enhance logging for model loading and pipeline processing; update log levels and add detailed error messages
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 9m22s
All checks were successful
Build Backend Application and Docker Image / build-docker (push) Successful in 9m22s
This commit is contained in:
parent
3511d6ad7a
commit
d4754fcd27
3 changed files with 325 additions and 82 deletions
|
@ -6,19 +6,27 @@ import cv2
|
|||
import requests
|
||||
import zipfile
|
||||
import shutil
|
||||
import traceback
|
||||
from ultralytics import YOLO
|
||||
from urllib.parse import urlparse
|
||||
|
||||
# Create a logger specifically for this module
|
||||
logger = logging.getLogger("detector_worker.pympta")
|
||||
|
||||
def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
|
||||
# Recursively load a model node from configuration.
|
||||
model_path = os.path.join(mpta_dir, node_config["modelFile"])
|
||||
if not os.path.exists(model_path):
|
||||
logging.error(f"Model file {model_path} not found.")
|
||||
logger.error(f"Model file {model_path} not found. Current directory: {os.getcwd()}")
|
||||
logger.error(f"Directory content: {os.listdir(os.path.dirname(model_path))}")
|
||||
raise FileNotFoundError(f"Model file {model_path} not found.")
|
||||
logging.info(f"Loading model for node {node_config['modelId']} from {model_path}")
|
||||
logger.info(f"Loading model for node {node_config['modelId']} from {model_path}")
|
||||
model = YOLO(model_path)
|
||||
if torch.cuda.is_available():
|
||||
logger.info(f"CUDA available. Moving model {node_config['modelId']} to GPU")
|
||||
model.to("cuda")
|
||||
else:
|
||||
logger.info(f"CUDA not available. Using CPU for model {node_config['modelId']}")
|
||||
node = {
|
||||
"modelId": node_config["modelId"],
|
||||
"modelFile": node_config["modelFile"],
|
||||
|
@ -28,11 +36,14 @@ def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
|
|||
"model": model,
|
||||
"branches": []
|
||||
}
|
||||
logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
|
||||
for child in node_config.get("branches", []):
|
||||
logger.debug(f"Loading branch for parent node {node_config['modelId']}")
|
||||
node["branches"].append(load_pipeline_node(child, mpta_dir))
|
||||
return node
|
||||
|
||||
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
||||
logger.info(f"Attempting to load pipeline from {zip_source} to {target_dir}")
|
||||
os.makedirs(target_dir, exist_ok=True)
|
||||
zip_path = os.path.join(target_dir, "pipeline.mpta")
|
||||
|
||||
|
@ -40,51 +51,121 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
|
|||
parsed = urlparse(zip_source)
|
||||
if parsed.scheme in ("", "file"):
|
||||
local_path = parsed.path if parsed.scheme == "file" else zip_source
|
||||
logger.debug(f"Checking if local file exists: {local_path}")
|
||||
if os.path.exists(local_path):
|
||||
try:
|
||||
shutil.copy(local_path, zip_path)
|
||||
logging.info(f"Copied local .mpta file from {local_path} to {zip_path}")
|
||||
logger.info(f"Copied local .mpta file from {local_path} to {zip_path}")
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to copy local .mpta file from {local_path}: {e}")
|
||||
logger.error(f"Failed to copy local .mpta file from {local_path}: {str(e)}", exc_info=True)
|
||||
return None
|
||||
else:
|
||||
logging.error(f"Local file {local_path} does not exist.")
|
||||
logger.error(f"Local file {local_path} does not exist. Current directory: {os.getcwd()}")
|
||||
# List all subdirectories of models directory to help debugging
|
||||
if os.path.exists("models"):
|
||||
logger.error(f"Content of models directory: {os.listdir('models')}")
|
||||
for root, dirs, files in os.walk("models"):
|
||||
logger.error(f"Directory {root} contains subdirs: {dirs} and files: {files}")
|
||||
else:
|
||||
logger.error("The models directory doesn't exist")
|
||||
return None
|
||||
else:
|
||||
logging.error("HTTP download functionality has been moved. Use a local file path here.")
|
||||
logger.error(f"HTTP download functionality has been moved. Use a local file path here. Received: {zip_source}")
|
||||
return None
|
||||
|
||||
try:
|
||||
if not os.path.exists(zip_path):
|
||||
logger.error(f"Zip file not found at expected location: {zip_path}")
|
||||
return None
|
||||
|
||||
logger.debug(f"Extracting .mpta file from {zip_path} to {target_dir}")
|
||||
# Extract contents and track the directories created
|
||||
extracted_dirs = []
|
||||
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
||||
file_list = zip_ref.namelist()
|
||||
logger.debug(f"Files in .mpta archive: {file_list}")
|
||||
|
||||
# Extract and track the top-level directories
|
||||
for file_path in file_list:
|
||||
parts = file_path.split('/')
|
||||
if len(parts) > 1:
|
||||
top_dir = parts[0]
|
||||
if top_dir and top_dir not in extracted_dirs:
|
||||
extracted_dirs.append(top_dir)
|
||||
|
||||
# Now extract the files
|
||||
zip_ref.extractall(target_dir)
|
||||
logging.info(f"Extracted .mpta file to {target_dir}")
|
||||
|
||||
logger.info(f"Successfully extracted .mpta file to {target_dir}")
|
||||
logger.debug(f"Extracted directories: {extracted_dirs}")
|
||||
|
||||
# Check what was actually created after extraction
|
||||
actual_dirs = [d for d in os.listdir(target_dir) if os.path.isdir(os.path.join(target_dir, d))]
|
||||
logger.debug(f"Actual directories created: {actual_dirs}")
|
||||
except zipfile.BadZipFile as e:
|
||||
logger.error(f"Bad zip file {zip_path}: {str(e)}", exc_info=True)
|
||||
return None
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to extract .mpta file: {e}")
|
||||
logger.error(f"Failed to extract .mpta file {zip_path}: {str(e)}", exc_info=True)
|
||||
return None
|
||||
finally:
|
||||
if os.path.exists(zip_path):
|
||||
os.remove(zip_path)
|
||||
logger.debug(f"Removed temporary zip file: {zip_path}")
|
||||
|
||||
# Use the first extracted directory if it exists, otherwise use the expected name
|
||||
pipeline_name = os.path.basename(zip_source)
|
||||
pipeline_name = os.path.splitext(pipeline_name)[0]
|
||||
mpta_dir = os.path.join(target_dir, pipeline_name)
|
||||
|
||||
# Find the directory with pipeline.json
|
||||
mpta_dir = None
|
||||
# First try the expected directory name
|
||||
expected_dir = os.path.join(target_dir, pipeline_name)
|
||||
if os.path.exists(expected_dir) and os.path.exists(os.path.join(expected_dir, "pipeline.json")):
|
||||
mpta_dir = expected_dir
|
||||
logger.debug(f"Found pipeline.json in the expected directory: {mpta_dir}")
|
||||
else:
|
||||
# Look through all subdirectories for pipeline.json
|
||||
for subdir in actual_dirs:
|
||||
potential_dir = os.path.join(target_dir, subdir)
|
||||
if os.path.exists(os.path.join(potential_dir, "pipeline.json")):
|
||||
mpta_dir = potential_dir
|
||||
logger.info(f"Found pipeline.json in directory: {mpta_dir} (different from expected: {expected_dir})")
|
||||
break
|
||||
|
||||
if not mpta_dir:
|
||||
logger.error(f"Could not find pipeline.json in any extracted directory. Directory content: {os.listdir(target_dir)}")
|
||||
return None
|
||||
|
||||
pipeline_json_path = os.path.join(mpta_dir, "pipeline.json")
|
||||
if not os.path.exists(pipeline_json_path):
|
||||
logging.error("pipeline.json not found in the .mpta file")
|
||||
logger.error(f"pipeline.json not found in the .mpta file. Files in directory: {os.listdir(mpta_dir)}")
|
||||
return None
|
||||
|
||||
try:
|
||||
with open(pipeline_json_path, "r") as f:
|
||||
pipeline_config = json.load(f)
|
||||
logger.info(f"Successfully loaded pipeline configuration from {pipeline_json_path}")
|
||||
logger.debug(f"Pipeline config: {json.dumps(pipeline_config, indent=2)}")
|
||||
return load_pipeline_node(pipeline_config["pipeline"], mpta_dir)
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
|
||||
return None
|
||||
except KeyError as e:
|
||||
logger.error(f"Missing key in pipeline.json: {str(e)}", exc_info=True)
|
||||
return None
|
||||
except Exception as e:
|
||||
logging.error(f"Error loading pipeline.json: {e}")
|
||||
logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
|
||||
return None
|
||||
|
||||
def run_pipeline(frame, node: dict, return_bbox: bool = False):
|
||||
def run_pipeline(frame, node: dict, return_bbox: bool = False, is_last_stage: bool = True):
|
||||
"""
|
||||
Processes the frame with the given pipeline node. When return_bbox is True,
|
||||
the function returns a tuple (detection, bbox) where bbox is (x1,y1,x2,y2)
|
||||
for drawing. Otherwise, returns only the detection.
|
||||
|
||||
The is_last_stage parameter controls whether this node is considered the last
|
||||
in the pipeline chain. Only the last stage will return detection results.
|
||||
"""
|
||||
try:
|
||||
# Check model type and use appropriate method
|
||||
|
@ -92,7 +173,7 @@ def run_pipeline(frame, node: dict, return_bbox: bool = False):
|
|||
|
||||
if model_task == "classify":
|
||||
# Classification models need to use predict() instead of track()
|
||||
logging.debug(f"Running classification model: {node.get('modelId')}")
|
||||
logger.debug(f"Running classification model: {node.get('modelId')}")
|
||||
results = node["model"].predict(frame, stream=False)
|
||||
detection = None
|
||||
best_box = None
|
||||
|
@ -109,18 +190,32 @@ def run_pipeline(frame, node: dict, return_bbox: bool = False):
|
|||
"confidence": conf,
|
||||
"id": None # Classification doesn't have tracking IDs
|
||||
}
|
||||
logger.debug(f"Classification detection: {detection}")
|
||||
else:
|
||||
logger.debug(f"Empty classification results for model {node.get('modelId')}")
|
||||
|
||||
# Classification doesn't produce bounding boxes
|
||||
bbox = None
|
||||
|
||||
else:
|
||||
# Detection/segmentation models use tracking
|
||||
logging.debug(f"Running detection/tracking model: {node.get('modelId')}")
|
||||
logger.debug(f"Running detection/tracking model: {node.get('modelId')}")
|
||||
results = node["model"].track(frame, stream=False, persist=True)
|
||||
detection = None
|
||||
best_box = None
|
||||
max_conf = -1
|
||||
|
||||
# Log raw detection count
|
||||
detection_count = 0
|
||||
for r in results:
|
||||
if hasattr(r.boxes, 'cpu') and len(r.boxes.cpu()) > 0:
|
||||
detection_count += len(r.boxes.cpu())
|
||||
|
||||
if detection_count == 0:
|
||||
logger.debug(f"Empty detection results (no objects found) for model {node.get('modelId')}")
|
||||
else:
|
||||
logger.debug(f"Detection model {node.get('modelId')} found {detection_count} objects")
|
||||
|
||||
for r in results:
|
||||
for box in r.boxes:
|
||||
box_cpu = box.cpu()
|
||||
|
@ -133,6 +228,11 @@ def run_pipeline(frame, node: dict, return_bbox: bool = False):
|
|||
"id": box.id.item()
|
||||
}
|
||||
best_box = box_cpu
|
||||
|
||||
if detection:
|
||||
logger.debug(f"Best detection: {detection}")
|
||||
else:
|
||||
logger.debug(f"No valid detection with tracking ID for model {node.get('modelId')}")
|
||||
|
||||
bbox = None
|
||||
# Calculate bbox if best_box exists
|
||||
|
@ -144,31 +244,44 @@ def run_pipeline(frame, node: dict, return_bbox: bool = False):
|
|||
x2, y2 = min(w, x2), min(h, y2)
|
||||
if x2 > x1 and y2 > y1:
|
||||
bbox = (x1, y1, x2, y2)
|
||||
logger.debug(f"Detection bounding box: {bbox}")
|
||||
if node.get("crop", False):
|
||||
frame = frame[y1:y2, x1:x2]
|
||||
logger.debug(f"Cropped frame to {frame.shape}")
|
||||
|
||||
# Check if we should process branches
|
||||
if detection is not None:
|
||||
for branch in node["branches"]:
|
||||
if detection["class"] in branch.get("triggerClasses", []):
|
||||
min_conf = branch.get("minConfidence")
|
||||
if min_conf is not None and detection["confidence"] < min_conf:
|
||||
logging.debug(f"Confidence {detection['confidence']} below threshold {min_conf} for branch {branch['modelId']}.")
|
||||
logger.debug(f"Confidence {detection['confidence']} below threshold {min_conf} for branch {branch['modelId']}.")
|
||||
break
|
||||
|
||||
# If we have branches, this is not the last stage
|
||||
branch_result = run_pipeline(frame, branch, return_bbox, is_last_stage=True)
|
||||
|
||||
# This node is no longer the last stage, so its results shouldn't be returned
|
||||
is_last_stage = False
|
||||
|
||||
if branch_result is not None:
|
||||
if return_bbox:
|
||||
return detection, bbox
|
||||
return detection
|
||||
res = run_pipeline(frame, branch, return_bbox)
|
||||
if res is not None:
|
||||
if return_bbox:
|
||||
return res
|
||||
return res
|
||||
if return_bbox:
|
||||
return detection, bbox
|
||||
return detection
|
||||
return branch_result
|
||||
return branch_result
|
||||
break
|
||||
|
||||
# Return this node's detection only if it's considered the last stage
|
||||
if is_last_stage:
|
||||
if return_bbox:
|
||||
return detection, bbox
|
||||
return detection
|
||||
|
||||
# No detection or not the last stage
|
||||
if return_bbox:
|
||||
return None, None
|
||||
return None
|
||||
except Exception as e:
|
||||
logging.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
|
||||
logger.error(f"Error running pipeline on node {node.get('modelId')}: {e}")
|
||||
if return_bbox:
|
||||
return None, None
|
||||
return None
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue