satitchula-prusa/Firmware/swi2c.c

190 lines
3.8 KiB
C

//swi2c.c
#include "swi2c.h"
#include <avr/io.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#include "Configuration_prusa.h"
#include "pins.h"
#include "io_atmega2560.h"
#define SWI2C_RMSK 0x01 //read mask (bit0 = 1)
#define SWI2C_WMSK 0x00 //write mask (bit0 = 0)
#define SWI2C_ASHF 0x01 //address shift (<< 1)
#define SWI2C_DMSK 0x7f //device address mask
void __delay(void)
{
_delay_us(1.5);
}
void swi2c_init(void)
{
PIN_OUT(SWI2C_SDA);
PIN_OUT(SWI2C_SCL);
PIN_SET(SWI2C_SDA);
PIN_SET(SWI2C_SCL);
uint8_t i; for (i = 0; i < 100; i++)
__delay();
}
void swi2c_start(void)
{
PIN_CLR(SWI2C_SDA);
__delay();
PIN_CLR(SWI2C_SCL);
__delay();
}
void swi2c_stop(void)
{
PIN_SET(SWI2C_SCL);
__delay();
PIN_SET(SWI2C_SDA);
__delay();
}
void swi2c_ack(void)
{
PIN_CLR(SWI2C_SDA);
__delay();
PIN_SET(SWI2C_SCL);
__delay();
PIN_CLR(SWI2C_SCL);
__delay();
}
uint8_t swi2c_wait_ack()
{
PIN_INP(SWI2C_SDA);
__delay();
// PIN_SET(SWI2C_SDA);
__delay();
PIN_SET(SWI2C_SCL);
// __delay();
uint8_t ack = 0;
uint16_t ackto = SWI2C_TMO;
while (!(ack = (PIN_GET(SWI2C_SDA)?0:1)) && ackto--) __delay();
PIN_CLR(SWI2C_SCL);
__delay();
PIN_OUT(SWI2C_SDA);
__delay();
PIN_CLR(SWI2C_SDA);
__delay();
return ack;
}
uint8_t swi2c_read(void)
{
PIN_SET(SWI2C_SDA);
__delay();
PIN_INP(SWI2C_SDA);
uint8_t data = 0;
int8_t bit; for (bit = 7; bit >= 0; bit--)
{
PIN_SET(SWI2C_SCL);
__delay();
data |= (PIN_GET(SWI2C_SDA)?1:0) << bit;
PIN_CLR(SWI2C_SCL);
__delay();
}
PIN_OUT(SWI2C_SDA);
return data;
}
void swi2c_write(uint8_t data)
{
int8_t bit; for (bit = 7; bit >= 0; bit--)
{
if (data & (1 << bit)) PIN_SET(SWI2C_SDA);
else PIN_CLR(SWI2C_SDA);
__delay();
PIN_SET(SWI2C_SCL);
__delay();
PIN_CLR(SWI2C_SCL);
__delay();
}
}
uint8_t swi2c_check(uint8_t dev_addr)
{
swi2c_start();
swi2c_write((dev_addr & SWI2C_DMSK) << SWI2C_ASHF);
if (!swi2c_wait_ack()) { swi2c_stop(); return 0; }
swi2c_stop();
return 1;
}
#ifdef SWI2C_A8 //8bit address
uint8_t swi2c_readByte_A8(uint8_t dev_addr, uint8_t addr, uint8_t* pbyte)
{
swi2c_start();
swi2c_write(SWI2C_WMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
if (!swi2c_wait_ack()) { swi2c_stop(); return 0; }
swi2c_write(addr & 0xff);
if (!swi2c_wait_ack()) return 0;
swi2c_stop();
swi2c_start();
swi2c_write(SWI2C_RMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
if (!swi2c_wait_ack()) return 0;
uint8_t byte = swi2c_read();
swi2c_stop();
if (pbyte) *pbyte = byte;
return 1;
}
uint8_t swi2c_writeByte_A8(uint8_t dev_addr, uint8_t addr, uint8_t* pbyte)
{
swi2c_start();
swi2c_write(SWI2C_WMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
if (!swi2c_wait_ack()) { swi2c_stop(); return 0; }
swi2c_write(addr & 0xff);
if (!swi2c_wait_ack()) return 0;
swi2c_write(*pbyte);
if (!swi2c_wait_ack()) return 0;
swi2c_stop();
return 1;
}
#endif //SWI2C_A8
#ifdef SWI2C_A16 //16bit address
uint8_t swi2c_readByte_A16(uint8_t dev_addr, unsigned short addr, uint8_t* pbyte)
{
swi2c_start();
swi2c_write(SWI2C_WMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
if (!swi2c_wait_ack()) { swi2c_stop(); return 0; }
swi2c_write(addr >> 8);
if (!swi2c_wait_ack()) return 0;
swi2c_write(addr & 0xff);
if (!swi2c_wait_ack()) return 0;
swi2c_stop();
swi2c_start();
swi2c_write(SWI2C_RMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
if (!swi2c_wait_ack()) return 0;
uint8_t byte = swi2c_read();
swi2c_stop();
if (pbyte) *pbyte = byte;
return 1;
}
uint8_t swi2c_writeByte_A16(uint8_t dev_addr, unsigned short addr, uint8_t* pbyte)
{
swi2c_start();
swi2c_write(SWI2C_WMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));
if (!swi2c_wait_ack()) { swi2c_stop(); return 0; }
swi2c_write(addr >> 8);
if (!swi2c_wait_ack()) return 0;
swi2c_write(addr & 0xff);
if (!swi2c_wait_ack()) return 0;
swi2c_write(*pbyte);
if (!swi2c_wait_ack()) return 0;
swi2c_stop();
return 1;
}
#endif //SWI2C_A16