enhance logging for model loading and pipeline processing; update log levels and add detailed error messages
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 9m22s

This commit is contained in:
Siwat Sirichai 2025-05-28 19:18:58 +07:00
parent 3511d6ad7a
commit d4754fcd27
3 changed files with 325 additions and 82 deletions

View file

@ -6,19 +6,27 @@ import cv2
import requests
import zipfile
import shutil
import traceback
from ultralytics import YOLO
from urllib.parse import urlparse
# Create a logger specifically for this module
logger = logging.getLogger("detector_worker.pympta")
def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
# Recursively load a model node from configuration.
model_path = os.path.join(mpta_dir, node_config["modelFile"])
if not os.path.exists(model_path):
logging.error(f"Model file {model_path} not found.")
logger.error(f"Model file {model_path} not found. Current directory: {os.getcwd()}")
logger.error(f"Directory content: {os.listdir(os.path.dirname(model_path))}")
raise FileNotFoundError(f"Model file {model_path} not found.")
logging.info(f"Loading model for node {node_config['modelId']} from {model_path}")
logger.info(f"Loading model for node {node_config['modelId']} from {model_path}")
model = YOLO(model_path)
if torch.cuda.is_available():
logger.info(f"CUDA available. Moving model {node_config['modelId']} to GPU")
model.to("cuda")
else:
logger.info(f"CUDA not available. Using CPU for model {node_config['modelId']}")
node = {
"modelId": node_config["modelId"],
"modelFile": node_config["modelFile"],
@ -28,11 +36,14 @@ def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
"model": model,
"branches": []
}
logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
for child in node_config.get("branches", []):
logger.debug(f"Loading branch for parent node {node_config['modelId']}")
node["branches"].append(load_pipeline_node(child, mpta_dir))
return node
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
logger.info(f"Attempting to load pipeline from {zip_source} to {target_dir}")
os.makedirs(target_dir, exist_ok=True)
zip_path = os.path.join(target_dir, "pipeline.mpta")
@ -40,51 +51,121 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
parsed = urlparse(zip_source)
if parsed.scheme in ("", "file"):
local_path = parsed.path if parsed.scheme == "file" else zip_source
logger.debug(f"Checking if local file exists: {local_path}")
if os.path.exists(local_path):
try:
shutil.copy(local_path, zip_path)
logging.info(f"Copied local .mpta file from {local_path} to {zip_path}")
logger.info(f"Copied local .mpta file from {local_path} to {zip_path}")
except Exception as e:
logging.error(f"Failed to copy local .mpta file from {local_path}: {e}")
logger.error(f"Failed to copy local .mpta file from {local_path}: {str(e)}", exc_info=True)
return None
else:
logging.error(f"Local file {local_path} does not exist.")
logger.error(f"Local file {local_path} does not exist. Current directory: {os.getcwd()}")
# List all subdirectories of models directory to help debugging
if os.path.exists("models"):
logger.error(f"Content of models directory: {os.listdir('models')}")
for root, dirs, files in os.walk("models"):
logger.error(f"Directory {root} contains subdirs: {dirs} and files: {files}")
else:
logger.error("The models directory doesn't exist")
return None
else:
logging.error("HTTP download functionality has been moved. Use a local file path here.")
logger.error(f"HTTP download functionality has been moved. Use a local file path here. Received: {zip_source}")
return None
try:
if not os.path.exists(zip_path):
logger.error(f"Zip file not found at expected location: {zip_path}")
return None
logger.debug(f"Extracting .mpta file from {zip_path} to {target_dir}")
# Extract contents and track the directories created
extracted_dirs = []
with zipfile.ZipFile(zip_path, "r") as zip_ref:
file_list = zip_ref.namelist()
logger.debug(f"Files in .mpta archive: {file_list}")
# Extract and track the top-level directories
for file_path in file_list:
parts = file_path.split('/')
if len(parts) > 1:
top_dir = parts[0]
if top_dir and top_dir not in extracted_dirs:
extracted_dirs.append(top_dir)
# Now extract the files
zip_ref.extractall(target_dir)
logging.info(f"Extracted .mpta file to {target_dir}")
logger.info(f"Successfully extracted .mpta file to {target_dir}")
logger.debug(f"Extracted directories: {extracted_dirs}")
# Check what was actually created after extraction
actual_dirs = [d for d in os.listdir(target_dir) if os.path.isdir(os.path.join(target_dir, d))]
logger.debug(f"Actual directories created: {actual_dirs}")
except zipfile.BadZipFile as e:
logger.error(f"Bad zip file {zip_path}: {str(e)}", exc_info=True)
return None
except Exception as e:
logging.error(f"Failed to extract .mpta file: {e}")
logger.error(f"Failed to extract .mpta file {zip_path}: {str(e)}", exc_info=True)
return None
finally:
if os.path.exists(zip_path):
os.remove(zip_path)
logger.debug(f"Removed temporary zip file: {zip_path}")
# Use the first extracted directory if it exists, otherwise use the expected name
pipeline_name = os.path.basename(zip_source)
pipeline_name = os.path.splitext(pipeline_name)[0]
mpta_dir = os.path.join(target_dir, pipeline_name)
# Find the directory with pipeline.json
mpta_dir = None
# First try the expected directory name
expected_dir = os.path.join(target_dir, pipeline_name)
if os.path.exists(expected_dir) and os.path.exists(os.path.join(expected_dir, "pipeline.json")):
mpta_dir = expected_dir
logger.debug(f"Found pipeline.json in the expected directory: {mpta_dir}")
else:
# Look through all subdirectories for pipeline.json
for subdir in actual_dirs:
potential_dir = os.path.join(target_dir, subdir)
if os.path.exists(os.path.join(potential_dir, "pipeline.json")):
mpta_dir = potential_dir
logger.info(f"Found pipeline.json in directory: {mpta_dir} (different from expected: {expected_dir})")
break
if not mpta_dir:
logger.error(f"Could not find pipeline.json in any extracted directory. Directory content: {os.listdir(target_dir)}")
return None
pipeline_json_path = os.path.join(mpta_dir, "pipeline.json")
if not os.path.exists(pipeline_json_path):
logging.error("pipeline.json not found in the .mpta file")
logger.error(f"pipeline.json not found in the .mpta file. Files in directory: {os.listdir(mpta_dir)}")
return None
try:
with open(pipeline_json_path, "r") as f:
pipeline_config = json.load(f)
logger.info(f"Successfully loaded pipeline configuration from {pipeline_json_path}")
logger.debug(f"Pipeline config: {json.dumps(pipeline_config, indent=2)}")
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir)
except json.JSONDecodeError as e:
logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
return None
except KeyError as e:
logger.error(f"Missing key in pipeline.json: {str(e)}", exc_info=True)
return None
except Exception as e:
logging.error(f"Error loading pipeline.json: {e}")
logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
return None
def run_pipeline(frame, node: dict, return_bbox: bool = False):
def run_pipeline(frame, node: dict, return_bbox: bool = False, is_last_stage: bool = True):
"""
Processes the frame with the given pipeline node. When return_bbox is True,
the function returns a tuple (detection, bbox) where bbox is (x1,y1,x2,y2)
for drawing. Otherwise, returns only the detection.
The is_last_stage parameter controls whether this node is considered the last
in the pipeline chain. Only the last stage will return detection results.
"""
try:
# Check model type and use appropriate method
@ -92,7 +173,7 @@ def run_pipeline(frame, node: dict, return_bbox: bool = False):
if model_task == "classify":
# Classification models need to use predict() instead of track()
logging.debug(f"Running classification model: {node.get('modelId')}")
logger.debug(f"Running classification model: {node.get('modelId')}")
results = node["model"].predict(frame, stream=False)
detection = None
best_box = None
@ -109,18 +190,32 @@ def run_pipeline(frame, node: dict, return_bbox: bool = False):
"confidence": conf,
"id": None # Classification doesn't have tracking IDs
}
logger.debug(f"Classification detection: {detection}")
else:
logger.debug(f"Empty classification results for model {node.get('modelId')}")
# Classification doesn't produce bounding boxes
bbox = None
else:
# Detection/segmentation models use tracking
logging.debug(f"Running detection/tracking model: {node.get('modelId')}")
logger.debug(f"Running detection/tracking model: {node.get('modelId')}")
results = node["model"].track(frame, stream=False, persist=True)
detection = None
best_box = None
max_conf = -1
# Log raw detection count
detection_count = 0
for r in results:
if hasattr(r.boxes, 'cpu') and len(r.boxes.cpu()) > 0:
detection_count += len(r.boxes.cpu())
if detection_count == 0:
logger.debug(f"Empty detection results (no objects found) for model {node.get('modelId')}")
else:
logger.debug(f"Detection model {node.get('modelId')} found {detection_count} objects")
for r in results:
for box in r.boxes:
box_cpu = box.cpu()
@ -133,6 +228,11 @@ def run_pipeline(frame, node: dict, return_bbox: bool = False):
"id": box.id.item()
}
best_box = box_cpu
if detection:
logger.debug(f"Best detection: {detection}")
else:
logger.debug(f"No valid detection with tracking ID for model {node.get('modelId')}")
bbox = None
# Calculate bbox if best_box exists
@ -144,31 +244,44 @@ def run_pipeline(frame, node: dict, return_bbox: bool = False):
x2, y2 = min(w, x2), min(h, y2)
if x2 > x1 and y2 > y1:
bbox = (x1, y1, x2, y2)
logger.debug(f"Detection bounding box: {bbox}")
if node.get("crop", False):
frame = frame[y1:y2, x1:x2]
logger.debug(f"Cropped frame to {frame.shape}")
# Check if we should process branches
if detection is not None:
for branch in node["branches"]:
if detection["class"] in branch.get("triggerClasses", []):
min_conf = branch.get("minConfidence")
if min_conf is not None and detection["confidence"] < min_conf:
logging.debug(f"Confidence {detection['confidence']} below threshold {min_conf} for branch {branch['modelId']}.")
logger.debug(f"Confidence {detection['confidence']} below threshold {min_conf} for branch {branch['modelId']}.")
break
# If we have branches, this is not the last stage
branch_result = run_pipeline(frame, branch, return_bbox, is_last_stage=True)
# This node is no longer the last stage, so its results shouldn't be returned
is_last_stage = False
if branch_result is not None:
if return_bbox:
return detection, bbox
return detection
res = run_pipeline(frame, branch, return_bbox)
if res is not None:
if return_bbox:
return res
return res
if return_bbox:
return detection, bbox
return detection
return branch_result
return branch_result
break
# Return this node's detection only if it's considered the last stage
if is_last_stage:
if return_bbox:
return detection, bbox
return detection
# No detection or not the last stage
if return_bbox:
return None, None
return None
except Exception as e:
logging.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
logger.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
if return_bbox:
return None, None
return None