Merge remote-tracking branch 'origin/main' into taiworker
This commit is contained in:
		
						commit
						ffc2e99678
					
				
					 7 changed files with 1321 additions and 118 deletions
				
			
		
							
								
								
									
										188
									
								
								CLAUDE.md
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										188
									
								
								CLAUDE.md
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,188 @@
 | 
			
		|||
# Python Detector Worker - CLAUDE.md
 | 
			
		||||
 | 
			
		||||
## Project Overview
 | 
			
		||||
This is a FastAPI-based computer vision detection worker that processes video streams from RTSP/HTTP sources and runs YOLO-based machine learning pipelines for object detection and classification. The system is designed to work within a larger CMS (Content Management System) architecture.
 | 
			
		||||
 | 
			
		||||
## Architecture & Technology Stack
 | 
			
		||||
- **Framework**: FastAPI with WebSocket support
 | 
			
		||||
- **ML/CV**: PyTorch, Ultralytics YOLO, OpenCV
 | 
			
		||||
- **Containerization**: Docker (Python 3.13-bookworm base)
 | 
			
		||||
- **Data Storage**: Redis integration for action handling
 | 
			
		||||
- **Communication**: WebSocket-based real-time protocol
 | 
			
		||||
 | 
			
		||||
## Core Components
 | 
			
		||||
 | 
			
		||||
### Main Application (`app.py`)
 | 
			
		||||
- **FastAPI WebSocket server** for real-time communication
 | 
			
		||||
- **Multi-camera stream management** with shared stream optimization
 | 
			
		||||
- **HTTP REST endpoint** for image retrieval (`/camera/{camera_id}/image`)
 | 
			
		||||
- **Threading-based frame readers** for RTSP streams and HTTP snapshots
 | 
			
		||||
- **Model loading and inference** using MPTA (Machine Learning Pipeline Archive) format
 | 
			
		||||
- **Session management** with display identifier mapping
 | 
			
		||||
- **Resource monitoring** (CPU, memory, GPU usage via psutil)
 | 
			
		||||
 | 
			
		||||
### Pipeline System (`siwatsystem/pympta.py`)
 | 
			
		||||
- **MPTA file handling** - ZIP archives containing model configurations
 | 
			
		||||
- **Hierarchical pipeline execution** with detection → classification branching
 | 
			
		||||
- **Redis action system** for image saving and message publishing
 | 
			
		||||
- **Dynamic model loading** with GPU optimization
 | 
			
		||||
- **Configurable trigger classes and confidence thresholds**
 | 
			
		||||
 | 
			
		||||
### Testing & Debugging
 | 
			
		||||
- **Protocol test script** (`test_protocol.py`) for WebSocket communication validation
 | 
			
		||||
- **Pipeline webcam utility** (`pipeline_webcam.py`) for local testing with visual output
 | 
			
		||||
- **RTSP streaming debug tool** (`debug/rtsp_webcam.py`) using GStreamer
 | 
			
		||||
 | 
			
		||||
## Code Conventions & Patterns
 | 
			
		||||
 | 
			
		||||
### Logging
 | 
			
		||||
- **Structured logging** using Python's logging module
 | 
			
		||||
- **File + console output** to `detector_worker.log`
 | 
			
		||||
- **Debug level separation** for detailed troubleshooting
 | 
			
		||||
- **Context-aware messages** with camera IDs and model information
 | 
			
		||||
 | 
			
		||||
### Error Handling
 | 
			
		||||
- **Graceful failure handling** with retry mechanisms (configurable max_retries)
 | 
			
		||||
- **Thread-safe operations** using locks for streams and models
 | 
			
		||||
- **WebSocket disconnect handling** with proper cleanup
 | 
			
		||||
- **Model loading validation** with detailed error reporting
 | 
			
		||||
 | 
			
		||||
### Configuration
 | 
			
		||||
- **JSON configuration** (`config.json`) for runtime parameters:
 | 
			
		||||
  - `poll_interval_ms`: Frame processing interval
 | 
			
		||||
  - `max_streams`: Concurrent stream limit
 | 
			
		||||
  - `target_fps`: Target frame rate
 | 
			
		||||
  - `reconnect_interval_sec`: Stream reconnection delay
 | 
			
		||||
  - `max_retries`: Maximum retry attempts (-1 for unlimited)
 | 
			
		||||
 | 
			
		||||
### Threading Model
 | 
			
		||||
- **Frame reader threads** for each camera stream (RTSP/HTTP)
 | 
			
		||||
- **Shared stream optimization** - multiple subscriptions can reuse the same camera stream
 | 
			
		||||
- **Async WebSocket handling** with concurrent task management
 | 
			
		||||
- **Thread-safe data structures** with proper locking mechanisms
 | 
			
		||||
 | 
			
		||||
## WebSocket Protocol
 | 
			
		||||
 | 
			
		||||
### Message Types
 | 
			
		||||
- **subscribe**: Start camera stream with model pipeline
 | 
			
		||||
- **unsubscribe**: Stop camera stream processing
 | 
			
		||||
- **requestState**: Request current worker status
 | 
			
		||||
- **setSessionId**: Associate display with session identifier
 | 
			
		||||
- **patchSession**: Update session data
 | 
			
		||||
- **stateReport**: Periodic heartbeat with system metrics
 | 
			
		||||
- **imageDetection**: Detection results with timestamp and model info
 | 
			
		||||
 | 
			
		||||
### Subscription Format
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "type": "subscribe",
 | 
			
		||||
  "payload": {
 | 
			
		||||
    "subscriptionIdentifier": "display-001;cam-001",
 | 
			
		||||
    "rtspUrl": "rtsp://...",  // OR snapshotUrl
 | 
			
		||||
    "snapshotUrl": "http://...",
 | 
			
		||||
    "snapshotInterval": 5000,
 | 
			
		||||
    "modelUrl": "http://...model.mpta",
 | 
			
		||||
    "modelId": 101,
 | 
			
		||||
    "modelName": "Vehicle Detection",
 | 
			
		||||
    "cropX1": 100, "cropY1": 200,
 | 
			
		||||
    "cropX2": 300, "cropY2": 400
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## Model Pipeline (MPTA) Format
 | 
			
		||||
 | 
			
		||||
### Structure
 | 
			
		||||
- **ZIP archive** containing models and configuration
 | 
			
		||||
- **pipeline.json** - Main configuration file
 | 
			
		||||
- **Model files** - YOLO .pt files for detection/classification
 | 
			
		||||
- **Redis configuration** - Optional for action execution
 | 
			
		||||
 | 
			
		||||
### Pipeline Flow
 | 
			
		||||
1. **Detection stage** - YOLO object detection with bounding boxes
 | 
			
		||||
2. **Trigger evaluation** - Check if detected class matches trigger conditions
 | 
			
		||||
3. **Classification stage** - Crop detected region and run classification model
 | 
			
		||||
4. **Action execution** - Redis operations (image saving, message publishing)
 | 
			
		||||
 | 
			
		||||
### Branch Configuration
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "modelId": "detector-v1",
 | 
			
		||||
  "modelFile": "detector.pt",
 | 
			
		||||
  "triggerClasses": ["car", "truck"],
 | 
			
		||||
  "minConfidence": 0.5,
 | 
			
		||||
  "branches": [{
 | 
			
		||||
    "modelId": "classifier-v1", 
 | 
			
		||||
    "modelFile": "classifier.pt",
 | 
			
		||||
    "crop": true,
 | 
			
		||||
    "triggerClasses": ["car"],
 | 
			
		||||
    "minConfidence": 0.3,
 | 
			
		||||
    "actions": [...]
 | 
			
		||||
  }]
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## Stream Management
 | 
			
		||||
 | 
			
		||||
### Shared Streams
 | 
			
		||||
- Multiple subscriptions can share the same camera URL
 | 
			
		||||
- Reference counting prevents premature stream termination
 | 
			
		||||
- Automatic cleanup when last subscription ends
 | 
			
		||||
 | 
			
		||||
### Frame Processing
 | 
			
		||||
- **Queue-based buffering** with single frame capacity (latest frame only)
 | 
			
		||||
- **Configurable polling interval** based on target FPS
 | 
			
		||||
- **Automatic reconnection** with exponential backoff
 | 
			
		||||
 | 
			
		||||
## Development & Testing
 | 
			
		||||
 | 
			
		||||
### Local Development
 | 
			
		||||
```bash
 | 
			
		||||
# Install dependencies
 | 
			
		||||
pip install -r requirements.txt
 | 
			
		||||
 | 
			
		||||
# Run the worker
 | 
			
		||||
python app.py
 | 
			
		||||
 | 
			
		||||
# Test protocol compliance
 | 
			
		||||
python test_protocol.py
 | 
			
		||||
 | 
			
		||||
# Test pipeline with webcam
 | 
			
		||||
python pipeline_webcam.py --mpta-file path/to/model.mpta --video 0
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### Docker Deployment
 | 
			
		||||
```bash
 | 
			
		||||
# Build container
 | 
			
		||||
docker build -t detector-worker .
 | 
			
		||||
 | 
			
		||||
# Run with volume mounts for models
 | 
			
		||||
docker run -p 8000:8000 -v ./models:/app/models detector-worker
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### Testing Commands
 | 
			
		||||
- **Protocol testing**: `python test_protocol.py`
 | 
			
		||||
- **Pipeline validation**: `python pipeline_webcam.py --mpta-file <path> --video 0`
 | 
			
		||||
- **RTSP debugging**: `python debug/rtsp_webcam.py`
 | 
			
		||||
 | 
			
		||||
## Dependencies
 | 
			
		||||
- **fastapi[standard]**: Web framework with WebSocket support
 | 
			
		||||
- **uvicorn**: ASGI server
 | 
			
		||||
- **torch, torchvision**: PyTorch for ML inference
 | 
			
		||||
- **ultralytics**: YOLO implementation
 | 
			
		||||
- **opencv-python**: Computer vision operations
 | 
			
		||||
- **websockets**: WebSocket client/server
 | 
			
		||||
- **redis**: Redis client for action execution
 | 
			
		||||
 | 
			
		||||
## Security Considerations
 | 
			
		||||
- Model files are loaded from trusted sources only
 | 
			
		||||
- Redis connections use authentication when configured
 | 
			
		||||
- WebSocket connections handle disconnects gracefully
 | 
			
		||||
- Resource usage is monitored to prevent DoS
 | 
			
		||||
 | 
			
		||||
## Performance Optimizations
 | 
			
		||||
- GPU acceleration when CUDA is available
 | 
			
		||||
- Shared camera streams reduce resource usage
 | 
			
		||||
- Frame queue optimization (single latest frame)
 | 
			
		||||
- Model caching across subscriptions
 | 
			
		||||
- Trigger class filtering for faster inference
 | 
			
		||||
							
								
								
									
										368
									
								
								app.py
									
										
									
									
									
								
							
							
						
						
									
										368
									
								
								app.py
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -29,6 +29,12 @@ app = FastAPI()
 | 
			
		|||
# "models" now holds a nested dict: { camera_id: { modelId: model_tree } }
 | 
			
		||||
models: Dict[str, Dict[str, Any]] = {}
 | 
			
		||||
streams: Dict[str, Dict[str, Any]] = {}
 | 
			
		||||
# Store session IDs per display
 | 
			
		||||
session_ids: Dict[str, int] = {}
 | 
			
		||||
# Track shared camera streams by camera URL
 | 
			
		||||
camera_streams: Dict[str, Dict[str, Any]] = {}
 | 
			
		||||
# Map subscriptions to their camera URL
 | 
			
		||||
subscription_to_camera: Dict[str, str] = {}
 | 
			
		||||
 | 
			
		||||
with open("config.json", "r") as f:
 | 
			
		||||
    config = json.load(f)
 | 
			
		||||
| 
						 | 
				
			
			@ -122,6 +128,15 @@ def fetch_snapshot(url: str):
 | 
			
		|||
        logger.error(f"Exception fetching snapshot from {url}: {str(e)}")
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
# Helper to get crop coordinates from stream
 | 
			
		||||
def get_crop_coords(stream):
 | 
			
		||||
    return {
 | 
			
		||||
        "cropX1": stream.get("cropX1"),
 | 
			
		||||
        "cropY1": stream.get("cropY1"),
 | 
			
		||||
        "cropX2": stream.get("cropX2"),
 | 
			
		||||
        "cropY2": stream.get("cropY2")
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
####################################################
 | 
			
		||||
# REST API endpoint for image retrieval
 | 
			
		||||
####################################################
 | 
			
		||||
| 
						 | 
				
			
			@ -133,20 +148,24 @@ async def get_camera_image(camera_id: str):
 | 
			
		|||
    try:
 | 
			
		||||
        with streams_lock:
 | 
			
		||||
            if camera_id not in streams:
 | 
			
		||||
                logger.warning(f"Camera ID '{camera_id}' not found in streams. Current streams: {list(streams.keys())}")
 | 
			
		||||
                raise HTTPException(status_code=404, detail=f"Camera {camera_id} not found or not active")
 | 
			
		||||
            
 | 
			
		||||
            stream = streams[camera_id]
 | 
			
		||||
            buffer = stream["buffer"]
 | 
			
		||||
            logger.debug(f"Camera '{camera_id}' buffer size: {buffer.qsize()}, buffer empty: {buffer.empty()}")
 | 
			
		||||
            logger.debug(f"Buffer queue contents: {getattr(buffer, 'queue', None)}")
 | 
			
		||||
            
 | 
			
		||||
            if buffer.empty():
 | 
			
		||||
                logger.warning(f"No frame available for camera '{camera_id}'. Buffer is empty.")
 | 
			
		||||
                raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
 | 
			
		||||
            
 | 
			
		||||
            # Get the latest frame (non-blocking)
 | 
			
		||||
            try:
 | 
			
		||||
                frame = buffer.queue[-1]  # Get the most recent frame without removing it
 | 
			
		||||
            except IndexError:
 | 
			
		||||
                logger.warning(f"Buffer queue is empty for camera '{camera_id}' when trying to access last frame.")
 | 
			
		||||
                raise HTTPException(status_code=404, detail=f"No frame available for camera {camera_id}")
 | 
			
		||||
        
 | 
			
		||||
        # Encode frame as JPEG
 | 
			
		||||
        success, buffer_img = cv2.imencode('.jpg', frame, [cv2.IMWRITE_JPEG_QUALITY, 85])
 | 
			
		||||
        if not success:
 | 
			
		||||
| 
						 | 
				
			
			@ -171,9 +190,16 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
 | 
			
		||||
    async def handle_detection(camera_id, stream, frame, websocket, model_tree, persistent_data):
 | 
			
		||||
        try:
 | 
			
		||||
            # Apply crop if specified
 | 
			
		||||
            cropped_frame = frame
 | 
			
		||||
            if all(coord is not None for coord in [stream.get("cropX1"), stream.get("cropY1"), stream.get("cropX2"), stream.get("cropY2")]):
 | 
			
		||||
                cropX1, cropY1, cropX2, cropY2 = stream["cropX1"], stream["cropY1"], stream["cropX2"], stream["cropY2"]
 | 
			
		||||
                cropped_frame = frame[cropY1:cropY2, cropX1:cropX2]
 | 
			
		||||
                logger.debug(f"Applied crop coordinates ({cropX1}, {cropY1}, {cropX2}, {cropY2}) to frame for camera {camera_id}")
 | 
			
		||||
            
 | 
			
		||||
            logger.debug(f"Processing frame for camera {camera_id} with model {stream['modelId']}")
 | 
			
		||||
            start_time = time.time()
 | 
			
		||||
            detection_result = run_pipeline(frame, model_tree)
 | 
			
		||||
            detection_result = run_pipeline(cropped_frame, model_tree)
 | 
			
		||||
            process_time = (time.time() - start_time) * 1000
 | 
			
		||||
            logger.debug(f"Detection for camera {camera_id} completed in {process_time:.2f}ms")
 | 
			
		||||
            
 | 
			
		||||
| 
						 | 
				
			
			@ -222,22 +248,48 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                    "box": [0, 0, 0, 0]
 | 
			
		||||
                }
 | 
			
		||||
            
 | 
			
		||||
            # Convert detection format to match protocol - flatten detection attributes
 | 
			
		||||
            detection_dict = {}
 | 
			
		||||
            
 | 
			
		||||
            # Handle different detection result formats
 | 
			
		||||
            if isinstance(highest_confidence_detection, dict):
 | 
			
		||||
                # Copy all fields from the detection result
 | 
			
		||||
                for key, value in highest_confidence_detection.items():
 | 
			
		||||
                    if key not in ["box", "id"]:  # Skip internal fields
 | 
			
		||||
                        detection_dict[key] = value
 | 
			
		||||
            
 | 
			
		||||
            # Extract display identifier for session ID lookup
 | 
			
		||||
            subscription_parts = stream["subscriptionIdentifier"].split(';')
 | 
			
		||||
            display_identifier = subscription_parts[0] if subscription_parts else None
 | 
			
		||||
            session_id = session_ids.get(display_identifier) if display_identifier else None
 | 
			
		||||
            
 | 
			
		||||
            detection_data = {
 | 
			
		||||
                "type": "imageDetection",
 | 
			
		||||
                "cameraIdentifier": camera_id,
 | 
			
		||||
                "timestamp": time.time(),
 | 
			
		||||
                "subscriptionIdentifier": stream["subscriptionIdentifier"],
 | 
			
		||||
                "timestamp": time.strftime("%Y-%m-%dT%H:%M:%S.%fZ", time.gmtime()),
 | 
			
		||||
                "data": {
 | 
			
		||||
                    "detection": highest_confidence_detection,  # Send only the highest confidence detection
 | 
			
		||||
                    "detection": detection_dict,
 | 
			
		||||
                    "modelId": stream["modelId"],
 | 
			
		||||
                    "modelName": stream["modelName"]
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            
 | 
			
		||||
            # Add session ID if available
 | 
			
		||||
            if session_id is not None:
 | 
			
		||||
                detection_data["sessionId"] = session_id
 | 
			
		||||
            
 | 
			
		||||
            if highest_confidence_detection["class"] != "none":
 | 
			
		||||
                logger.info(f"Camera {camera_id}: Detected {highest_confidence_detection['class']} with confidence {highest_confidence_detection['confidence']:.2f} using model {stream['modelName']}")
 | 
			
		||||
                
 | 
			
		||||
                # Log session ID if available
 | 
			
		||||
                subscription_parts = stream["subscriptionIdentifier"].split(';')
 | 
			
		||||
                display_identifier = subscription_parts[0] if subscription_parts else None
 | 
			
		||||
                session_id = session_ids.get(display_identifier) if display_identifier else None
 | 
			
		||||
                if session_id:
 | 
			
		||||
                    logger.debug(f"Detection associated with session ID: {session_id}")
 | 
			
		||||
            
 | 
			
		||||
            await websocket.send_json(detection_data)
 | 
			
		||||
            logger.debug(f"Sent detection data to client for camera {camera_id}:\n{json.dumps(detection_data, indent=2)}")
 | 
			
		||||
            logger.debug(f"Sent detection data to client for camera {camera_id}")
 | 
			
		||||
            return persistent_data
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Error in handle_detection for camera {camera_id}: {str(e)}", exc_info=True)
 | 
			
		||||
| 
						 | 
				
			
			@ -304,12 +356,11 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                    if not buffer.empty():
 | 
			
		||||
                        try:
 | 
			
		||||
                            buffer.get_nowait()
 | 
			
		||||
                            logger.debug(f"Removed old frame from buffer for camera {camera_id}")
 | 
			
		||||
                            logger.debug(f"[frame_reader] Removed old frame from buffer for camera {camera_id}")
 | 
			
		||||
                        except queue.Empty:
 | 
			
		||||
                            pass
 | 
			
		||||
                    
 | 
			
		||||
                    buffer.put(frame)
 | 
			
		||||
                    logger.debug(f"Added new frame to buffer for camera {camera_id}")
 | 
			
		||||
                    logger.debug(f"[frame_reader] Added new frame to buffer for camera {camera_id}. Buffer size: {buffer.qsize()}")
 | 
			
		||||
                    
 | 
			
		||||
                    # Short sleep to avoid CPU overuse
 | 
			
		||||
                    time.sleep(0.01)
 | 
			
		||||
| 
						 | 
				
			
			@ -380,12 +431,11 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                    if not buffer.empty():
 | 
			
		||||
                        try:
 | 
			
		||||
                            buffer.get_nowait()
 | 
			
		||||
                            logger.debug(f"Removed old snapshot from buffer for camera {camera_id}")
 | 
			
		||||
                            logger.debug(f"[snapshot_reader] Removed old snapshot from buffer for camera {camera_id}")
 | 
			
		||||
                        except queue.Empty:
 | 
			
		||||
                            pass
 | 
			
		||||
                    
 | 
			
		||||
                    buffer.put(frame)
 | 
			
		||||
                    logger.debug(f"Added new snapshot to buffer for camera {camera_id}")
 | 
			
		||||
                    logger.debug(f"[snapshot_reader] Added new snapshot to buffer for camera {camera_id}. Buffer size: {buffer.qsize()}")
 | 
			
		||||
                    
 | 
			
		||||
                    # Wait for the specified interval
 | 
			
		||||
                    elapsed = time.time() - start_time
 | 
			
		||||
| 
						 | 
				
			
			@ -456,18 +506,19 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                cpu_usage = psutil.cpu_percent()
 | 
			
		||||
                memory_usage = psutil.virtual_memory().percent
 | 
			
		||||
                if torch.cuda.is_available():
 | 
			
		||||
                    gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2)  # MB
 | 
			
		||||
                    gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)  # MB
 | 
			
		||||
                    gpu_usage = torch.cuda.utilization() if hasattr(torch.cuda, 'utilization') else None
 | 
			
		||||
                    gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)
 | 
			
		||||
                else:
 | 
			
		||||
                    gpu_usage = None
 | 
			
		||||
                    gpu_memory_usage = None
 | 
			
		||||
 | 
			
		||||
                camera_connections = [
 | 
			
		||||
                    {
 | 
			
		||||
                        "cameraIdentifier": camera_id,
 | 
			
		||||
                        "subscriptionIdentifier": stream["subscriptionIdentifier"],
 | 
			
		||||
                        "modelId": stream["modelId"],
 | 
			
		||||
                        "modelName": stream["modelName"],
 | 
			
		||||
                        "online": True
 | 
			
		||||
                        "online": True,
 | 
			
		||||
                        **{k: v for k, v in get_crop_coords(stream).items() if v is not None}
 | 
			
		||||
                    }
 | 
			
		||||
                    for camera_id, stream in streams.items()
 | 
			
		||||
                ]
 | 
			
		||||
| 
						 | 
				
			
			@ -497,56 +548,70 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
 | 
			
		||||
                if msg_type == "subscribe":
 | 
			
		||||
                    payload = data.get("payload", {})
 | 
			
		||||
                    camera_id = payload.get("cameraIdentifier")
 | 
			
		||||
                    subscriptionIdentifier = payload.get("subscriptionIdentifier")
 | 
			
		||||
                    rtsp_url = payload.get("rtspUrl")
 | 
			
		||||
                    snapshot_url = payload.get("snapshotUrl")
 | 
			
		||||
                    snapshot_interval = payload.get("snapshotInterval")  # in milliseconds
 | 
			
		||||
                    model_url = payload.get("modelUrl")  # may be remote or local
 | 
			
		||||
                    snapshot_interval = payload.get("snapshotInterval")
 | 
			
		||||
                    model_url = payload.get("modelUrl")
 | 
			
		||||
                    modelId = payload.get("modelId")
 | 
			
		||||
                    modelName = payload.get("modelName")
 | 
			
		||||
                    cropX1 = payload.get("cropX1")
 | 
			
		||||
                    cropY1 = payload.get("cropY1")
 | 
			
		||||
                    cropX2 = payload.get("cropX2")
 | 
			
		||||
                    cropY2 = payload.get("cropY2")
 | 
			
		||||
 | 
			
		||||
                    # Extract camera_id from subscriptionIdentifier (format: displayIdentifier;cameraIdentifier)
 | 
			
		||||
                    parts = subscriptionIdentifier.split(';')
 | 
			
		||||
                    if len(parts) != 2:
 | 
			
		||||
                        logger.error(f"Invalid subscriptionIdentifier format: {subscriptionIdentifier}")
 | 
			
		||||
                        continue
 | 
			
		||||
                    
 | 
			
		||||
                    display_identifier, camera_identifier = parts
 | 
			
		||||
                    camera_id = subscriptionIdentifier  # Use full subscriptionIdentifier as camera_id for mapping
 | 
			
		||||
 | 
			
		||||
                    if model_url:
 | 
			
		||||
                        with models_lock:
 | 
			
		||||
                            if (camera_id not in models) or (modelId not in models[camera_id]):
 | 
			
		||||
                                logger.info(f"Loading model from {model_url} for camera {camera_id}, modelId {modelId}")
 | 
			
		||||
                                extraction_dir = os.path.join("models", camera_id, str(modelId))
 | 
			
		||||
                                extraction_dir = os.path.join("models", camera_identifier, str(modelId))
 | 
			
		||||
                                os.makedirs(extraction_dir, exist_ok=True)
 | 
			
		||||
                                # If model_url is remote, download it first.
 | 
			
		||||
                                parsed = urlparse(model_url)
 | 
			
		||||
                                if parsed.scheme in ("http", "https"):
 | 
			
		||||
                                    logger.info(f"Downloading remote model from {model_url}")
 | 
			
		||||
                                    local_mpta = os.path.join(extraction_dir, os.path.basename(parsed.path))
 | 
			
		||||
                                    logger.info(f"Downloading remote .mpta file from {model_url}")
 | 
			
		||||
                                    filename = os.path.basename(parsed.path) or f"model_{modelId}.mpta"
 | 
			
		||||
                                    local_mpta = os.path.join(extraction_dir, filename)
 | 
			
		||||
                                    logger.debug(f"Download destination: {local_mpta}")
 | 
			
		||||
                                    local_path = download_mpta(model_url, local_mpta)
 | 
			
		||||
                                    if not local_path:
 | 
			
		||||
                                        logger.error(f"Failed to download the remote mpta file from {model_url}")
 | 
			
		||||
                                        logger.error(f"Failed to download the remote .mpta file from {model_url}")
 | 
			
		||||
                                        error_response = {
 | 
			
		||||
                                            "type": "error",
 | 
			
		||||
                                            "cameraIdentifier": camera_id,
 | 
			
		||||
                                            "subscriptionIdentifier": subscriptionIdentifier,
 | 
			
		||||
                                            "error": f"Failed to download model from {model_url}"
 | 
			
		||||
                                        }
 | 
			
		||||
                                        await websocket.send_json(error_response)
 | 
			
		||||
                                        continue
 | 
			
		||||
                                    model_tree = load_pipeline_from_zip(local_path, extraction_dir)
 | 
			
		||||
                                else:
 | 
			
		||||
                                    logger.info(f"Loading local model from {model_url}")
 | 
			
		||||
                                    logger.info(f"Loading local .mpta file from {model_url}")
 | 
			
		||||
                                    # Check if file exists before attempting to load
 | 
			
		||||
                                    if not os.path.exists(model_url):
 | 
			
		||||
                                        logger.error(f"Local model file not found: {model_url}")
 | 
			
		||||
                                        logger.error(f"Local .mpta file not found: {model_url}")
 | 
			
		||||
                                        logger.debug(f"Current working directory: {os.getcwd()}")
 | 
			
		||||
                                        error_response = {
 | 
			
		||||
                                            "type": "error",
 | 
			
		||||
                                            "cameraIdentifier": camera_id,
 | 
			
		||||
                                            "subscriptionIdentifier": subscriptionIdentifier,
 | 
			
		||||
                                            "error": f"Model file not found: {model_url}"
 | 
			
		||||
                                        }
 | 
			
		||||
                                        await websocket.send_json(error_response)
 | 
			
		||||
                                        continue
 | 
			
		||||
                                    model_tree = load_pipeline_from_zip(model_url, extraction_dir)
 | 
			
		||||
                                if model_tree is None:
 | 
			
		||||
                                    logger.error(f"Failed to load model {modelId} from mpta file for camera {camera_id}")
 | 
			
		||||
                                    logger.error(f"Failed to load model {modelId} from .mpta file for camera {camera_id}")
 | 
			
		||||
                                    error_response = {
 | 
			
		||||
                                        "type": "error",
 | 
			
		||||
                                        "cameraIdentifier": camera_id,
 | 
			
		||||
                                        "subscriptionIdentifier": subscriptionIdentifier,
 | 
			
		||||
                                        "error": f"Failed to load model {modelId}"
 | 
			
		||||
                                    }
 | 
			
		||||
                                    await websocket.send_json(error_response)
 | 
			
		||||
| 
						 | 
				
			
			@ -555,95 +620,137 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                                    models[camera_id] = {}
 | 
			
		||||
                                models[camera_id][modelId] = model_tree
 | 
			
		||||
                                logger.info(f"Successfully loaded model {modelId} for camera {camera_id}")
 | 
			
		||||
                                success_response = {
 | 
			
		||||
                                    "type": "modelLoaded",
 | 
			
		||||
                                    "cameraIdentifier": camera_id,
 | 
			
		||||
                                    "modelId": modelId
 | 
			
		||||
                                }
 | 
			
		||||
                                await websocket.send_json(success_response)
 | 
			
		||||
                                logger.debug(f"Model extraction directory: {extraction_dir}")
 | 
			
		||||
                    if camera_id and (rtsp_url or snapshot_url):
 | 
			
		||||
                        with streams_lock:
 | 
			
		||||
                            # Determine camera URL for shared stream management
 | 
			
		||||
                            camera_url = snapshot_url if snapshot_url else rtsp_url
 | 
			
		||||
                            
 | 
			
		||||
                            if camera_id not in streams and len(streams) < max_streams:
 | 
			
		||||
                                buffer = queue.Queue(maxsize=1)
 | 
			
		||||
                                stop_event = threading.Event()
 | 
			
		||||
                                # Check if we already have a stream for this camera URL
 | 
			
		||||
                                shared_stream = camera_streams.get(camera_url)
 | 
			
		||||
                                
 | 
			
		||||
                                # Choose between snapshot and RTSP based on availability
 | 
			
		||||
                                if snapshot_url and snapshot_interval:
 | 
			
		||||
                                    logger.info(f"Using snapshot mode for camera {camera_id}: {snapshot_url}")
 | 
			
		||||
                                    thread = threading.Thread(target=snapshot_reader, args=(camera_id, snapshot_url, snapshot_interval, buffer, stop_event))
 | 
			
		||||
                                    thread.daemon = True
 | 
			
		||||
                                    thread.start()
 | 
			
		||||
                                    streams[camera_id] = {
 | 
			
		||||
                                        "buffer": buffer,
 | 
			
		||||
                                        "thread": thread,
 | 
			
		||||
                                        "snapshot_url": snapshot_url,
 | 
			
		||||
                                        "snapshot_interval": snapshot_interval,
 | 
			
		||||
                                        "stop_event": stop_event,
 | 
			
		||||
                                        "modelId": modelId,
 | 
			
		||||
                                        "modelName": modelName,
 | 
			
		||||
                                        "mode": "snapshot"
 | 
			
		||||
                                    }
 | 
			
		||||
                                    logger.info(f"Subscribed to camera {camera_id} (snapshot mode) with modelId {modelId}, modelName {modelName}, URL {snapshot_url}, interval {snapshot_interval}ms")
 | 
			
		||||
                                elif rtsp_url:
 | 
			
		||||
                                    logger.info(f"Using RTSP mode for camera {camera_id}: {rtsp_url}")
 | 
			
		||||
                                    cap = cv2.VideoCapture(rtsp_url)
 | 
			
		||||
                                    if not cap.isOpened():
 | 
			
		||||
                                        logger.error(f"Failed to open RTSP stream for camera {camera_id}")
 | 
			
		||||
                                        continue
 | 
			
		||||
                                    thread = threading.Thread(target=frame_reader, args=(camera_id, cap, buffer, stop_event))
 | 
			
		||||
                                    thread.daemon = True
 | 
			
		||||
                                    thread.start()
 | 
			
		||||
                                    streams[camera_id] = {
 | 
			
		||||
                                        "cap": cap,
 | 
			
		||||
                                        "buffer": buffer,
 | 
			
		||||
                                        "thread": thread,
 | 
			
		||||
                                        "rtsp_url": rtsp_url,
 | 
			
		||||
                                        "stop_event": stop_event,
 | 
			
		||||
                                        "modelId": modelId,
 | 
			
		||||
                                        "modelName": modelName,
 | 
			
		||||
                                        "mode": "rtsp"
 | 
			
		||||
                                    }
 | 
			
		||||
                                    logger.info(f"Subscribed to camera {camera_id} (RTSP mode) with modelId {modelId}, modelName {modelName}, URL {rtsp_url}")
 | 
			
		||||
                                if shared_stream:
 | 
			
		||||
                                    # Reuse existing stream
 | 
			
		||||
                                    logger.info(f"Reusing existing stream for camera URL: {camera_url}")
 | 
			
		||||
                                    buffer = shared_stream["buffer"]
 | 
			
		||||
                                    stop_event = shared_stream["stop_event"]
 | 
			
		||||
                                    thread = shared_stream["thread"]
 | 
			
		||||
                                    mode = shared_stream["mode"]
 | 
			
		||||
                                    
 | 
			
		||||
                                    # Increment reference count
 | 
			
		||||
                                    shared_stream["ref_count"] = shared_stream.get("ref_count", 0) + 1
 | 
			
		||||
                                else:
 | 
			
		||||
                                    logger.error(f"No valid URL provided for camera {camera_id}")
 | 
			
		||||
                                    continue
 | 
			
		||||
                                    # Create new stream
 | 
			
		||||
                                    buffer = queue.Queue(maxsize=1)
 | 
			
		||||
                                    stop_event = threading.Event()
 | 
			
		||||
                                    
 | 
			
		||||
                                    if snapshot_url and snapshot_interval:
 | 
			
		||||
                                        logger.info(f"Creating new snapshot stream for camera {camera_id}: {snapshot_url}")
 | 
			
		||||
                                        thread = threading.Thread(target=snapshot_reader, args=(camera_identifier, snapshot_url, snapshot_interval, buffer, stop_event))
 | 
			
		||||
                                        thread.daemon = True
 | 
			
		||||
                                        thread.start()
 | 
			
		||||
                                        mode = "snapshot"
 | 
			
		||||
                                        
 | 
			
		||||
                                        # Store shared stream info
 | 
			
		||||
                                        shared_stream = {
 | 
			
		||||
                                            "buffer": buffer,
 | 
			
		||||
                                            "thread": thread,
 | 
			
		||||
                                            "stop_event": stop_event,
 | 
			
		||||
                                            "mode": mode,
 | 
			
		||||
                                            "url": snapshot_url,
 | 
			
		||||
                                            "snapshot_interval": snapshot_interval,
 | 
			
		||||
                                            "ref_count": 1
 | 
			
		||||
                                        }
 | 
			
		||||
                                        camera_streams[camera_url] = shared_stream
 | 
			
		||||
                                        
 | 
			
		||||
                                    elif rtsp_url:
 | 
			
		||||
                                        logger.info(f"Creating new RTSP stream for camera {camera_id}: {rtsp_url}")
 | 
			
		||||
                                        cap = cv2.VideoCapture(rtsp_url)
 | 
			
		||||
                                        if not cap.isOpened():
 | 
			
		||||
                                            logger.error(f"Failed to open RTSP stream for camera {camera_id}")
 | 
			
		||||
                                            continue
 | 
			
		||||
                                        thread = threading.Thread(target=frame_reader, args=(camera_identifier, cap, buffer, stop_event))
 | 
			
		||||
                                        thread.daemon = True
 | 
			
		||||
                                        thread.start()
 | 
			
		||||
                                        mode = "rtsp"
 | 
			
		||||
                                        
 | 
			
		||||
                                        # Store shared stream info
 | 
			
		||||
                                        shared_stream = {
 | 
			
		||||
                                            "buffer": buffer,
 | 
			
		||||
                                            "thread": thread,
 | 
			
		||||
                                            "stop_event": stop_event,
 | 
			
		||||
                                            "mode": mode,
 | 
			
		||||
                                            "url": rtsp_url,
 | 
			
		||||
                                            "cap": cap,
 | 
			
		||||
                                            "ref_count": 1
 | 
			
		||||
                                        }
 | 
			
		||||
                                        camera_streams[camera_url] = shared_stream
 | 
			
		||||
                                    else:
 | 
			
		||||
                                        logger.error(f"No valid URL provided for camera {camera_id}")
 | 
			
		||||
                                        continue
 | 
			
		||||
                                
 | 
			
		||||
                                # Create stream info for this subscription
 | 
			
		||||
                                stream_info = {
 | 
			
		||||
                                    "buffer": buffer,
 | 
			
		||||
                                    "thread": thread,
 | 
			
		||||
                                    "stop_event": stop_event,
 | 
			
		||||
                                    "modelId": modelId,
 | 
			
		||||
                                    "modelName": modelName,
 | 
			
		||||
                                    "subscriptionIdentifier": subscriptionIdentifier,
 | 
			
		||||
                                    "cropX1": cropX1,
 | 
			
		||||
                                    "cropY1": cropY1,
 | 
			
		||||
                                    "cropX2": cropX2,
 | 
			
		||||
                                    "cropY2": cropY2,
 | 
			
		||||
                                    "mode": mode,
 | 
			
		||||
                                    "camera_url": camera_url
 | 
			
		||||
                                }
 | 
			
		||||
                                
 | 
			
		||||
                                if mode == "snapshot":
 | 
			
		||||
                                    stream_info["snapshot_url"] = snapshot_url
 | 
			
		||||
                                    stream_info["snapshot_interval"] = snapshot_interval
 | 
			
		||||
                                elif mode == "rtsp":
 | 
			
		||||
                                    stream_info["rtsp_url"] = rtsp_url
 | 
			
		||||
                                    stream_info["cap"] = shared_stream["cap"]
 | 
			
		||||
                                
 | 
			
		||||
                                streams[camera_id] = stream_info
 | 
			
		||||
                                subscription_to_camera[camera_id] = camera_url
 | 
			
		||||
                                
 | 
			
		||||
                            elif camera_id and camera_id in streams:
 | 
			
		||||
                                # If already subscribed, unsubscribe first
 | 
			
		||||
                                stream = streams.pop(camera_id)
 | 
			
		||||
                                stream["stop_event"].set()
 | 
			
		||||
                                stream["thread"].join()
 | 
			
		||||
                                if "cap" in stream:
 | 
			
		||||
                                    stream["cap"].release()
 | 
			
		||||
                                logger.info(f"Unsubscribed from camera {camera_id} for resubscription")
 | 
			
		||||
                                with models_lock:
 | 
			
		||||
                                    if camera_id in models and modelId in models[camera_id]:
 | 
			
		||||
                                        del models[camera_id][modelId]
 | 
			
		||||
                                        if not models[camera_id]:
 | 
			
		||||
                                            del models[camera_id]
 | 
			
		||||
                                logger.info(f"Resubscribing to camera {camera_id}")
 | 
			
		||||
                                # Note: Keep models in memory for reuse across subscriptions
 | 
			
		||||
                elif msg_type == "unsubscribe":
 | 
			
		||||
                    payload = data.get("payload", {})
 | 
			
		||||
                    camera_id = payload.get("cameraIdentifier")
 | 
			
		||||
                    logger.debug(f"Unsubscribing from camera {camera_id}")
 | 
			
		||||
                    subscriptionIdentifier = payload.get("subscriptionIdentifier")
 | 
			
		||||
                    camera_id = subscriptionIdentifier
 | 
			
		||||
                    with streams_lock:
 | 
			
		||||
                        if camera_id and camera_id in streams:
 | 
			
		||||
                            stream = streams.pop(camera_id)
 | 
			
		||||
                            stream["stop_event"].set()
 | 
			
		||||
                            stream["thread"].join()
 | 
			
		||||
                            # Only release cap if it exists (RTSP mode)
 | 
			
		||||
                            if "cap" in stream:
 | 
			
		||||
                                stream["cap"].release()
 | 
			
		||||
                                logger.info(f"Released RTSP capture for camera {camera_id}")
 | 
			
		||||
                            else:
 | 
			
		||||
                                logger.info(f"Released snapshot reader for camera {camera_id}")
 | 
			
		||||
                            camera_url = subscription_to_camera.pop(camera_id, None)
 | 
			
		||||
                            
 | 
			
		||||
                            if camera_url and camera_url in camera_streams:
 | 
			
		||||
                                shared_stream = camera_streams[camera_url]
 | 
			
		||||
                                shared_stream["ref_count"] -= 1
 | 
			
		||||
                                
 | 
			
		||||
                                # If no more references, stop the shared stream
 | 
			
		||||
                                if shared_stream["ref_count"] <= 0:
 | 
			
		||||
                                    logger.info(f"Stopping shared stream for camera URL: {camera_url}")
 | 
			
		||||
                                    shared_stream["stop_event"].set()
 | 
			
		||||
                                    shared_stream["thread"].join()
 | 
			
		||||
                                    if "cap" in shared_stream:
 | 
			
		||||
                                        shared_stream["cap"].release()
 | 
			
		||||
                                    del camera_streams[camera_url]
 | 
			
		||||
                                else:
 | 
			
		||||
                                    logger.info(f"Shared stream for {camera_url} still has {shared_stream['ref_count']} references")
 | 
			
		||||
                            
 | 
			
		||||
                            logger.info(f"Unsubscribed from camera {camera_id}")
 | 
			
		||||
                            with models_lock:
 | 
			
		||||
                                if camera_id in models:
 | 
			
		||||
                                    del models[camera_id]
 | 
			
		||||
                            # Note: Keep models in memory for potential reuse
 | 
			
		||||
                elif msg_type == "requestState":
 | 
			
		||||
                    cpu_usage = psutil.cpu_percent()
 | 
			
		||||
                    memory_usage = psutil.virtual_memory().percent
 | 
			
		||||
                    if torch.cuda.is_available():
 | 
			
		||||
                        gpu_usage = torch.cuda.memory_allocated() / (1024 ** 2)
 | 
			
		||||
                        gpu_usage = torch.cuda.utilization() if hasattr(torch.cuda, 'utilization') else None
 | 
			
		||||
                        gpu_memory_usage = torch.cuda.memory_reserved() / (1024 ** 2)
 | 
			
		||||
                    else:
 | 
			
		||||
                        gpu_usage = None
 | 
			
		||||
| 
						 | 
				
			
			@ -651,10 +758,11 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
 | 
			
		||||
                    camera_connections = [
 | 
			
		||||
                        {
 | 
			
		||||
                            "cameraIdentifier": camera_id,
 | 
			
		||||
                            "subscriptionIdentifier": stream["subscriptionIdentifier"],
 | 
			
		||||
                            "modelId": stream["modelId"],
 | 
			
		||||
                            "modelName": stream["modelName"],
 | 
			
		||||
                            "online": True
 | 
			
		||||
                            "online": True,
 | 
			
		||||
                            **{k: v for k, v in get_crop_coords(stream).items() if v is not None}
 | 
			
		||||
                        }
 | 
			
		||||
                        for camera_id, stream in streams.items()
 | 
			
		||||
                    ]
 | 
			
		||||
| 
						 | 
				
			
			@ -668,6 +776,37 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
                        "cameraConnections": camera_connections
 | 
			
		||||
                    }
 | 
			
		||||
                    await websocket.send_text(json.dumps(state_report))
 | 
			
		||||
                
 | 
			
		||||
                elif msg_type == "setSessionId":
 | 
			
		||||
                    payload = data.get("payload", {})
 | 
			
		||||
                    display_identifier = payload.get("displayIdentifier")
 | 
			
		||||
                    session_id = payload.get("sessionId")
 | 
			
		||||
                    
 | 
			
		||||
                    if display_identifier:
 | 
			
		||||
                        # Store session ID for this display
 | 
			
		||||
                        if session_id is None:
 | 
			
		||||
                            session_ids.pop(display_identifier, None)
 | 
			
		||||
                            logger.info(f"Cleared session ID for display {display_identifier}")
 | 
			
		||||
                        else:
 | 
			
		||||
                            session_ids[display_identifier] = session_id
 | 
			
		||||
                            logger.info(f"Set session ID {session_id} for display {display_identifier}")
 | 
			
		||||
                
 | 
			
		||||
                elif msg_type == "patchSession":
 | 
			
		||||
                    session_id = data.get("sessionId")
 | 
			
		||||
                    patch_data = data.get("data", {})
 | 
			
		||||
                    
 | 
			
		||||
                    # For now, just acknowledge the patch - actual implementation depends on backend requirements
 | 
			
		||||
                    response = {
 | 
			
		||||
                        "type": "patchSessionResult",
 | 
			
		||||
                        "payload": {
 | 
			
		||||
                            "sessionId": session_id,
 | 
			
		||||
                            "success": True,
 | 
			
		||||
                            "message": "Session patch acknowledged"
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                    await websocket.send_json(response)
 | 
			
		||||
                    logger.info(f"Acknowledged patch for session {session_id}")
 | 
			
		||||
                
 | 
			
		||||
                else:
 | 
			
		||||
                    logger.error(f"Unknown message type: {msg_type}")
 | 
			
		||||
            except json.JSONDecodeError:
 | 
			
		||||
| 
						 | 
				
			
			@ -678,7 +817,6 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
            except Exception as e:
 | 
			
		||||
                logger.error(f"Error handling message: {e}")
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        await websocket.accept()
 | 
			
		||||
        stream_task = asyncio.create_task(process_streams())
 | 
			
		||||
| 
						 | 
				
			
			@ -691,19 +829,23 @@ async def detect(websocket: WebSocket):
 | 
			
		|||
        stream_task.cancel()
 | 
			
		||||
        await stream_task
 | 
			
		||||
        with streams_lock:
 | 
			
		||||
            for camera_id, stream in streams.items():
 | 
			
		||||
                stream["stop_event"].set()
 | 
			
		||||
                stream["thread"].join()
 | 
			
		||||
                # Only release cap if it exists (RTSP mode)
 | 
			
		||||
                if "cap" in stream:
 | 
			
		||||
                    stream["cap"].release()
 | 
			
		||||
                while not stream["buffer"].empty():
 | 
			
		||||
            # Clean up shared camera streams
 | 
			
		||||
            for camera_url, shared_stream in camera_streams.items():
 | 
			
		||||
                shared_stream["stop_event"].set()
 | 
			
		||||
                shared_stream["thread"].join()
 | 
			
		||||
                if "cap" in shared_stream:
 | 
			
		||||
                    shared_stream["cap"].release()
 | 
			
		||||
                while not shared_stream["buffer"].empty():
 | 
			
		||||
                    try:
 | 
			
		||||
                        stream["buffer"].get_nowait()
 | 
			
		||||
                        shared_stream["buffer"].get_nowait()
 | 
			
		||||
                    except queue.Empty:
 | 
			
		||||
                        pass
 | 
			
		||||
                logger.info(f"Released camera {camera_id} and cleaned up resources")
 | 
			
		||||
                logger.info(f"Released shared camera stream for {camera_url}")
 | 
			
		||||
            
 | 
			
		||||
            streams.clear()
 | 
			
		||||
            camera_streams.clear()
 | 
			
		||||
            subscription_to_camera.clear()
 | 
			
		||||
        with models_lock:
 | 
			
		||||
            models.clear()
 | 
			
		||||
        session_ids.clear()
 | 
			
		||||
        logger.info("WebSocket connection closed")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										204
									
								
								pympta.md
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										204
									
								
								pympta.md
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,204 @@
 | 
			
		|||
# pympta: Modular Pipeline Task Executor
 | 
			
		||||
 | 
			
		||||
`pympta` is a Python module designed to load and execute modular, multi-stage AI pipelines defined in a special package format (`.mpta`). It is primarily used within the detector worker to run complex computer vision tasks where the output of one model can trigger a subsequent model on a specific region of interest.
 | 
			
		||||
 | 
			
		||||
## Core Concepts
 | 
			
		||||
 | 
			
		||||
### 1. MPTA Package (`.mpta`)
 | 
			
		||||
 | 
			
		||||
An `.mpta` file is a standard `.zip` archive with a different extension. It bundles all the necessary components for a pipeline to run.
 | 
			
		||||
 | 
			
		||||
A typical `.mpta` file has the following structure:
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
my_pipeline.mpta/
 | 
			
		||||
├── pipeline.json
 | 
			
		||||
├── model1.pt
 | 
			
		||||
├── model2.pt
 | 
			
		||||
└── ...
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
- **`pipeline.json`**: (Required) The manifest file that defines the structure of the pipeline, the models to use, and the logic connecting them.
 | 
			
		||||
- **Model Files (`.pt`, etc.)**: The actual pre-trained model files (e.g., PyTorch, ONNX). The pipeline currently uses `ultralytics.YOLO` models.
 | 
			
		||||
 | 
			
		||||
### 2. Pipeline Structure
 | 
			
		||||
 | 
			
		||||
A pipeline is a tree-like structure of "nodes," defined in `pipeline.json`.
 | 
			
		||||
 | 
			
		||||
- **Root Node**: The entry point of the pipeline. It processes the initial, full-frame image.
 | 
			
		||||
- **Branch Nodes**: Child nodes that are triggered by specific detection results from their parent. For example, a root node might detect a "vehicle," which then triggers a branch node to detect a "license plate" within the vehicle's bounding box.
 | 
			
		||||
 | 
			
		||||
This modular structure allows for creating complex and efficient inference logic, avoiding the need to run every model on every frame.
 | 
			
		||||
 | 
			
		||||
## `pipeline.json` Specification
 | 
			
		||||
 | 
			
		||||
This file defines the entire pipeline logic. The root object contains a `pipeline` key for the pipeline definition and an optional `redis` key for Redis configuration.
 | 
			
		||||
 | 
			
		||||
### Top-Level Object Structure
 | 
			
		||||
 | 
			
		||||
| Key        | Type   | Required | Description                                             |
 | 
			
		||||
| ---------- | ------ | -------- | ------------------------------------------------------- |
 | 
			
		||||
| `pipeline` | Object | Yes      | The root node object of the pipeline.                   |
 | 
			
		||||
| `redis`    | Object | No       | Configuration for connecting to a Redis server.         |
 | 
			
		||||
 | 
			
		||||
### Redis Configuration (`redis`)
 | 
			
		||||
 | 
			
		||||
| Key        | Type   | Required | Description                                             |
 | 
			
		||||
| ---------- | ------ | -------- | ------------------------------------------------------- |
 | 
			
		||||
| `host`     | String | Yes      | The hostname or IP address of the Redis server.         |
 | 
			
		||||
| `port`     | Number | Yes      | The port number of the Redis server.                    |
 | 
			
		||||
| `password` | String | No       | The password for Redis authentication.                  |
 | 
			
		||||
| `db`       | Number | No       | The Redis database number to use. Defaults to `0`.      |
 | 
			
		||||
 | 
			
		||||
### Node Object Structure
 | 
			
		||||
 | 
			
		||||
| Key                 | Type          | Required | Description                                                                                                                            |
 | 
			
		||||
| ------------------- | ------------- | -------- | -------------------------------------------------------------------------------------------------------------------------------------- |
 | 
			
		||||
| `modelId`           | String        | Yes      | A unique identifier for this model node (e.g., "vehicle-detector").                                                                    |
 | 
			
		||||
| `modelFile`         | String        | Yes      | The path to the model file within the `.mpta` archive (e.g., "yolov8n.pt").                                                            |
 | 
			
		||||
| `minConfidence`     | Float         | Yes      | The minimum confidence score (0.0 to 1.0) required for a detection to be considered valid and potentially trigger a branch.              |
 | 
			
		||||
| `triggerClasses`    | Array<String> | Yes      | A list of class names that, when detected by the parent, can trigger this node. For the root node, this lists all classes of interest. |
 | 
			
		||||
| `crop`              | Boolean       | No       | If `true`, the image is cropped to the parent's detection bounding box before being passed to this node's model. Defaults to `false`.    |
 | 
			
		||||
| `branches`          | Array<Node>   | No       | A list of child node objects that can be triggered by this node's detections.                                                          |
 | 
			
		||||
| `actions`           | Array<Action> | No       | A list of actions to execute upon a successful detection in this node.                                                                 |
 | 
			
		||||
 | 
			
		||||
### Action Object Structure
 | 
			
		||||
 | 
			
		||||
Actions allow the pipeline to interact with Redis. They are executed sequentially for a given detection.
 | 
			
		||||
 | 
			
		||||
#### Action Context & Dynamic Keys
 | 
			
		||||
 | 
			
		||||
All actions have access to a dynamic context for formatting keys and messages. The context is created for each detection event and includes:
 | 
			
		||||
 | 
			
		||||
- All key-value pairs from the detection result (e.g., `class`, `confidence`, `id`).
 | 
			
		||||
- `{timestamp_ms}`: The current Unix timestamp in milliseconds.
 | 
			
		||||
- `{uuid}`: A unique identifier (UUID4) for the detection event.
 | 
			
		||||
- `{image_key}`: If a `redis_save_image` action has already been executed for this event, this placeholder will be replaced with the key where the image was stored.
 | 
			
		||||
 | 
			
		||||
#### `redis_save_image`
 | 
			
		||||
 | 
			
		||||
Saves the current image frame (or cropped sub-image) to a Redis key.
 | 
			
		||||
 | 
			
		||||
| Key              | Type   | Required | Description                                                                                             |
 | 
			
		||||
| ---------------- | ------ | -------- | ------------------------------------------------------------------------------------------------------- |
 | 
			
		||||
| `type`           | String | Yes      | Must be `"redis_save_image"`.                                                                           |
 | 
			
		||||
| `key`            | String | Yes      | The Redis key to save the image to. Can contain any of the dynamic placeholders.                        |
 | 
			
		||||
| `expire_seconds` | Number | No       | If provided, sets an expiration time (in seconds) for the Redis key.                                    |
 | 
			
		||||
 | 
			
		||||
#### `redis_publish`
 | 
			
		||||
 | 
			
		||||
Publishes a message to a Redis channel.
 | 
			
		||||
 | 
			
		||||
| Key       | Type   | Required | Description                                                                                             |
 | 
			
		||||
| --------- | ------ | -------- | ------------------------------------------------------------------------------------------------------- |
 | 
			
		||||
| `type`    | String | Yes      | Must be `"redis_publish"`.                                                                              |
 | 
			
		||||
| `channel` | String | Yes      | The Redis channel to publish the message to.                                                            |
 | 
			
		||||
| `message` | String | Yes      | The message to publish. Can contain any of the dynamic placeholders, including `{image_key}`.           |
 | 
			
		||||
 | 
			
		||||
### Example `pipeline.json` with Redis
 | 
			
		||||
 | 
			
		||||
This example demonstrates a pipeline that detects vehicles, saves a uniquely named image of each detection that expires in one hour, and then publishes a notification with the image key.
 | 
			
		||||
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "redis": {
 | 
			
		||||
    "host": "redis.local",
 | 
			
		||||
    "port": 6379,
 | 
			
		||||
    "password": "your-super-secret-password"
 | 
			
		||||
  },
 | 
			
		||||
  "pipeline": {
 | 
			
		||||
    "modelId": "vehicle-detector",
 | 
			
		||||
    "modelFile": "vehicle_model.pt",
 | 
			
		||||
    "minConfidence": 0.6,
 | 
			
		||||
    "triggerClasses": ["car", "truck"],
 | 
			
		||||
    "actions": [
 | 
			
		||||
      {
 | 
			
		||||
        "type": "redis_save_image",
 | 
			
		||||
        "key": "detections:{class}:{timestamp_ms}:{uuid}",
 | 
			
		||||
        "expire_seconds": 3600
 | 
			
		||||
      },
 | 
			
		||||
      {
 | 
			
		||||
        "type": "redis_publish",
 | 
			
		||||
        "channel": "vehicle_events",
 | 
			
		||||
        "message": "{\"event\":\"new_detection\",\"class\":\"{class}\",\"confidence\":{confidence},\"image_key\":\"{image_key}\"}"
 | 
			
		||||
      }
 | 
			
		||||
    ],
 | 
			
		||||
    "branches": []
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## API Reference
 | 
			
		||||
 | 
			
		||||
The `pympta` module exposes two main functions.
 | 
			
		||||
 | 
			
		||||
### `load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict`
 | 
			
		||||
 | 
			
		||||
Loads, extracts, and parses an `.mpta` file to build a pipeline tree in memory. It also establishes a Redis connection if configured in `pipeline.json`.
 | 
			
		||||
 | 
			
		||||
- **Parameters:**
 | 
			
		||||
  - `zip_source` (str): The file path to the local `.mpta` zip archive.
 | 
			
		||||
  - `target_dir` (str): A directory path where the archive's contents will be extracted.
 | 
			
		||||
- **Returns:**
 | 
			
		||||
  - A dictionary representing the root node of the pipeline, ready to be used with `run_pipeline`. Returns `None` if loading fails.
 | 
			
		||||
 | 
			
		||||
### `run_pipeline(frame, node: dict, return_bbox: bool = False)`
 | 
			
		||||
 | 
			
		||||
Executes the inference pipeline on a single image frame.
 | 
			
		||||
 | 
			
		||||
- **Parameters:**
 | 
			
		||||
  - `frame`: The input image frame (e.g., a NumPy array from OpenCV).
 | 
			
		||||
  - `node` (dict): The pipeline node to execute (typically the root node returned by `load_pipeline_from_zip`).
 | 
			
		||||
  - `return_bbox` (bool): If `True`, the function returns a tuple `(detection, bounding_box)`. Otherwise, it returns only the `detection`.
 | 
			
		||||
- **Returns:**
 | 
			
		||||
  - The final detection result from the last executed node in the chain. A detection is a dictionary like `{'class': 'car', 'confidence': 0.95, 'id': 1}`. If no detection meets the criteria, it returns `None` (or `(None, None)` if `return_bbox` is `True`).
 | 
			
		||||
 | 
			
		||||
## Usage Example
 | 
			
		||||
 | 
			
		||||
This snippet, inspired by `pipeline_webcam.py`, shows how to use `pympta` to load a pipeline and process an image from a webcam.
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
import cv2
 | 
			
		||||
from siwatsystem.pympta import load_pipeline_from_zip, run_pipeline
 | 
			
		||||
 | 
			
		||||
# 1. Define paths
 | 
			
		||||
MPTA_FILE = "path/to/your/pipeline.mpta"
 | 
			
		||||
CACHE_DIR = ".mptacache"
 | 
			
		||||
 | 
			
		||||
# 2. Load the pipeline from the .mpta file
 | 
			
		||||
# This reads pipeline.json and loads the YOLO models into memory.
 | 
			
		||||
model_tree = load_pipeline_from_zip(MPTA_FILE, CACHE_DIR)
 | 
			
		||||
 | 
			
		||||
if not model_tree:
 | 
			
		||||
    print("Failed to load pipeline.")
 | 
			
		||||
    exit()
 | 
			
		||||
 | 
			
		||||
# 3. Open a video source
 | 
			
		||||
cap = cv2.VideoCapture(0)
 | 
			
		||||
 | 
			
		||||
while True:
 | 
			
		||||
    ret, frame = cap.read()
 | 
			
		||||
    if not ret:
 | 
			
		||||
        break
 | 
			
		||||
 | 
			
		||||
    # 4. Run the pipeline on the current frame
 | 
			
		||||
    # The function will handle the entire logic tree (e.g., find a car, then find its license plate).
 | 
			
		||||
    detection_result, bounding_box = run_pipeline(frame, model_tree, return_bbox=True)
 | 
			
		||||
 | 
			
		||||
    # 5. Display the results
 | 
			
		||||
    if detection_result:
 | 
			
		||||
        print(f"Detected: {detection_result['class']} with confidence {detection_result['confidence']:.2f}")
 | 
			
		||||
        if bounding_box:
 | 
			
		||||
            x1, y1, x2, y2 = bounding_box
 | 
			
		||||
            cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
 | 
			
		||||
            cv2.putText(frame, detection_result['class'], (x1, y1 - 10),
 | 
			
		||||
                        cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
 | 
			
		||||
 | 
			
		||||
    cv2.imshow("Pipeline Output", frame)
 | 
			
		||||
 | 
			
		||||
    if cv2.waitKey(1) & 0xFF == ord('q'):
 | 
			
		||||
        break
 | 
			
		||||
 | 
			
		||||
cap.release()
 | 
			
		||||
cv2.destroyAllWindows()
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -5,4 +5,5 @@ torchvision
 | 
			
		|||
ultralytics
 | 
			
		||||
opencv-python
 | 
			
		||||
websockets
 | 
			
		||||
fastapi[standard]
 | 
			
		||||
fastapi[standard]
 | 
			
		||||
redis
 | 
			
		||||
| 
						 | 
				
			
			@ -7,13 +7,16 @@ import requests
 | 
			
		|||
import zipfile
 | 
			
		||||
import shutil
 | 
			
		||||
import traceback
 | 
			
		||||
import redis
 | 
			
		||||
import time
 | 
			
		||||
import uuid
 | 
			
		||||
from ultralytics import YOLO
 | 
			
		||||
from urllib.parse import urlparse
 | 
			
		||||
 | 
			
		||||
# Create a logger specifically for this module
 | 
			
		||||
logger = logging.getLogger("detector_worker.pympta")
 | 
			
		||||
 | 
			
		||||
def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
 | 
			
		||||
def load_pipeline_node(node_config: dict, mpta_dir: str, redis_client) -> dict:
 | 
			
		||||
    # Recursively load a model node from configuration.
 | 
			
		||||
    model_path = os.path.join(mpta_dir, node_config["modelFile"])
 | 
			
		||||
    if not os.path.exists(model_path):
 | 
			
		||||
| 
						 | 
				
			
			@ -44,13 +47,15 @@ def load_pipeline_node(node_config: dict, mpta_dir: str) -> dict:
 | 
			
		|||
        "triggerClassIndices": trigger_class_indices,
 | 
			
		||||
        "crop": node_config.get("crop", False),
 | 
			
		||||
        "minConfidence": node_config.get("minConfidence", None),
 | 
			
		||||
        "actions": node_config.get("actions", []),
 | 
			
		||||
        "model": model,
 | 
			
		||||
        "branches": []
 | 
			
		||||
        "branches": [],
 | 
			
		||||
        "redis_client": redis_client
 | 
			
		||||
    }
 | 
			
		||||
    logger.debug(f"Configured node {node_config['modelId']} with trigger classes: {node['triggerClasses']}")
 | 
			
		||||
    for child in node_config.get("branches", []):
 | 
			
		||||
        logger.debug(f"Loading branch for parent node {node_config['modelId']}")
 | 
			
		||||
        node["branches"].append(load_pipeline_node(child, mpta_dir))
 | 
			
		||||
        node["branches"].append(load_pipeline_node(child, mpta_dir, redis_client))
 | 
			
		||||
    return node
 | 
			
		||||
 | 
			
		||||
def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
 | 
			
		||||
| 
						 | 
				
			
			@ -173,7 +178,26 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
 | 
			
		|||
            pipeline_config = json.load(f)
 | 
			
		||||
        logger.info(f"Successfully loaded pipeline configuration from {pipeline_json_path}")
 | 
			
		||||
        logger.debug(f"Pipeline config: {json.dumps(pipeline_config, indent=2)}")
 | 
			
		||||
        return load_pipeline_node(pipeline_config["pipeline"], mpta_dir)
 | 
			
		||||
        
 | 
			
		||||
        # Establish Redis connection if configured
 | 
			
		||||
        redis_client = None
 | 
			
		||||
        if "redis" in pipeline_config:
 | 
			
		||||
            redis_config = pipeline_config["redis"]
 | 
			
		||||
            try:
 | 
			
		||||
                redis_client = redis.Redis(
 | 
			
		||||
                    host=redis_config["host"],
 | 
			
		||||
                    port=redis_config["port"],
 | 
			
		||||
                    password=redis_config.get("password"),
 | 
			
		||||
                    db=redis_config.get("db", 0),
 | 
			
		||||
                    decode_responses=True
 | 
			
		||||
                )
 | 
			
		||||
                redis_client.ping()
 | 
			
		||||
                logger.info(f"Successfully connected to Redis at {redis_config['host']}:{redis_config['port']}")
 | 
			
		||||
            except redis.exceptions.ConnectionError as e:
 | 
			
		||||
                logger.error(f"Failed to connect to Redis: {e}")
 | 
			
		||||
                redis_client = None
 | 
			
		||||
        
 | 
			
		||||
        return load_pipeline_node(pipeline_config["pipeline"], mpta_dir, redis_client)
 | 
			
		||||
    except json.JSONDecodeError as e:
 | 
			
		||||
        logger.error(f"Error parsing pipeline.json: {str(e)}", exc_info=True)
 | 
			
		||||
        return None
 | 
			
		||||
| 
						 | 
				
			
			@ -184,6 +208,39 @@ def load_pipeline_from_zip(zip_source: str, target_dir: str) -> dict:
 | 
			
		|||
        logger.error(f"Error loading pipeline.json: {str(e)}", exc_info=True)
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
def execute_actions(node, frame, detection_result):
 | 
			
		||||
    if not node["redis_client"] or not node["actions"]:
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    # Create a dynamic context for this detection event
 | 
			
		||||
    action_context = {
 | 
			
		||||
        **detection_result,
 | 
			
		||||
        "timestamp_ms": int(time.time() * 1000),
 | 
			
		||||
        "uuid": str(uuid.uuid4()),
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    for action in node["actions"]:
 | 
			
		||||
        try:
 | 
			
		||||
            if action["type"] == "redis_save_image":
 | 
			
		||||
                key = action["key"].format(**action_context)
 | 
			
		||||
                _, buffer = cv2.imencode('.jpg', frame)
 | 
			
		||||
                expire_seconds = action.get("expire_seconds")
 | 
			
		||||
                if expire_seconds:
 | 
			
		||||
                    node["redis_client"].setex(key, expire_seconds, buffer.tobytes())
 | 
			
		||||
                    logger.info(f"Saved image to Redis with key: {key} (expires in {expire_seconds}s)")
 | 
			
		||||
                else:
 | 
			
		||||
                    node["redis_client"].set(key, buffer.tobytes())
 | 
			
		||||
                    logger.info(f"Saved image to Redis with key: {key}")
 | 
			
		||||
                # Add the generated key to the context for subsequent actions
 | 
			
		||||
                action_context["image_key"] = key
 | 
			
		||||
            elif action["type"] == "redis_publish":
 | 
			
		||||
                channel = action["channel"]
 | 
			
		||||
                message = action["message"].format(**action_context)
 | 
			
		||||
                node["redis_client"].publish(channel, message)
 | 
			
		||||
                logger.info(f"Published message to Redis channel '{channel}': {message}")
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Error executing action {action['type']}: {e}")
 | 
			
		||||
 | 
			
		||||
def run_pipeline(frame, node: dict, return_bbox: bool=False):
 | 
			
		||||
    """
 | 
			
		||||
    - For detection nodes (task != 'classify'):
 | 
			
		||||
| 
						 | 
				
			
			@ -221,6 +278,7 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False):
 | 
			
		|||
                "confidence": top1_conf,
 | 
			
		||||
                "id": None
 | 
			
		||||
            }
 | 
			
		||||
            execute_actions(node, frame, det)
 | 
			
		||||
            return (det, None) if return_bbox else det
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -269,9 +327,11 @@ def run_pipeline(frame, node: dict, return_bbox: bool=False):
 | 
			
		|||
                det2, _ = run_pipeline(sub, br, return_bbox=True)
 | 
			
		||||
                if det2:
 | 
			
		||||
                    # return classification result + original bbox
 | 
			
		||||
                    execute_actions(br, sub, det2)
 | 
			
		||||
                    return (det2, best_box) if return_bbox else det2
 | 
			
		||||
 | 
			
		||||
        # ─── No branch matched → return this detection ─────────────
 | 
			
		||||
        execute_actions(node, frame, best_det)
 | 
			
		||||
        return (best_det, best_box) if return_bbox else best_det
 | 
			
		||||
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										125
									
								
								test_protocol.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										125
									
								
								test_protocol.py
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,125 @@
 | 
			
		|||
#!/usr/bin/env python3
 | 
			
		||||
"""
 | 
			
		||||
Test script to verify the worker implementation follows the protocol
 | 
			
		||||
"""
 | 
			
		||||
import json
 | 
			
		||||
import asyncio
 | 
			
		||||
import websockets
 | 
			
		||||
import time
 | 
			
		||||
 | 
			
		||||
async def test_protocol():
 | 
			
		||||
    """Test the worker protocol implementation"""
 | 
			
		||||
    uri = "ws://localhost:8000"
 | 
			
		||||
    
 | 
			
		||||
    try:
 | 
			
		||||
        async with websockets.connect(uri) as websocket:
 | 
			
		||||
            print("✓ Connected to worker")
 | 
			
		||||
            
 | 
			
		||||
            # Test 1: Check if we receive heartbeat (stateReport)
 | 
			
		||||
            print("\n1. Testing heartbeat...")
 | 
			
		||||
            try:
 | 
			
		||||
                message = await asyncio.wait_for(websocket.recv(), timeout=5)
 | 
			
		||||
                data = json.loads(message)
 | 
			
		||||
                if data.get("type") == "stateReport":
 | 
			
		||||
                    print("✓ Received stateReport heartbeat")
 | 
			
		||||
                    print(f"  - CPU Usage: {data.get('cpuUsage', 'N/A')}%")
 | 
			
		||||
                    print(f"  - Memory Usage: {data.get('memoryUsage', 'N/A')}%")
 | 
			
		||||
                    print(f"  - Camera Connections: {len(data.get('cameraConnections', []))}")
 | 
			
		||||
                else:
 | 
			
		||||
                    print(f"✗ Expected stateReport, got {data.get('type')}")
 | 
			
		||||
            except asyncio.TimeoutError:
 | 
			
		||||
                print("✗ No heartbeat received within 5 seconds")
 | 
			
		||||
            
 | 
			
		||||
            # Test 2: Request state
 | 
			
		||||
            print("\n2. Testing requestState...")
 | 
			
		||||
            await websocket.send(json.dumps({"type": "requestState"}))
 | 
			
		||||
            try:
 | 
			
		||||
                message = await asyncio.wait_for(websocket.recv(), timeout=5)
 | 
			
		||||
                data = json.loads(message)
 | 
			
		||||
                if data.get("type") == "stateReport":
 | 
			
		||||
                    print("✓ Received stateReport response")
 | 
			
		||||
                else:
 | 
			
		||||
                    print(f"✗ Expected stateReport, got {data.get('type')}")
 | 
			
		||||
            except asyncio.TimeoutError:
 | 
			
		||||
                print("✗ No response to requestState within 5 seconds")
 | 
			
		||||
            
 | 
			
		||||
            # Test 3: Set session ID
 | 
			
		||||
            print("\n3. Testing setSessionId...")
 | 
			
		||||
            session_message = {
 | 
			
		||||
                "type": "setSessionId",
 | 
			
		||||
                "payload": {
 | 
			
		||||
                    "displayIdentifier": "display-001",
 | 
			
		||||
                    "sessionId": 12345
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            await websocket.send(json.dumps(session_message))
 | 
			
		||||
            print("✓ Sent setSessionId message")
 | 
			
		||||
            
 | 
			
		||||
            # Test 4: Test patchSession
 | 
			
		||||
            print("\n4. Testing patchSession...")
 | 
			
		||||
            patch_message = {
 | 
			
		||||
                "type": "patchSession",
 | 
			
		||||
                "sessionId": 12345,
 | 
			
		||||
                "data": {
 | 
			
		||||
                    "currentCar": {
 | 
			
		||||
                        "carModel": "Civic",
 | 
			
		||||
                        "carBrand": "Honda"
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            await websocket.send(json.dumps(patch_message))
 | 
			
		||||
            
 | 
			
		||||
            # Wait for patchSessionResult
 | 
			
		||||
            try:
 | 
			
		||||
                message = await asyncio.wait_for(websocket.recv(), timeout=5)
 | 
			
		||||
                data = json.loads(message)
 | 
			
		||||
                if data.get("type") == "patchSessionResult":
 | 
			
		||||
                    print("✓ Received patchSessionResult")
 | 
			
		||||
                    print(f"  - Success: {data.get('payload', {}).get('success')}")
 | 
			
		||||
                    print(f"  - Message: {data.get('payload', {}).get('message')}")
 | 
			
		||||
                else:
 | 
			
		||||
                    print(f"✗ Expected patchSessionResult, got {data.get('type')}")
 | 
			
		||||
            except asyncio.TimeoutError:
 | 
			
		||||
                print("✗ No patchSessionResult received within 5 seconds")
 | 
			
		||||
            
 | 
			
		||||
            # Test 5: Test subscribe message format (without actual camera)
 | 
			
		||||
            print("\n5. Testing subscribe message format...")
 | 
			
		||||
            subscribe_message = {
 | 
			
		||||
                "type": "subscribe",
 | 
			
		||||
                "payload": {
 | 
			
		||||
                    "subscriptionIdentifier": "display-001;cam-001",
 | 
			
		||||
                    "snapshotUrl": "http://example.com/snapshot.jpg",
 | 
			
		||||
                    "snapshotInterval": 5000,
 | 
			
		||||
                    "modelUrl": "http://example.com/model.mpta",
 | 
			
		||||
                    "modelName": "Test Model",
 | 
			
		||||
                    "modelId": 101,
 | 
			
		||||
                    "cropX1": 100,
 | 
			
		||||
                    "cropY1": 200,
 | 
			
		||||
                    "cropX2": 300,
 | 
			
		||||
                    "cropY2": 400
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            await websocket.send(json.dumps(subscribe_message))
 | 
			
		||||
            print("✓ Sent subscribe message (will fail without actual camera/model)")
 | 
			
		||||
            
 | 
			
		||||
            # Listen for a few more messages to catch any errors
 | 
			
		||||
            print("\n6. Listening for additional messages...")
 | 
			
		||||
            for i in range(3):
 | 
			
		||||
                try:
 | 
			
		||||
                    message = await asyncio.wait_for(websocket.recv(), timeout=2)
 | 
			
		||||
                    data = json.loads(message)
 | 
			
		||||
                    msg_type = data.get("type")
 | 
			
		||||
                    print(f"  - Received {msg_type}")
 | 
			
		||||
                    if msg_type == "error":
 | 
			
		||||
                        print(f"    Error: {data.get('error')}")
 | 
			
		||||
                except asyncio.TimeoutError:
 | 
			
		||||
                    break
 | 
			
		||||
            
 | 
			
		||||
            print("\n✓ Protocol test completed successfully!")
 | 
			
		||||
            
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        print(f"✗ Connection failed: {e}")
 | 
			
		||||
        print("Make sure the worker is running on localhost:8000")
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    asyncio.run(test_protocol())
 | 
			
		||||
							
								
								
									
										483
									
								
								worker.md
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										483
									
								
								worker.md
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,483 @@
 | 
			
		|||
# Worker Communication Protocol
 | 
			
		||||
 | 
			
		||||
This document outlines the WebSocket-based communication protocol between the CMS backend and a detector worker. As a worker developer, your primary responsibility is to implement a WebSocket server that adheres to this protocol.
 | 
			
		||||
 | 
			
		||||
## 1. Connection
 | 
			
		||||
 | 
			
		||||
The worker must run a WebSocket server, preferably on port `8000`. The backend system, which is managed by a container orchestration service, will automatically discover and establish a WebSocket connection to your worker.
 | 
			
		||||
 | 
			
		||||
Upon a successful connection from the backend, you should begin sending `stateReport` messages as heartbeats.
 | 
			
		||||
 | 
			
		||||
## 2. Communication Overview
 | 
			
		||||
 | 
			
		||||
Communication is bidirectional and asynchronous. All messages are JSON objects with a `type` field that indicates the message's purpose, and an optional `payload` field containing the data.
 | 
			
		||||
 | 
			
		||||
- **Worker -> Backend:** You will send messages to the backend to report status, forward detection events, or request changes to session data.
 | 
			
		||||
- **Backend -> Worker:** The backend will send commands to you to manage camera subscriptions.
 | 
			
		||||
 | 
			
		||||
## 3. Dynamic Configuration via MPTA File
 | 
			
		||||
 | 
			
		||||
To enable modularity and dynamic configuration, the backend will send you a URL to a `.mpta` file when it issues a `subscribe` command. This file is a renamed `.zip` archive that contains everything your worker needs to perform its task.
 | 
			
		||||
 | 
			
		||||
**Your worker is responsible for:**
 | 
			
		||||
 | 
			
		||||
1. Fetching this file from the provided URL.
 | 
			
		||||
2. Extracting its contents.
 | 
			
		||||
3. Interpreting the contents to configure its internal pipeline.
 | 
			
		||||
 | 
			
		||||
**The contents of the `.mpta` file are entirely up to the user who configures the model in the CMS.** This allows for maximum flexibility. For example, the archive could contain:
 | 
			
		||||
 | 
			
		||||
- AI/ML Models: Pre-trained models for libraries like TensorFlow, PyTorch, or ONNX.
 | 
			
		||||
- Configuration Files: A `config.json` or `pipeline.yaml` that defines a sequence of operations, specifies model paths, or sets detection thresholds.
 | 
			
		||||
- Scripts: Custom Python scripts for pre-processing or post-processing.
 | 
			
		||||
- API Integration Details: A JSON file with endpoint information and credentials for interacting with third-party detection services.
 | 
			
		||||
 | 
			
		||||
Essentially, the `.mpta` file is a self-contained package that tells your worker *how* to process the video stream for a given subscription.
 | 
			
		||||
 | 
			
		||||
## 4. Messages from Worker to Backend
 | 
			
		||||
 | 
			
		||||
These are the messages your worker is expected to send to the backend.
 | 
			
		||||
 | 
			
		||||
### 4.1. State Report (Heartbeat)
 | 
			
		||||
 | 
			
		||||
This message is crucial for the backend to monitor your worker's health and status, including GPU usage.
 | 
			
		||||
 | 
			
		||||
- **Type:** `stateReport`
 | 
			
		||||
- **When to Send:** Periodically (e.g., every 2 seconds) after a connection is established.
 | 
			
		||||
 | 
			
		||||
**Payload:**
 | 
			
		||||
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "type": "stateReport",
 | 
			
		||||
  "cpuUsage": 75.5,
 | 
			
		||||
  "memoryUsage": 40.2,
 | 
			
		||||
  "gpuUsage": 60.0,
 | 
			
		||||
  "gpuMemoryUsage": 25.1,
 | 
			
		||||
  "cameraConnections": [
 | 
			
		||||
    {
 | 
			
		||||
      "subscriptionIdentifier": "display-001;cam-001",
 | 
			
		||||
      "modelId": 101,
 | 
			
		||||
      "modelName": "General Object Detection",
 | 
			
		||||
      "online": true,
 | 
			
		||||
      "cropX1": 100,
 | 
			
		||||
      "cropY1": 200,
 | 
			
		||||
      "cropX2": 300,
 | 
			
		||||
      "cropY2": 400
 | 
			
		||||
    }
 | 
			
		||||
  ]
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
> **Note:**
 | 
			
		||||
>
 | 
			
		||||
> - `cropX1`, `cropY1`, `cropX2`, `cropY2` (optional, integer) should be included in each camera connection to indicate the crop coordinates for that subscription.
 | 
			
		||||
 | 
			
		||||
### 4.2. Image Detection
 | 
			
		||||
 | 
			
		||||
Sent when the worker detects a relevant object. The `detection` object should be flat and contain key-value pairs corresponding to the detected attributes.
 | 
			
		||||
 | 
			
		||||
- **Type:** `imageDetection`
 | 
			
		||||
 | 
			
		||||
**Payload Example:**
 | 
			
		||||
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "type": "imageDetection",
 | 
			
		||||
  "subscriptionIdentifier": "display-001;cam-001",
 | 
			
		||||
  "timestamp": "2025-07-14T12:34:56.789Z",
 | 
			
		||||
  "data": {
 | 
			
		||||
    "detection": {
 | 
			
		||||
      "carModel": "Civic",
 | 
			
		||||
      "carBrand": "Honda",
 | 
			
		||||
      "carYear": 2023,
 | 
			
		||||
      "bodyType": "Sedan",
 | 
			
		||||
      "licensePlateText": "ABCD1234",
 | 
			
		||||
      "licensePlateConfidence": 0.95
 | 
			
		||||
    },
 | 
			
		||||
    "modelId": 101,
 | 
			
		||||
    "modelName": "US-LPR-and-Vehicle-ID"
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 4.3. Patch Session
 | 
			
		||||
 | 
			
		||||
> **Note:** Patch messages are only used when the worker can't keep up and needs to retroactively send detections. Normally, detections should be sent in real-time using `imageDetection` messages. Use `patchSession` only to update session data after the fact.
 | 
			
		||||
 | 
			
		||||
Allows the worker to request a modification to an active session's data. The `data` payload must be a partial object of the `DisplayPersistentData` structure.
 | 
			
		||||
 | 
			
		||||
- **Type:** `patchSession`
 | 
			
		||||
 | 
			
		||||
**Payload Example:**
 | 
			
		||||
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "type": "patchSession",
 | 
			
		||||
  "sessionId": 12345,
 | 
			
		||||
  "data": {
 | 
			
		||||
    "currentCar": {
 | 
			
		||||
        "carModel": "Civic",
 | 
			
		||||
        "carBrand": "Honda",
 | 
			
		||||
        "licensePlateText": "ABCD1234"
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
The backend will respond with a `patchSessionResult` command.
 | 
			
		||||
 | 
			
		||||
#### `DisplayPersistentData` Structure
 | 
			
		||||
 | 
			
		||||
The `data` object in the `patchSession` message is merged with the existing `DisplayPersistentData` on the backend. Here is its structure:
 | 
			
		||||
 | 
			
		||||
```typescript
 | 
			
		||||
interface DisplayPersistentData {
 | 
			
		||||
    progressionStage: "welcome" | "car_fueling" | "car_waitpayment" | "car_postpayment" | null;
 | 
			
		||||
    qrCode: string | null;
 | 
			
		||||
    adsPlayback: {
 | 
			
		||||
        playlistSlotOrder: number; // The 'order' of the current slot
 | 
			
		||||
        adsId: number | null;
 | 
			
		||||
        adsUrl: string | null;
 | 
			
		||||
    } | null;
 | 
			
		||||
    currentCar: {
 | 
			
		||||
        carModel?: string;
 | 
			
		||||
        carBrand?: string;
 | 
			
		||||
        carYear?: number;
 | 
			
		||||
        bodyType?: string;
 | 
			
		||||
        licensePlateText?: string;
 | 
			
		||||
        licensePlateType?: string;
 | 
			
		||||
    } | null;
 | 
			
		||||
    fuelPump: { /* FuelPumpData structure */ } | null;
 | 
			
		||||
    weatherData: { /* WeatherResponse structure */ } | null;
 | 
			
		||||
    sessionId: number | null;
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### Patching Behavior
 | 
			
		||||
 | 
			
		||||
- The patch is a **deep merge**.
 | 
			
		||||
- **`undefined`** values are ignored.
 | 
			
		||||
- **`null`** values will set the corresponding field to `null`.
 | 
			
		||||
- Nested objects are merged recursively.
 | 
			
		||||
 | 
			
		||||
## 5. Commands from Backend to Worker
 | 
			
		||||
 | 
			
		||||
These are the commands your worker will receive from the backend.
 | 
			
		||||
 | 
			
		||||
### 5.1. Subscribe to Camera
 | 
			
		||||
 | 
			
		||||
Instructs the worker to process a camera's RTSP stream using the configuration from the specified `.mpta` file.
 | 
			
		||||
 | 
			
		||||
- **Type:** `subscribe`
 | 
			
		||||
 | 
			
		||||
**Payload:**
 | 
			
		||||
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "type": "subscribe",
 | 
			
		||||
  "payload": {
 | 
			
		||||
    "subscriptionIdentifier": "display-001;cam-002",
 | 
			
		||||
    "rtspUrl": "rtsp://user:pass@host:port/stream",
 | 
			
		||||
    "snapshotUrl": "http://go2rtc/snapshot/1",
 | 
			
		||||
    "snapshotInterval": 5000,
 | 
			
		||||
    "modelUrl": "http://storage/models/us-lpr.mpta",
 | 
			
		||||
    "modelName": "US-LPR-and-Vehicle-ID",
 | 
			
		||||
    "modelId": 102,
 | 
			
		||||
    "cropX1": 100,
 | 
			
		||||
    "cropY1": 200,
 | 
			
		||||
    "cropX2": 300,
 | 
			
		||||
    "cropY2": 400
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
> **Note:**
 | 
			
		||||
>
 | 
			
		||||
> - `cropX1`, `cropY1`, `cropX2`, `cropY2` (optional, integer) specify the crop coordinates for the camera stream. These values are configured per display and passed in the subscription payload. If not provided, the worker should process the full frame.
 | 
			
		||||
>
 | 
			
		||||
> **Important:**
 | 
			
		||||
> If multiple displays are bound to the same camera, your worker must ensure that only **one stream** is opened per camera. When you receive multiple subscriptions for the same camera (with different `subscriptionIdentifier` values), you should:
 | 
			
		||||
>
 | 
			
		||||
> - Open the RTSP stream **once** for that camera if using RTSP.
 | 
			
		||||
> - Capture each snapshot only once per cycle, and reuse it for all display subscriptions sharing that camera.
 | 
			
		||||
> - Capture each frame/image only once per cycle.
 | 
			
		||||
> - Reuse the same captured image and snapshot for all display subscriptions that share the camera, processing and routing detection results separately for each display as needed.
 | 
			
		||||
> This avoids unnecessary load and bandwidth usage, and ensures consistent detection results and snapshots across all displays sharing the same camera.
 | 
			
		||||
 | 
			
		||||
### 5.2. Unsubscribe from Camera
 | 
			
		||||
 | 
			
		||||
Instructs the worker to stop processing a camera's stream.
 | 
			
		||||
 | 
			
		||||
- **Type:** `unsubscribe`
 | 
			
		||||
 | 
			
		||||
**Payload:**
 | 
			
		||||
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "type": "unsubscribe",
 | 
			
		||||
  "payload": {
 | 
			
		||||
    "subscriptionIdentifier": "display-001;cam-002"
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 5.3. Request State
 | 
			
		||||
 | 
			
		||||
Direct request for the worker's current state. Respond with a `stateReport` message.
 | 
			
		||||
 | 
			
		||||
- **Type:** `requestState`
 | 
			
		||||
 | 
			
		||||
**Payload:**
 | 
			
		||||
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "type": "requestState"
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 5.4. Patch Session Result
 | 
			
		||||
 | 
			
		||||
Backend's response to a `patchSession` message.
 | 
			
		||||
 | 
			
		||||
- **Type:** `patchSessionResult`
 | 
			
		||||
 | 
			
		||||
**Payload:**
 | 
			
		||||
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "type": "patchSessionResult",
 | 
			
		||||
  "payload": {
 | 
			
		||||
    "sessionId": 12345,
 | 
			
		||||
    "success": true,
 | 
			
		||||
    "message": "Session updated successfully."
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 5.5. Set Session ID
 | 
			
		||||
 | 
			
		||||
Allows the backend to instruct the worker to associate a session ID with a subscription. This is useful for linking detection events to a specific session. The session ID can be `null` to indicate no active session.
 | 
			
		||||
 | 
			
		||||
- **Type:** `setSessionId`
 | 
			
		||||
 | 
			
		||||
**Payload:**
 | 
			
		||||
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "type": "setSessionId",
 | 
			
		||||
  "payload": {
 | 
			
		||||
    "displayIdentifier": "display-001",
 | 
			
		||||
    "sessionId": 12345
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Or to clear the session:
 | 
			
		||||
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "type": "setSessionId",
 | 
			
		||||
  "payload": {
 | 
			
		||||
    "displayIdentifier": "display-001",
 | 
			
		||||
    "sessionId": null
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
> **Note:**
 | 
			
		||||
>
 | 
			
		||||
> - The worker should store the session ID for the given subscription and use it in subsequent detection or patch messages as appropriate. If `sessionId` is `null`, the worker should treat the subscription as having no active session.
 | 
			
		||||
 | 
			
		||||
## Subscription Identifier Format
 | 
			
		||||
 | 
			
		||||
The `subscriptionIdentifier` used in all messages is constructed as:
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
displayIdentifier;cameraIdentifier
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
This uniquely identifies a camera subscription for a specific display.
 | 
			
		||||
 | 
			
		||||
### Session ID Association
 | 
			
		||||
 | 
			
		||||
When the backend sends a `setSessionId` command, it will only provide the `displayIdentifier` (not the full `subscriptionIdentifier`).
 | 
			
		||||
 | 
			
		||||
**Worker Responsibility:**
 | 
			
		||||
 | 
			
		||||
- The worker must match the `displayIdentifier` to all active subscriptions for that display (i.e., all `subscriptionIdentifier` values that start with `displayIdentifier;`).
 | 
			
		||||
- The worker should set or clear the session ID for all matching subscriptions.
 | 
			
		||||
 | 
			
		||||
## 6. Example Communication Log
 | 
			
		||||
 | 
			
		||||
This section shows a typical sequence of messages between the backend and the worker. Patch messages are not included, as they are only used when the worker cannot keep up.
 | 
			
		||||
 | 
			
		||||
> **Note:** Unsubscribe is triggered when a user removes a camera or when the node is too heavily loaded and needs rebalancing.
 | 
			
		||||
 | 
			
		||||
1.  **Connection Established** & **Heartbeat**
 | 
			
		||||
    *   **Worker -> Backend**
 | 
			
		||||
    ```json
 | 
			
		||||
    {
 | 
			
		||||
      "type": "stateReport",
 | 
			
		||||
      "cpuUsage": 70.2,
 | 
			
		||||
      "memoryUsage": 38.1,
 | 
			
		||||
      "gpuUsage": 55.0,
 | 
			
		||||
      "gpuMemoryUsage": 20.0,
 | 
			
		||||
      "cameraConnections": []
 | 
			
		||||
    }
 | 
			
		||||
    ```
 | 
			
		||||
2.  **Backend Subscribes Camera**
 | 
			
		||||
    *   **Backend -> Worker**
 | 
			
		||||
    ```json
 | 
			
		||||
    {
 | 
			
		||||
      "type": "subscribe",
 | 
			
		||||
      "payload": {
 | 
			
		||||
        "subscriptionIdentifier": "display-001;entry-cam-01",
 | 
			
		||||
        "rtspUrl": "rtsp://192.168.1.100/stream1",
 | 
			
		||||
        "modelUrl": "http://storage/models/vehicle-id.mpta",
 | 
			
		||||
        "modelName": "Vehicle Identification",
 | 
			
		||||
        "modelId": 201
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    ```
 | 
			
		||||
3.  **Worker Acknowledges in Heartbeat**
 | 
			
		||||
    *   **Worker -> Backend**
 | 
			
		||||
    ```json
 | 
			
		||||
    {
 | 
			
		||||
      "type": "stateReport",
 | 
			
		||||
      "cpuUsage": 72.5,
 | 
			
		||||
      "memoryUsage": 39.0,
 | 
			
		||||
      "gpuUsage": 57.0,
 | 
			
		||||
      "gpuMemoryUsage": 21.0,
 | 
			
		||||
      "cameraConnections": [
 | 
			
		||||
        {
 | 
			
		||||
          "subscriptionIdentifier": "display-001;entry-cam-01",
 | 
			
		||||
          "modelId": 201,
 | 
			
		||||
          "modelName": "Vehicle Identification",
 | 
			
		||||
          "online": true
 | 
			
		||||
        }
 | 
			
		||||
      ]
 | 
			
		||||
    }
 | 
			
		||||
    ```
 | 
			
		||||
4.  **Worker Detects a Car**
 | 
			
		||||
    *   **Worker -> Backend**
 | 
			
		||||
    ```json
 | 
			
		||||
    {
 | 
			
		||||
      "type": "imageDetection",
 | 
			
		||||
      "subscriptionIdentifier": "display-001;entry-cam-01",
 | 
			
		||||
      "timestamp": "2025-07-15T10:00:00.000Z",
 | 
			
		||||
      "data": {
 | 
			
		||||
        "detection": {
 | 
			
		||||
          "carBrand": "Honda",
 | 
			
		||||
          "carModel": "CR-V",
 | 
			
		||||
          "bodyType": "SUV",
 | 
			
		||||
          "licensePlateText": "GEMINI-AI",
 | 
			
		||||
          "licensePlateConfidence": 0.98
 | 
			
		||||
        },
 | 
			
		||||
        "modelId": 201,
 | 
			
		||||
        "modelName": "Vehicle Identification"
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    ```
 | 
			
		||||
    *   **Worker -> Backend**
 | 
			
		||||
    ```json
 | 
			
		||||
    {
 | 
			
		||||
      "type": "imageDetection",
 | 
			
		||||
      "subscriptionIdentifier": "display-001;entry-cam-01",
 | 
			
		||||
      "timestamp": "2025-07-15T10:00:01.000Z",
 | 
			
		||||
      "data": {
 | 
			
		||||
        "detection": {
 | 
			
		||||
          "carBrand": "Toyota",
 | 
			
		||||
          "carModel": "Corolla",
 | 
			
		||||
          "bodyType": "Sedan",
 | 
			
		||||
          "licensePlateText": "CMS-1234",
 | 
			
		||||
          "licensePlateConfidence": 0.97
 | 
			
		||||
        },
 | 
			
		||||
        "modelId": 201,
 | 
			
		||||
        "modelName": "Vehicle Identification"
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    ```
 | 
			
		||||
    *   **Worker -> Backend**
 | 
			
		||||
    ```json
 | 
			
		||||
    {
 | 
			
		||||
      "type": "imageDetection",
 | 
			
		||||
      "subscriptionIdentifier": "display-001;entry-cam-01",
 | 
			
		||||
      "timestamp": "2025-07-15T10:00:02.000Z",
 | 
			
		||||
      "data": {
 | 
			
		||||
        "detection": {
 | 
			
		||||
          "carBrand": "Ford",
 | 
			
		||||
          "carModel": "Focus",
 | 
			
		||||
          "bodyType": "Hatchback",
 | 
			
		||||
          "licensePlateText": "CMS-5678",
 | 
			
		||||
          "licensePlateConfidence": 0.96
 | 
			
		||||
        },
 | 
			
		||||
        "modelId": 201,
 | 
			
		||||
        "modelName": "Vehicle Identification"
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    ```
 | 
			
		||||
5.  **Backend Unsubscribes Camera**
 | 
			
		||||
    *   **Backend -> Worker**
 | 
			
		||||
    ```json
 | 
			
		||||
    {
 | 
			
		||||
      "type": "unsubscribe",
 | 
			
		||||
      "payload": {
 | 
			
		||||
        "subscriptionIdentifier": "display-001;entry-cam-01"
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    ```
 | 
			
		||||
6.  **Worker Acknowledges Unsubscription**
 | 
			
		||||
    *   **Worker -> Backend**
 | 
			
		||||
    ```json
 | 
			
		||||
    {
 | 
			
		||||
      "type": "stateReport",
 | 
			
		||||
      "cpuUsage": 68.0,
 | 
			
		||||
      "memoryUsage": 37.0,
 | 
			
		||||
      "gpuUsage": 50.0,
 | 
			
		||||
      "gpuMemoryUsage": 18.0,
 | 
			
		||||
      "cameraConnections": []
 | 
			
		||||
    }
 | 
			
		||||
    ```
 | 
			
		||||
## 7. HTTP API: Image Retrieval
 | 
			
		||||
 | 
			
		||||
In addition to the WebSocket protocol, the worker exposes an HTTP endpoint for retrieving the latest image frame from a camera.
 | 
			
		||||
 | 
			
		||||
### Endpoint
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
GET /camera/{camera_id}/image
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
- **`camera_id`**: The full `subscriptionIdentifier` (e.g., `display-001;cam-001`).
 | 
			
		||||
 | 
			
		||||
### Response
 | 
			
		||||
 | 
			
		||||
- **Success (200):** Returns the latest JPEG image from the camera stream.
 | 
			
		||||
    - `Content-Type: image/jpeg`
 | 
			
		||||
    - Binary JPEG data.
 | 
			
		||||
 | 
			
		||||
- **Error (404):** If the camera is not found or no frame is available.
 | 
			
		||||
    - JSON error response.
 | 
			
		||||
 | 
			
		||||
- **Error (500):** Internal server error.
 | 
			
		||||
 | 
			
		||||
### Example Request
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
GET /camera/display-001;cam-001/image
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### Example Response
 | 
			
		||||
 | 
			
		||||
- **Headers:**
 | 
			
		||||
    ```
 | 
			
		||||
    Content-Type: image/jpeg
 | 
			
		||||
    ```
 | 
			
		||||
- **Body:** Binary JPEG image.
 | 
			
		||||
 | 
			
		||||
### Notes
 | 
			
		||||
 | 
			
		||||
- The endpoint returns the most recent frame available for the specified camera subscription.
 | 
			
		||||
- If multiple displays share the same camera, each subscription has its own buffer; the endpoint uses the buffer for the given `camera_id`.
 | 
			
		||||
- This API is useful for debugging, monitoring, or integrating with external systems that require direct image access.
 | 
			
		||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue