add StrongSORT Tacker

This commit is contained in:
Pongsatorn Kanjanasantisak 2025-08-10 01:23:09 +07:00
parent ffc2e99678
commit b7d8b3266f
93 changed files with 20230 additions and 6 deletions

245
feeder/simple_track.py Normal file
View file

@ -0,0 +1,245 @@
import argparse
import cv2
import os
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
import sys
import numpy as np
from pathlib import Path
import torch
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]
WEIGHTS = ROOT / 'weights'
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
if str(ROOT / 'trackers' / 'strongsort') not in sys.path:
sys.path.append(str(ROOT / 'trackers' / 'strongsort'))
from ultralytics.nn.autobackend import AutoBackend
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
from ultralytics.yolo.data.utils import VID_FORMATS
from ultralytics.yolo.utils import LOGGER, colorstr
from ultralytics.yolo.utils.checks import check_file, check_imgsz
from ultralytics.yolo.utils.files import increment_path
from ultralytics.yolo.utils.torch_utils import select_device
from ultralytics.yolo.utils.ops import Profile, non_max_suppression, scale_boxes
from ultralytics.yolo.utils.plotting import Annotator, colors
from trackers.multi_tracker_zoo import create_tracker
from sender.jsonlogger import JsonLogger
from sender.szmq import ZmqLogger
@torch.no_grad()
def run(
source='0',
yolo_weights=WEIGHTS / 'yolov8n.pt',
reid_weights=WEIGHTS / 'osnet_x0_25_msmt17.pt',
imgsz=(640, 640),
conf_thres=0.7,
iou_thres=0.45,
max_det=1000,
device='',
show_vid=True,
save_vid=True,
project=ROOT / 'runs' / 'track',
name='exp',
exist_ok=False,
line_thickness=2,
hide_labels=False,
hide_conf=False,
half=False,
vid_stride=1,
enable_json_log=False,
enable_zmq=False,
zmq_ip='localhost',
zmq_port=5555,
):
source = str(source)
is_file = Path(source).suffix[1:] in (VID_FORMATS)
if is_file:
source = check_file(source)
device = select_device(device)
model = AutoBackend(yolo_weights, device=device, dnn=False, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_imgsz(imgsz, stride=stride)
dataset = LoadImages(
source,
imgsz=imgsz,
stride=stride,
auto=pt,
transforms=getattr(model.model, 'transforms', None),
vid_stride=vid_stride
)
bs = len(dataset)
tracking_config = ROOT / 'trackers' / 'strongsort' / 'configs' / 'strongsort.yaml'
tracker = create_tracker('strongsort', tracking_config, reid_weights, device, half)
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)
(save_dir / 'tracks').mkdir(parents=True, exist_ok=True)
# Initialize loggers
json_logger = JsonLogger(f"{source}-strongsort.log") if enable_json_log else None
zmq_logger = ZmqLogger(zmq_ip, zmq_port) if enable_zmq else None
vid_path, vid_writer = [None] * bs, [None] * bs
dt = (Profile(), Profile(), Profile())
for frame_idx, (path, im, im0s, vid_cap, s) in enumerate(dataset):
with dt[0]:
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float()
im /= 255.0
if len(im.shape) == 3:
im = im[None]
with dt[1]:
pred = model(im, augment=False, visualize=False)
with dt[2]:
pred = non_max_suppression(pred, conf_thres, iou_thres, None, False, max_det=max_det)
for i, det in enumerate(pred):
seen = 0
p, im0, _ = path, im0s.copy(), dataset.count
p = Path(p)
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# Filter detections for 'car' class only (class 2 in COCO dataset)
car_mask = det[:, 5] == 2 # car class index is 2
det = det[car_mask]
if len(det):
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
for *xyxy, conf, cls in reversed(det):
c = int(cls)
id = f'{c}'
label = None if hide_labels else (f'{id} {names[c]}' if hide_conf else f'{id} {names[c]} {conf:.2f}')
annotator.box_label(xyxy, label, color=colors(c, True))
t_outputs = tracker.update(det.cpu(), im0)
if len(t_outputs) > 0:
for j, (output) in enumerate(t_outputs):
bbox = output[0:4]
id = output[4]
cls = output[5]
conf = output[6]
# Log tracking data
if json_logger or zmq_logger:
track_data = {
'bbox': bbox.tolist() if hasattr(bbox, 'tolist') else list(bbox),
'id': int(id),
'cls': int(cls),
'conf': float(conf),
'frame_idx': frame_idx,
'source': source,
'class_name': names[int(cls)]
}
if json_logger:
json_logger.send(track_data)
if zmq_logger:
zmq_logger.send(track_data)
if save_vid or show_vid:
c = int(cls)
id = int(id)
label = f'{id} {names[c]}' if not hide_labels else f'{id}'
if not hide_conf:
label += f' {conf:.2f}'
annotator.box_label(bbox, label, color=colors(c, True))
im0 = annotator.result()
if show_vid:
cv2.imshow(str(p), im0)
if cv2.waitKey(1) == ord('q'):
break
if save_vid:
if vid_path[i] != str(save_dir / p.name):
vid_path[i] = str(save_dir / p.name)
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release()
if vid_cap:
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else:
fps, w, h = 30, im0.shape[1], im0.shape[0]
vid_writer[i] = cv2.VideoWriter(vid_path[i], cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
for i, vid_writer_obj in enumerate(vid_writer):
if isinstance(vid_writer_obj, cv2.VideoWriter):
vid_writer_obj.release()
cv2.destroyAllWindows()
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
def xyxy2xywh(x):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
y[:, 2] = x[:, 2] - x[:, 0] # width
y[:, 3] = x[:, 3] - x[:, 1] # height
return y
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--source', type=str, default='0', help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--yolo-weights', nargs='+', type=str, default=WEIGHTS / 'yolov8n.pt', help='model path')
parser.add_argument('--reid-weights', type=str, default=WEIGHTS / 'osnet_x0_25_msmt17.pt')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.7, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--show-vid', action='store_true', help='display results')
parser.add_argument('--save-vid', action='store_true', help='save video tracking results')
parser.add_argument('--project', default=ROOT / 'runs' / 'track', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', default=2, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
parser.add_argument('--enable-json-log', action='store_true', help='enable JSON file logging')
parser.add_argument('--enable-zmq', action='store_true', help='enable ZMQ messaging')
parser.add_argument('--zmq-ip', type=str, default='localhost', help='ZMQ server IP')
parser.add_argument('--zmq-port', type=int, default=5555, help='ZMQ server port')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1
return opt
def main(opt):
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)