pympta & webcam dev tester
This commit is contained in:
		
							parent
							
								
									5da166a341
								
							
						
					
					
						commit
						ee0071284e
					
				
					 3 changed files with 190 additions and 155 deletions
				
			
		
							
								
								
									
										158
									
								
								app.py
									
										
									
									
									
								
							
							
						
						
									
										158
									
								
								app.py
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -18,6 +18,9 @@ from fastapi.websockets import WebSocketDisconnect
 | 
			
		|||
from websockets.exceptions import ConnectionClosedError
 | 
			
		||||
from ultralytics import YOLO
 | 
			
		||||
 | 
			
		||||
# Import shared pipeline functions
 | 
			
		||||
from siwatsystem.pympta import load_pipeline_from_zip, run_pipeline
 | 
			
		||||
 | 
			
		||||
app = FastAPI()
 | 
			
		||||
 | 
			
		||||
# Global dictionaries to keep track of models and streams
 | 
			
		||||
| 
						 | 
				
			
			@ -57,161 +60,6 @@ WORKER_TIMEOUT_MS = 10000
 | 
			
		|||
streams_lock = threading.Lock()
 | 
			
		||||
models_lock = threading.Lock()
 | 
			
		||||
 | 
			
		||||
####################################################
 | 
			
		||||
# Pipeline (Model)-loading helper functions
 | 
			
		||||
####################################################
 | 
			
		||||
def load_pipeline_node(node_config: dict, models_dir: str) -> dict:
 | 
			
		||||
    """
 | 
			
		||||
    Recursively load a model node.
 | 
			
		||||
    Expects node_config to have:
 | 
			
		||||
      - modelId: a unique identifier
 | 
			
		||||
      - modelFile: the .pt file in models_dir
 | 
			
		||||
      - triggerClasses: list of class names that activate child branches
 | 
			
		||||
      - crop: boolean; if True, we crop to the bounding box for the next model
 | 
			
		||||
      - minConfidence: (optional) minimum confidence required to enter this branch
 | 
			
		||||
      - branches: list of child node configurations
 | 
			
		||||
    """
 | 
			
		||||
    model_path = os.path.join(models_dir, node_config["modelFile"])
 | 
			
		||||
    if not os.path.exists(model_path):
 | 
			
		||||
        logging.error(f"Model file {model_path} not found.")
 | 
			
		||||
        raise FileNotFoundError(f"Model file {model_path} not found.")
 | 
			
		||||
    
 | 
			
		||||
    logging.info(f"Loading model for node {node_config['modelId']} from {model_path}")
 | 
			
		||||
    model = YOLO(model_path)
 | 
			
		||||
    if torch.cuda.is_available():
 | 
			
		||||
        model.to("cuda")
 | 
			
		||||
    
 | 
			
		||||
    node = {
 | 
			
		||||
        "modelId": node_config["modelId"],
 | 
			
		||||
        "modelFile": node_config["modelFile"],
 | 
			
		||||
        "triggerClasses": node_config.get("triggerClasses", []),
 | 
			
		||||
        "crop": node_config.get("crop", False),
 | 
			
		||||
        "minConfidence": node_config.get("minConfidence", None),  # NEW FIELD
 | 
			
		||||
        "model": model,
 | 
			
		||||
        "branches": []
 | 
			
		||||
    }
 | 
			
		||||
    for child_config in node_config.get("branches", []):
 | 
			
		||||
        child_node = load_pipeline_node(child_config, models_dir)
 | 
			
		||||
        node["branches"].append(child_node)
 | 
			
		||||
    return node
 | 
			
		||||
 | 
			
		||||
def load_pipeline_from_zip(zip_url: str, target_dir: str) -> dict:
 | 
			
		||||
    """
 | 
			
		||||
    Download the .mpta file from zip_url, extract it to target_dir,
 | 
			
		||||
    and load the pipeline configuration (pipeline.json).
 | 
			
		||||
    Returns the model tree (root node) loaded with YOLO models.
 | 
			
		||||
    """
 | 
			
		||||
    os.makedirs(target_dir, exist_ok=True)
 | 
			
		||||
    zip_path = os.path.join(target_dir, "pipeline.mpta")
 | 
			
		||||
    
 | 
			
		||||
    try:
 | 
			
		||||
        response = requests.get(zip_url, stream=True)
 | 
			
		||||
        if response.status_code == 200:
 | 
			
		||||
            with open(zip_path, "wb") as f:
 | 
			
		||||
                for chunk in response.iter_content(chunk_size=8192):
 | 
			
		||||
                    f.write(chunk)
 | 
			
		||||
            logging.info(f"Downloaded .mpta file from {zip_url} to {zip_path}")
 | 
			
		||||
        else:
 | 
			
		||||
            logging.error(f"Failed to download .mpta file (status {response.status_code})")
 | 
			
		||||
            return None
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Exception downloading .mpta file from {zip_url}: {e}")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    # Extract the .mpta file
 | 
			
		||||
    try:
 | 
			
		||||
        with zipfile.ZipFile(zip_path, "r") as zip_ref:
 | 
			
		||||
            zip_ref.extractall(target_dir)
 | 
			
		||||
        logging.info(f"Extracted .mpta file to {target_dir}")
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Failed to extract .mpta file: {e}")
 | 
			
		||||
        return None
 | 
			
		||||
    finally:
 | 
			
		||||
        if os.path.exists(zip_path):
 | 
			
		||||
            os.remove(zip_path)
 | 
			
		||||
 | 
			
		||||
    # Load pipeline.json
 | 
			
		||||
    pipeline_json_path = os.path.join(target_dir, "pipeline.json")
 | 
			
		||||
    if not os.path.exists(pipeline_json_path):
 | 
			
		||||
        logging.error("pipeline.json not found in the .mpta file")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        with open(pipeline_json_path, "r") as f:
 | 
			
		||||
            pipeline_config = json.load(f)
 | 
			
		||||
        # Build the model tree recursively
 | 
			
		||||
        model_tree = load_pipeline_node(pipeline_config["pipeline"], target_dir)
 | 
			
		||||
        return model_tree
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Error loading pipeline.json: {e}")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
####################################################
 | 
			
		||||
# Model execution function
 | 
			
		||||
####################################################
 | 
			
		||||
def run_pipeline(frame, node: dict):
 | 
			
		||||
    """
 | 
			
		||||
    Run the model at the current node.
 | 
			
		||||
    - Select the highest-confidence detection (if any).
 | 
			
		||||
    - If 'crop' is True, crop to the bounding box for the next stage.
 | 
			
		||||
    - If the detected class matches a branch's triggerClasses, check the confidence.
 | 
			
		||||
      If the detection's confidence is below branch["minConfidence"] (if specified),
 | 
			
		||||
      do not enter the branch and return the current detection.
 | 
			
		||||
    Returns the final detection result (dict) or None.
 | 
			
		||||
    """
 | 
			
		||||
    try:
 | 
			
		||||
        results = node["model"].track(frame, stream=False, persist=True)
 | 
			
		||||
        detection = None
 | 
			
		||||
        max_conf = -1
 | 
			
		||||
        best_box = None
 | 
			
		||||
        
 | 
			
		||||
        for r in results:
 | 
			
		||||
            for box in r.boxes:
 | 
			
		||||
                box_cpu = box.cpu()
 | 
			
		||||
                conf = float(box_cpu.conf[0])
 | 
			
		||||
                if conf > max_conf and hasattr(box, "id") and box.id is not None:
 | 
			
		||||
                    max_conf = conf
 | 
			
		||||
                    detection = {
 | 
			
		||||
                        "class": node["model"].names[int(box_cpu.cls[0])],
 | 
			
		||||
                        "confidence": conf,
 | 
			
		||||
                        "id": box.id.item(),
 | 
			
		||||
                    }
 | 
			
		||||
                    best_box = box_cpu
 | 
			
		||||
 | 
			
		||||
        # If there's a detection and crop is True, crop frame to bounding box
 | 
			
		||||
        if detection and node.get("crop", False) and best_box is not None:
 | 
			
		||||
            coords = best_box.xyxy[0]  # [x1, y1, x2, y2]
 | 
			
		||||
            x1, y1, x2, y2 = map(int, coords)
 | 
			
		||||
            h, w = frame.shape[:2]
 | 
			
		||||
            x1 = max(0, x1)
 | 
			
		||||
            y1 = max(0, y1)
 | 
			
		||||
            x2 = min(w, x2)
 | 
			
		||||
            y2 = min(h, y2)
 | 
			
		||||
            
 | 
			
		||||
            if x2 > x1 and y2 > y1:
 | 
			
		||||
                frame = frame[y1:y2, x1:x2]  # crop the frame
 | 
			
		||||
 | 
			
		||||
        if detection is not None:
 | 
			
		||||
            # Check if any branch should be entered based on trigger classes
 | 
			
		||||
            for branch in node["branches"]:
 | 
			
		||||
                if detection["class"] in branch.get("triggerClasses", []):
 | 
			
		||||
                    # Check for a minimum confidence threshold for this branch
 | 
			
		||||
                    min_conf = branch.get("minConfidence")
 | 
			
		||||
                    if min_conf is not None and detection["confidence"] < min_conf:
 | 
			
		||||
                        logging.debug(
 | 
			
		||||
                            f"Detection confidence {detection['confidence']} below threshold "
 | 
			
		||||
                            f"{min_conf} for branch {branch['modelId']}. Ending pipeline at current node."
 | 
			
		||||
                        )
 | 
			
		||||
                        return detection
 | 
			
		||||
                    branch_detection = run_pipeline(frame, branch)
 | 
			
		||||
                    if branch_detection is not None:
 | 
			
		||||
                        return branch_detection
 | 
			
		||||
            return detection
 | 
			
		||||
        return None
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
####################################################
 | 
			
		||||
# Detection and frame processing functions
 | 
			
		||||
####################################################
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										52
									
								
								pipeline_webcam.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										52
									
								
								pipeline_webcam.py
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,52 @@
 | 
			
		|||
import argparse
 | 
			
		||||
import os
 | 
			
		||||
import cv2
 | 
			
		||||
import time
 | 
			
		||||
import logging
 | 
			
		||||
 | 
			
		||||
from siwatsystem.pympta import load_pipeline_from_zip, run_pipeline
 | 
			
		||||
 | 
			
		||||
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s [%(levelname)s] %(message)s")
 | 
			
		||||
 | 
			
		||||
def main(mpta_url: str, video_source: str):
 | 
			
		||||
    extraction_dir = os.path.join("models", "webcam_pipeline")
 | 
			
		||||
    logging.info(f"Loading pipeline from {mpta_url}")
 | 
			
		||||
    model_tree = load_pipeline_from_zip(mpta_url, extraction_dir)
 | 
			
		||||
    if model_tree is None:
 | 
			
		||||
        logging.error("Failed to load pipeline.")
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    cap = cv2.VideoCapture(video_source)
 | 
			
		||||
    if not cap.isOpened():
 | 
			
		||||
        logging.error(f"Cannot open video source {video_source}")
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    logging.info("Press 'q' to exit.")
 | 
			
		||||
    while True:
 | 
			
		||||
        ret, frame = cap.read()
 | 
			
		||||
        if not ret:
 | 
			
		||||
            logging.error("Failed to capture frame.")
 | 
			
		||||
            break
 | 
			
		||||
 | 
			
		||||
        detection, bbox = run_pipeline(frame, model_tree, return_bbox=True)
 | 
			
		||||
        if bbox:
 | 
			
		||||
            x1, y1, x2, y2 = bbox
 | 
			
		||||
            cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
 | 
			
		||||
            label = detection["class"] if detection else "Detection"
 | 
			
		||||
            cv2.putText(frame, label, (x1, y1 - 10),
 | 
			
		||||
                        cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
 | 
			
		||||
 | 
			
		||||
        cv2.imshow("Pipeline Webcam", frame)
 | 
			
		||||
        if cv2.waitKey(1) & 0xFF == ord('q'):
 | 
			
		||||
            break
 | 
			
		||||
 | 
			
		||||
    cap.release()
 | 
			
		||||
    cv2.destroyAllWindows()
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    parser = argparse.ArgumentParser(description="Run pipeline webcam utility.")
 | 
			
		||||
    parser.add_argument("--mpta-url", type=str, required=True, help="URL to the pipeline mpta (ZIP) file.")
 | 
			
		||||
    parser.add_argument("--video", type=str, default="0", help="Video source (default webcam index 0).")
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    video_source = int(args.video) if args.video.isdigit() else args.video
 | 
			
		||||
    main(args.mpta_url, video_source)
 | 
			
		||||
							
								
								
									
										135
									
								
								siwatsystem/pympta.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										135
									
								
								siwatsystem/pympta.py
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,135 @@
 | 
			
		|||
import os
 | 
			
		||||
import json
 | 
			
		||||
import logging
 | 
			
		||||
import torch
 | 
			
		||||
import cv2
 | 
			
		||||
import requests
 | 
			
		||||
import zipfile
 | 
			
		||||
from ultralytics import YOLO
 | 
			
		||||
 | 
			
		||||
def load_pipeline_node(node_config: dict, models_dir: str) -> dict:
 | 
			
		||||
    # Recursively load a model node from configuration.
 | 
			
		||||
    model_path = os.path.join(models_dir, node_config["modelFile"])
 | 
			
		||||
    if not os.path.exists(model_path):
 | 
			
		||||
        logging.error(f"Model file {model_path} not found.")
 | 
			
		||||
        raise FileNotFoundError(f"Model file {model_path} not found.")
 | 
			
		||||
    logging.info(f"Loading model for node {node_config['modelId']} from {model_path}")
 | 
			
		||||
    model = YOLO(model_path)
 | 
			
		||||
    if torch.cuda.is_available():
 | 
			
		||||
        model.to("cuda")
 | 
			
		||||
    node = {
 | 
			
		||||
        "modelId": node_config["modelId"],
 | 
			
		||||
        "modelFile": node_config["modelFile"],
 | 
			
		||||
        "triggerClasses": node_config.get("triggerClasses", []),
 | 
			
		||||
        "crop": node_config.get("crop", False),
 | 
			
		||||
        "minConfidence": node_config.get("minConfidence", None),
 | 
			
		||||
        "model": model,
 | 
			
		||||
        "branches": []
 | 
			
		||||
    }
 | 
			
		||||
    for child in node_config.get("branches", []):
 | 
			
		||||
        node["branches"].append(load_pipeline_node(child, models_dir))
 | 
			
		||||
    return node
 | 
			
		||||
 | 
			
		||||
def load_pipeline_from_zip(zip_url: str, target_dir: str) -> dict:
 | 
			
		||||
    # Download, extract, and load a pipeline configuration from a zip (.mpta) file.
 | 
			
		||||
    os.makedirs(target_dir, exist_ok=True)
 | 
			
		||||
    zip_path = os.path.join(target_dir, "pipeline.mpta")
 | 
			
		||||
    try:
 | 
			
		||||
        response = requests.get(zip_url, stream=True)
 | 
			
		||||
        if response.status_code == 200:
 | 
			
		||||
            with open(zip_path, "wb") as f:
 | 
			
		||||
                for chunk in response.iter_content(chunk_size=8192):
 | 
			
		||||
                    f.write(chunk)
 | 
			
		||||
            logging.info(f"Downloaded .mpta file from {zip_url} to {zip_path}")
 | 
			
		||||
        else:
 | 
			
		||||
            logging.error(f"Failed to download .mpta file (status {response.status_code})")
 | 
			
		||||
            return None
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Exception downloading .mpta file from {zip_url}: {e}")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        with zipfile.ZipFile(zip_path, "r") as zip_ref:
 | 
			
		||||
            zip_ref.extractall(target_dir)
 | 
			
		||||
        logging.info(f"Extracted .mpta file to {target_dir}")
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Failed to extract .mpta file: {e}")
 | 
			
		||||
        return None
 | 
			
		||||
    finally:
 | 
			
		||||
        if os.path.exists(zip_path):
 | 
			
		||||
            os.remove(zip_path)
 | 
			
		||||
 | 
			
		||||
    pipeline_json_path = os.path.join(target_dir, "pipeline.json")
 | 
			
		||||
    if not os.path.exists(pipeline_json_path):
 | 
			
		||||
        logging.error("pipeline.json not found in the .mpta file")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        with open(pipeline_json_path, "r") as f:
 | 
			
		||||
            pipeline_config = json.load(f)
 | 
			
		||||
        return load_pipeline_node(pipeline_config["pipeline"], target_dir)
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Error loading pipeline.json: {e}")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
def run_pipeline(frame, node: dict, return_bbox: bool = False):
 | 
			
		||||
    """
 | 
			
		||||
    Processes the frame with the given pipeline node. When return_bbox is True,
 | 
			
		||||
    the function returns a tuple (detection, bbox) where bbox is (x1,y1,x2,y2)
 | 
			
		||||
    for drawing. Otherwise, returns only the detection.
 | 
			
		||||
    """
 | 
			
		||||
    try:
 | 
			
		||||
        results = node["model"].track(frame, stream=False, persist=True)
 | 
			
		||||
        detection = None
 | 
			
		||||
        best_box = None
 | 
			
		||||
        max_conf = -1
 | 
			
		||||
 | 
			
		||||
        for r in results:
 | 
			
		||||
            for box in r.boxes:
 | 
			
		||||
                box_cpu = box.cpu()
 | 
			
		||||
                conf = float(box_cpu.conf[0])
 | 
			
		||||
                if conf > max_conf and hasattr(box, "id") and box.id is not None:
 | 
			
		||||
                    max_conf = conf
 | 
			
		||||
                    detection = {
 | 
			
		||||
                        "class": node["model"].names[int(box_cpu.cls[0])],
 | 
			
		||||
                        "confidence": conf,
 | 
			
		||||
                        "id": box.id.item()
 | 
			
		||||
                    }
 | 
			
		||||
                    best_box = box_cpu
 | 
			
		||||
 | 
			
		||||
        bbox = None
 | 
			
		||||
        if detection and node.get("crop", False) and best_box is not None:
 | 
			
		||||
            coords = best_box.xyxy[0]
 | 
			
		||||
            x1, y1, x2, y2 = map(int, coords)
 | 
			
		||||
            h, w = frame.shape[:2]
 | 
			
		||||
            x1, y1 = max(0, x1), max(0, y1)
 | 
			
		||||
            x2, y2 = min(w, x2), min(h, y2)
 | 
			
		||||
            if x2 > x1 and y2 > y1:
 | 
			
		||||
                bbox = (x1, y1, x2, y2)
 | 
			
		||||
                frame = frame[y1:y2, x1:x2]
 | 
			
		||||
 | 
			
		||||
        if detection is not None:
 | 
			
		||||
            for branch in node["branches"]:
 | 
			
		||||
                if detection["class"] in branch.get("triggerClasses", []):
 | 
			
		||||
                    min_conf = branch.get("minConfidence")
 | 
			
		||||
                    if min_conf is not None and detection["confidence"] < min_conf:
 | 
			
		||||
                        logging.debug(f"Confidence {detection['confidence']} below threshold {min_conf} for branch {branch['modelId']}.")
 | 
			
		||||
                        if return_bbox:
 | 
			
		||||
                            return detection, bbox
 | 
			
		||||
                        return detection
 | 
			
		||||
                    res = run_pipeline(frame, branch, return_bbox)
 | 
			
		||||
                    if res is not None:
 | 
			
		||||
                        if return_bbox:
 | 
			
		||||
                            return res
 | 
			
		||||
                        return res
 | 
			
		||||
            if return_bbox:
 | 
			
		||||
                return detection, bbox
 | 
			
		||||
            return detection
 | 
			
		||||
        if return_bbox:
 | 
			
		||||
            return None, None
 | 
			
		||||
        return None
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        logging.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
 | 
			
		||||
        if return_bbox:
 | 
			
		||||
            return None, None
 | 
			
		||||
        return None
 | 
			
		||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue