path}")
model = YOLO(model_path)
if torch.cuda.is_available():
model.to("cuda")
node = {
"modelId": node_config["modelId"],
"modelFile": node_config["modelFile"],
"triggerClasses": node_config.get("triggerClasses", []),
"crop": node_config.get("crop", False),
"minConfidence": node_config.get("minConfidence", None), # NEW FIELD
"model": model,
"branches": []
}
for child_config in node_config.get("branches", []):
child_node = load_pipeline_node(child_config, models_dir)
node["branches"].append(child_node)
return node
def load_pipeline_from_zip(zip_url: str, target_dir: str) -> dict:
"""
Download the .mpta file from zip_url, extract it to target_dir,
and load the pipeline configuration (pipeline.json).
Returns the model tree (root node) loaded with YOLO models.
"""
os.makedirs(target_dir, exist_ok=True)
zip_path = os.path.join(target_dir, "pipeline.mpta")
try:
response = requests.get(zip_url, stream=True)
if response.status_code == 200:
with open(zip_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
logging.info(f"Downloaded .mpta file from {zip_url} to {zip_path}")
else:
logging.error(f"Failed to download .mpta file (status {response.status_code})")
return None
except Exception as e:
logging.error(f"Exception downloading .mpta file from {zip_url}: {e}")
return None
# Extract the .mpta file
try:
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(target_dir)
logging.info(f"Extracted .mpta file to {target_dir}")
except Exception as e:
logging.error(f"Failed to extract .mpta file: {e}")
return None
finally:
if os.path.exists(zip_path):
os.remove(zip_path)
# Load pipeline.json
pipeline_json_path = os.path.join(target_dir, "pipeline.json")
if not os.path.exists(pipeline_json_path):
logging.error("pipeline.json not found in the .mpta file")
return None
try:
with open(pipeline_json_path, "r") as f:
pipeline_config = json.load(f)
# Build the model tree recursively
model_tree = load_pipeline_node(pipeline_config["pipeline"], target_dir)
return model_tree
except Exception as e:
logging.error(f"Error loading pipeline.json: {e}")
return None
####################################################
# Model execution function
####################################################
def run_pipeline(frame, node: dict):
"""
Run the model at the current node.
- Select the highest-confidence detection (if any).
- If 'crop' is True, crop to the bounding box for the next stage.
- If the detected class matches a branch's triggerClasses, check the confidence.
If the detection's confidence is below branch["minConfidence"] (if specified),
do not enter the branch and return the current detection.
Returns the final detection result (dict) or None.
"""
try:
results = node["model"].track(frame, stream=False, persist=True)
detection = None
max_conf = -1
best_box = None
for r in results:
for box in r.boxes:
box_cpu = box.cpu()
conf = float(box_cpu.conf[0])
if conf > max_conf and hasattr(box, "id") and box.id is not None:
max_conf = conf
detection = {
"class": node["model"].names[int(box_cpu.cls[0])],
"confidence": conf,
"id": box.id.item(),
}
best_box = box_cpu
# If there's a detection and crop is True, crop frame to bounding box
if detection and node.get("crop", False) and best_box is not None:
coords = best_box.xyxy[0] # [x1, y1, x2, y2]
x1, y1, x2, y2 = map(int, coords)
h, w = frame.shape[:2]
x1 = max(0, x1)
y1 = max(0, y1)
x2 = min(w, x2)
y2 = min(h, y2)
if x2 > x1 and y2 > y1:
frame = frame[y1:y2, x1:x2] # crop the frame
if detection is not None:
# Check if any branch should be entered based on trigger classes
for branch in node["branches"]:
if detection["class"] in branch.get("triggerClasses", []):
# Check for a minimum confidence threshold for this branch
min_conf = branch.get("minConfidence")
if min_conf is not None and detection["confidence"] < min_conf:
logging.debug(
f"Detection confidence {detection['confidence']} below threshold "
f"{min_conf} for branch {branch['modelId']}. Ending pipeline at current node."
)
return detection
branch_detection = run_pipeline(frame, branch)
if branch_detection is not None:
return branch_detection
return detection
return None
except Exception as e:
logging.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
return None
####################################################
# Detection and frame processing functions
####################################################