2178 lines
66 KiB
C++
2178 lines
66 KiB
C++
|
/*
|
||
|
temperature.c - temperature control
|
||
|
Part of Marlin
|
||
|
|
||
|
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||
|
|
||
|
This program is free software: you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation, either version 3 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
This firmware is a mashup between Sprinter and grbl.
|
||
|
(https://github.com/kliment/Sprinter)
|
||
|
(https://github.com/simen/grbl/tree)
|
||
|
|
||
|
It has preliminary support for Matthew Roberts advance algorithm
|
||
|
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
||
|
|
||
|
*/
|
||
|
|
||
|
|
||
|
#include "Marlin.h"
|
||
|
#include "ultralcd.h"
|
||
|
#include "sound.h"
|
||
|
#include "temperature.h"
|
||
|
#include "cardreader.h"
|
||
|
|
||
|
#include "Sd2PinMap.h"
|
||
|
|
||
|
#include <avr/wdt.h>
|
||
|
#include "adc.h"
|
||
|
#include "ConfigurationStore.h"
|
||
|
#include "messages.h"
|
||
|
#include "Timer.h"
|
||
|
#include "Configuration_prusa.h"
|
||
|
|
||
|
//===========================================================================
|
||
|
//=============================public variables============================
|
||
|
//===========================================================================
|
||
|
int target_temperature[EXTRUDERS] = { 0 };
|
||
|
int target_temperature_bed = 0;
|
||
|
int current_temperature_raw[EXTRUDERS] = { 0 };
|
||
|
float current_temperature[EXTRUDERS] = { 0.0 };
|
||
|
|
||
|
#ifdef PINDA_THERMISTOR
|
||
|
uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
|
||
|
uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
|
||
|
float current_temperature_pinda = 0.0;
|
||
|
#endif //PINDA_THERMISTOR
|
||
|
|
||
|
#ifdef AMBIENT_THERMISTOR
|
||
|
int current_temperature_raw_ambient = 0 ;
|
||
|
float current_temperature_ambient = 0.0;
|
||
|
#endif //AMBIENT_THERMISTOR
|
||
|
|
||
|
#ifdef VOLT_PWR_PIN
|
||
|
int current_voltage_raw_pwr = 0;
|
||
|
#endif
|
||
|
|
||
|
#ifdef VOLT_BED_PIN
|
||
|
int current_voltage_raw_bed = 0;
|
||
|
#endif
|
||
|
|
||
|
int current_temperature_bed_raw = 0;
|
||
|
float current_temperature_bed = 0.0;
|
||
|
|
||
|
|
||
|
#ifdef PIDTEMP
|
||
|
float _Kp, _Ki, _Kd;
|
||
|
int pid_cycle, pid_number_of_cycles;
|
||
|
bool pid_tuning_finished = false;
|
||
|
#ifdef PID_ADD_EXTRUSION_RATE
|
||
|
float Kc=DEFAULT_Kc;
|
||
|
#endif
|
||
|
#endif //PIDTEMP
|
||
|
|
||
|
#ifdef FAN_SOFT_PWM
|
||
|
unsigned char fanSpeedSoftPwm;
|
||
|
#endif
|
||
|
|
||
|
#ifdef FANCHECK
|
||
|
volatile uint8_t fan_check_error = EFCE_OK;
|
||
|
#endif
|
||
|
|
||
|
unsigned char soft_pwm_bed;
|
||
|
|
||
|
#ifdef BABYSTEPPING
|
||
|
volatile int babystepsTodo[3]={0,0,0};
|
||
|
#endif
|
||
|
|
||
|
//===========================================================================
|
||
|
//=============================private variables============================
|
||
|
//===========================================================================
|
||
|
static volatile bool temp_meas_ready = false;
|
||
|
|
||
|
#ifdef PIDTEMP
|
||
|
//static cannot be external:
|
||
|
static float iState_sum[EXTRUDERS] = { 0 };
|
||
|
static float dState_last[EXTRUDERS] = { 0 };
|
||
|
static float pTerm[EXTRUDERS];
|
||
|
static float iTerm[EXTRUDERS];
|
||
|
static float dTerm[EXTRUDERS];
|
||
|
//int output;
|
||
|
static float pid_error[EXTRUDERS];
|
||
|
static float iState_sum_min[EXTRUDERS];
|
||
|
static float iState_sum_max[EXTRUDERS];
|
||
|
// static float pid_input[EXTRUDERS];
|
||
|
// static float pid_output[EXTRUDERS];
|
||
|
static bool pid_reset[EXTRUDERS];
|
||
|
#endif //PIDTEMP
|
||
|
#ifdef PIDTEMPBED
|
||
|
//static cannot be external:
|
||
|
static float temp_iState_bed = { 0 };
|
||
|
static float temp_dState_bed = { 0 };
|
||
|
static float pTerm_bed;
|
||
|
static float iTerm_bed;
|
||
|
static float dTerm_bed;
|
||
|
//int output;
|
||
|
static float pid_error_bed;
|
||
|
static float temp_iState_min_bed;
|
||
|
static float temp_iState_max_bed;
|
||
|
#else //PIDTEMPBED
|
||
|
static unsigned long previous_millis_bed_heater;
|
||
|
#endif //PIDTEMPBED
|
||
|
static unsigned char soft_pwm[EXTRUDERS];
|
||
|
|
||
|
#ifdef FAN_SOFT_PWM
|
||
|
static unsigned char soft_pwm_fan;
|
||
|
#endif
|
||
|
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
|
||
|
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
|
||
|
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
|
||
|
unsigned long extruder_autofan_last_check = _millis();
|
||
|
uint8_t fanSpeedBckp = 255;
|
||
|
bool fan_measuring = false;
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#if EXTRUDERS > 3
|
||
|
# error Unsupported number of extruders
|
||
|
#elif EXTRUDERS > 2
|
||
|
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
|
||
|
#elif EXTRUDERS > 1
|
||
|
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
|
||
|
#else
|
||
|
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
|
||
|
#endif
|
||
|
|
||
|
static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
|
||
|
|
||
|
// Init min and max temp with extreme values to prevent false errors during startup
|
||
|
static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
|
||
|
static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
|
||
|
static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
|
||
|
static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
|
||
|
#ifdef BED_MINTEMP
|
||
|
static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
|
||
|
#endif
|
||
|
#ifdef BED_MAXTEMP
|
||
|
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
|
||
|
#endif
|
||
|
|
||
|
static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
|
||
|
static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
|
||
|
|
||
|
static float analog2temp(int raw, uint8_t e);
|
||
|
static float analog2tempBed(int raw);
|
||
|
static float analog2tempAmbient(int raw);
|
||
|
static void updateTemperaturesFromRawValues();
|
||
|
|
||
|
enum TempRunawayStates
|
||
|
{
|
||
|
TempRunaway_INACTIVE = 0,
|
||
|
TempRunaway_PREHEAT = 1,
|
||
|
TempRunaway_ACTIVE = 2,
|
||
|
};
|
||
|
|
||
|
#ifndef SOFT_PWM_SCALE
|
||
|
#define SOFT_PWM_SCALE 0
|
||
|
#endif
|
||
|
|
||
|
//===========================================================================
|
||
|
//============================= functions ============================
|
||
|
//===========================================================================
|
||
|
|
||
|
#if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
|
||
|
static float temp_runaway_status[4];
|
||
|
static float temp_runaway_target[4];
|
||
|
static float temp_runaway_timer[4];
|
||
|
static int temp_runaway_error_counter[4];
|
||
|
|
||
|
static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
|
||
|
static void temp_runaway_stop(bool isPreheat, bool isBed);
|
||
|
#endif
|
||
|
|
||
|
void PID_autotune(float temp, int extruder, int ncycles)
|
||
|
{
|
||
|
pid_number_of_cycles = ncycles;
|
||
|
pid_tuning_finished = false;
|
||
|
float input = 0.0;
|
||
|
pid_cycle=0;
|
||
|
bool heating = true;
|
||
|
|
||
|
unsigned long temp_millis = _millis();
|
||
|
unsigned long t1=temp_millis;
|
||
|
unsigned long t2=temp_millis;
|
||
|
long t_high = 0;
|
||
|
long t_low = 0;
|
||
|
|
||
|
long bias, d;
|
||
|
float Ku, Tu;
|
||
|
float max = 0, min = 10000;
|
||
|
uint8_t safety_check_cycles = 0;
|
||
|
const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
|
||
|
float temp_ambient;
|
||
|
|
||
|
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
|
||
|
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
|
||
|
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
|
||
|
unsigned long extruder_autofan_last_check = _millis();
|
||
|
#endif
|
||
|
|
||
|
if ((extruder >= EXTRUDERS)
|
||
|
#if (TEMP_BED_PIN <= -1)
|
||
|
||(extruder < 0)
|
||
|
#endif
|
||
|
){
|
||
|
SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
|
||
|
pid_tuning_finished = true;
|
||
|
pid_cycle = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
SERIAL_ECHOLN("PID Autotune start");
|
||
|
|
||
|
disable_heater(); // switch off all heaters.
|
||
|
|
||
|
if (extruder<0)
|
||
|
{
|
||
|
soft_pwm_bed = (MAX_BED_POWER)/2;
|
||
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
||
|
bias = d = (MAX_BED_POWER)/2;
|
||
|
target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
soft_pwm[extruder] = (PID_MAX)/2;
|
||
|
bias = d = (PID_MAX)/2;
|
||
|
target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
for(;;) {
|
||
|
#ifdef WATCHDOG
|
||
|
wdt_reset();
|
||
|
#endif //WATCHDOG
|
||
|
if(temp_meas_ready == true) { // temp sample ready
|
||
|
updateTemperaturesFromRawValues();
|
||
|
|
||
|
input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
|
||
|
|
||
|
max=max(max,input);
|
||
|
min=min(min,input);
|
||
|
|
||
|
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
|
||
|
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
|
||
|
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
|
||
|
if(_millis() - extruder_autofan_last_check > 2500) {
|
||
|
checkExtruderAutoFans();
|
||
|
extruder_autofan_last_check = _millis();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if(heating == true && input > temp) {
|
||
|
if(_millis() - t2 > 5000) {
|
||
|
heating=false;
|
||
|
if (extruder<0)
|
||
|
{
|
||
|
soft_pwm_bed = (bias - d) >> 1;
|
||
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
||
|
}
|
||
|
else
|
||
|
soft_pwm[extruder] = (bias - d) >> 1;
|
||
|
t1=_millis();
|
||
|
t_high=t1 - t2;
|
||
|
max=temp;
|
||
|
}
|
||
|
}
|
||
|
if(heating == false && input < temp) {
|
||
|
if(_millis() - t1 > 5000) {
|
||
|
heating=true;
|
||
|
t2=_millis();
|
||
|
t_low=t2 - t1;
|
||
|
if(pid_cycle > 0) {
|
||
|
bias += (d*(t_high - t_low))/(t_low + t_high);
|
||
|
bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
|
||
|
if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
|
||
|
else d = bias;
|
||
|
|
||
|
SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
|
||
|
SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
|
||
|
SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
|
||
|
SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
|
||
|
if(pid_cycle > 2) {
|
||
|
Ku = (4.0*d)/(3.14159*(max-min)/2.0);
|
||
|
Tu = ((float)(t_low + t_high)/1000.0);
|
||
|
SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
|
||
|
SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
|
||
|
_Kp = 0.6*Ku;
|
||
|
_Ki = 2*_Kp/Tu;
|
||
|
_Kd = _Kp*Tu/8;
|
||
|
SERIAL_PROTOCOLLNPGM(" Classic PID ");
|
||
|
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
|
||
|
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
|
||
|
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
|
||
|
/*
|
||
|
_Kp = 0.33*Ku;
|
||
|
_Ki = _Kp/Tu;
|
||
|
_Kd = _Kp*Tu/3;
|
||
|
SERIAL_PROTOCOLLNPGM(" Some overshoot ");
|
||
|
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
|
||
|
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
|
||
|
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
|
||
|
_Kp = 0.2*Ku;
|
||
|
_Ki = 2*_Kp/Tu;
|
||
|
_Kd = _Kp*Tu/3;
|
||
|
SERIAL_PROTOCOLLNPGM(" No overshoot ");
|
||
|
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
|
||
|
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
|
||
|
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
|
||
|
*/
|
||
|
}
|
||
|
}
|
||
|
if (extruder<0)
|
||
|
{
|
||
|
soft_pwm_bed = (bias + d) >> 1;
|
||
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
||
|
}
|
||
|
else
|
||
|
soft_pwm[extruder] = (bias + d) >> 1;
|
||
|
pid_cycle++;
|
||
|
min=temp;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if(input > (temp + 20)) {
|
||
|
SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
|
||
|
pid_tuning_finished = true;
|
||
|
pid_cycle = 0;
|
||
|
return;
|
||
|
}
|
||
|
if(_millis() - temp_millis > 2000) {
|
||
|
int p;
|
||
|
if (extruder<0){
|
||
|
p=soft_pwm_bed;
|
||
|
SERIAL_PROTOCOLPGM("B:");
|
||
|
}else{
|
||
|
p=soft_pwm[extruder];
|
||
|
SERIAL_PROTOCOLPGM("T:");
|
||
|
}
|
||
|
|
||
|
SERIAL_PROTOCOL(input);
|
||
|
SERIAL_PROTOCOLPGM(" @:");
|
||
|
SERIAL_PROTOCOLLN(p);
|
||
|
if (safety_check_cycles == 0) { //save ambient temp
|
||
|
temp_ambient = input;
|
||
|
//SERIAL_ECHOPGM("Ambient T: ");
|
||
|
//MYSERIAL.println(temp_ambient);
|
||
|
safety_check_cycles++;
|
||
|
}
|
||
|
else if (safety_check_cycles < safety_check_cycles_count) { //delay
|
||
|
safety_check_cycles++;
|
||
|
}
|
||
|
else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
|
||
|
safety_check_cycles++;
|
||
|
//SERIAL_ECHOPGM("Time from beginning: ");
|
||
|
//MYSERIAL.print(safety_check_cycles_count * 2);
|
||
|
//SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
|
||
|
//MYSERIAL.println(input - temp_ambient);
|
||
|
|
||
|
if (abs(input - temp_ambient) < 5.0) {
|
||
|
temp_runaway_stop(false, (extruder<0));
|
||
|
pid_tuning_finished = true;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
temp_millis = _millis();
|
||
|
}
|
||
|
if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
|
||
|
SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
|
||
|
pid_tuning_finished = true;
|
||
|
pid_cycle = 0;
|
||
|
return;
|
||
|
}
|
||
|
if(pid_cycle > ncycles) {
|
||
|
SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
|
||
|
pid_tuning_finished = true;
|
||
|
pid_cycle = 0;
|
||
|
return;
|
||
|
}
|
||
|
lcd_update(0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void updatePID()
|
||
|
{
|
||
|
#ifdef PIDTEMP
|
||
|
for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
|
||
|
iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
|
||
|
}
|
||
|
#endif
|
||
|
#ifdef PIDTEMPBED
|
||
|
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
int getHeaterPower(int heater) {
|
||
|
if (heater<0)
|
||
|
return soft_pwm_bed;
|
||
|
return soft_pwm[heater];
|
||
|
}
|
||
|
|
||
|
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
|
||
|
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
|
||
|
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
|
||
|
|
||
|
#if defined(FAN_PIN) && FAN_PIN > -1
|
||
|
#if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
|
||
|
#error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
|
||
|
#endif
|
||
|
#if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
|
||
|
#error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
|
||
|
#endif
|
||
|
#if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
|
||
|
#error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
void setExtruderAutoFanState(int pin, bool state)
|
||
|
{
|
||
|
unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
|
||
|
// this idiom allows both digital and PWM fan outputs (see M42 handling).
|
||
|
pinMode(pin, OUTPUT);
|
||
|
digitalWrite(pin, newFanSpeed);
|
||
|
//analogWrite(pin, newFanSpeed);
|
||
|
}
|
||
|
|
||
|
#if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
|
||
|
|
||
|
void countFanSpeed()
|
||
|
{
|
||
|
//SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
|
||
|
fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
|
||
|
fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
|
||
|
/*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
|
||
|
SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
|
||
|
SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
|
||
|
SERIAL_ECHOLNPGM(" ");*/
|
||
|
fan_edge_counter[0] = 0;
|
||
|
fan_edge_counter[1] = 0;
|
||
|
}
|
||
|
|
||
|
void checkFanSpeed()
|
||
|
{
|
||
|
uint8_t max_print_fan_errors = 0;
|
||
|
uint8_t max_extruder_fan_errors = 0;
|
||
|
#ifdef FAN_SOFT_PWM
|
||
|
max_print_fan_errors = 3; //15 seconds
|
||
|
max_extruder_fan_errors = 2; //10seconds
|
||
|
#else //FAN_SOFT_PWM
|
||
|
max_print_fan_errors = 15; //15 seconds
|
||
|
max_extruder_fan_errors = 5; //5 seconds
|
||
|
#endif //FAN_SOFT_PWM
|
||
|
|
||
|
if(fans_check_enabled != false)
|
||
|
fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
|
||
|
static unsigned char fan_speed_errors[2] = { 0,0 };
|
||
|
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
|
||
|
if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
|
||
|
else{
|
||
|
fan_speed_errors[0] = 0;
|
||
|
host_keepalive();
|
||
|
}
|
||
|
#endif
|
||
|
#if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
|
||
|
if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
|
||
|
else fan_speed_errors[1] = 0;
|
||
|
#endif
|
||
|
|
||
|
// drop the fan_check_error flag when both fans are ok
|
||
|
if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
|
||
|
// we may even send some info to the LCD from here
|
||
|
fan_check_error = EFCE_FIXED;
|
||
|
}
|
||
|
if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
|
||
|
fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
|
||
|
lcd_reset_alert_level(); //for another fan speed error
|
||
|
}
|
||
|
if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
|
||
|
fan_speed_errors[0] = 0;
|
||
|
fanSpeedError(0); //extruder fan
|
||
|
}
|
||
|
if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
|
||
|
fan_speed_errors[1] = 0;
|
||
|
fanSpeedError(1); //print fan
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
|
||
|
//! Extracted from fanSpeedError to save some space.
|
||
|
//! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
|
||
|
//! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
|
||
|
static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
|
||
|
SERIAL_ECHOLNRPGM(serialMsg);
|
||
|
if (get_message_level() == 0) {
|
||
|
Sound_MakeCustom(200,0,true);
|
||
|
LCD_ALERTMESSAGERPGM(lcdMsg);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void fanSpeedError(unsigned char _fan) {
|
||
|
if (get_message_level() != 0 && isPrintPaused) return;
|
||
|
//to ensure that target temp. is not set to zero in case that we are resuming print
|
||
|
if (card.sdprinting || is_usb_printing) {
|
||
|
if (heating_status != 0) {
|
||
|
lcd_print_stop();
|
||
|
}
|
||
|
else {
|
||
|
fan_check_error = EFCE_DETECTED; //plans error for next processed command
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
// SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this.
|
||
|
setTargetHotend0(0);
|
||
|
heating_status = 0;
|
||
|
fan_check_error = EFCE_REPORTED;
|
||
|
}
|
||
|
switch (_fan) {
|
||
|
case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
|
||
|
fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
|
||
|
break;
|
||
|
case 1:
|
||
|
fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
|
||
|
break;
|
||
|
}
|
||
|
// SERIAL_PROTOCOLLNRPGM(MSG_OK); //This ok messes things up with octoprint.
|
||
|
}
|
||
|
#endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
|
||
|
|
||
|
|
||
|
void checkExtruderAutoFans()
|
||
|
{
|
||
|
uint8_t fanState = 0;
|
||
|
|
||
|
// which fan pins need to be turned on?
|
||
|
#if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
|
||
|
if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
||
|
fanState |= 1;
|
||
|
#endif
|
||
|
#if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
|
||
|
if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
||
|
{
|
||
|
if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
|
||
|
fanState |= 1;
|
||
|
else
|
||
|
fanState |= 2;
|
||
|
}
|
||
|
#endif
|
||
|
#if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
|
||
|
if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
||
|
{
|
||
|
if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
|
||
|
fanState |= 1;
|
||
|
else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
|
||
|
fanState |= 2;
|
||
|
else
|
||
|
fanState |= 4;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// update extruder auto fan states
|
||
|
#if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
|
||
|
setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
|
||
|
#endif
|
||
|
#if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
|
||
|
if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
|
||
|
setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
|
||
|
#endif
|
||
|
#if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
|
||
|
if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
|
||
|
&& EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
|
||
|
setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#endif // any extruder auto fan pins set
|
||
|
|
||
|
// ready for eventually parameters adjusting
|
||
|
void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
|
||
|
//void resetPID(uint8_t extruder)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void manage_heater()
|
||
|
{
|
||
|
#ifdef WATCHDOG
|
||
|
wdt_reset();
|
||
|
#endif //WATCHDOG
|
||
|
|
||
|
float pid_input;
|
||
|
float pid_output;
|
||
|
|
||
|
if(temp_meas_ready != true) //better readability
|
||
|
return;
|
||
|
// more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
|
||
|
|
||
|
updateTemperaturesFromRawValues();
|
||
|
|
||
|
check_max_temp();
|
||
|
check_min_temp();
|
||
|
|
||
|
#ifdef TEMP_RUNAWAY_BED_HYSTERESIS
|
||
|
temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
|
||
|
#endif
|
||
|
|
||
|
for(int e = 0; e < EXTRUDERS; e++)
|
||
|
{
|
||
|
|
||
|
#ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
|
||
|
temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
|
||
|
#endif
|
||
|
|
||
|
#ifdef PIDTEMP
|
||
|
pid_input = current_temperature[e];
|
||
|
|
||
|
#ifndef PID_OPENLOOP
|
||
|
if(target_temperature[e] == 0) {
|
||
|
pid_output = 0;
|
||
|
pid_reset[e] = true;
|
||
|
} else {
|
||
|
pid_error[e] = target_temperature[e] - pid_input;
|
||
|
if(pid_reset[e]) {
|
||
|
iState_sum[e] = 0.0;
|
||
|
dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
|
||
|
pid_reset[e] = false;
|
||
|
}
|
||
|
#ifndef PonM
|
||
|
pTerm[e] = cs.Kp * pid_error[e];
|
||
|
iState_sum[e] += pid_error[e];
|
||
|
iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
|
||
|
iTerm[e] = cs.Ki * iState_sum[e];
|
||
|
// PID_K1 defined in Configuration.h in the PID settings
|
||
|
#define K2 (1.0-PID_K1)
|
||
|
dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
|
||
|
pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
|
||
|
if (pid_output > PID_MAX) {
|
||
|
if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
|
||
|
pid_output=PID_MAX;
|
||
|
} else if (pid_output < 0) {
|
||
|
if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
|
||
|
pid_output=0;
|
||
|
}
|
||
|
#else // PonM ("Proportional on Measurement" method)
|
||
|
iState_sum[e] += cs.Ki * pid_error[e];
|
||
|
iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
|
||
|
iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
|
||
|
dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
|
||
|
pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
|
||
|
pid_output = constrain(pid_output, 0, PID_MAX);
|
||
|
#endif // PonM
|
||
|
}
|
||
|
dState_last[e] = pid_input;
|
||
|
#else
|
||
|
pid_output = constrain(target_temperature[e], 0, PID_MAX);
|
||
|
#endif //PID_OPENLOOP
|
||
|
#ifdef PID_DEBUG
|
||
|
SERIAL_ECHO_START;
|
||
|
SERIAL_ECHO(" PID_DEBUG ");
|
||
|
SERIAL_ECHO(e);
|
||
|
SERIAL_ECHO(": Input ");
|
||
|
SERIAL_ECHO(pid_input);
|
||
|
SERIAL_ECHO(" Output ");
|
||
|
SERIAL_ECHO(pid_output);
|
||
|
SERIAL_ECHO(" pTerm ");
|
||
|
SERIAL_ECHO(pTerm[e]);
|
||
|
SERIAL_ECHO(" iTerm ");
|
||
|
SERIAL_ECHO(iTerm[e]);
|
||
|
SERIAL_ECHO(" dTerm ");
|
||
|
SERIAL_ECHOLN(-dTerm[e]);
|
||
|
#endif //PID_DEBUG
|
||
|
#else /* PID off */
|
||
|
pid_output = 0;
|
||
|
if(current_temperature[e] < target_temperature[e]) {
|
||
|
pid_output = PID_MAX;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// Check if temperature is within the correct range
|
||
|
if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
|
||
|
{
|
||
|
soft_pwm[e] = (int)pid_output >> 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
soft_pwm[e] = 0;
|
||
|
}
|
||
|
} // End extruder for loop
|
||
|
|
||
|
#define FAN_CHECK_PERIOD 5000 //5s
|
||
|
#define FAN_CHECK_DURATION 100 //100ms
|
||
|
|
||
|
#ifndef DEBUG_DISABLE_FANCHECK
|
||
|
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
|
||
|
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
|
||
|
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
|
||
|
|
||
|
#ifdef FAN_SOFT_PWM
|
||
|
#ifdef FANCHECK
|
||
|
if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
|
||
|
extruder_autofan_last_check = _millis();
|
||
|
fanSpeedBckp = fanSpeedSoftPwm;
|
||
|
|
||
|
if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
|
||
|
// printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
|
||
|
fanSpeedSoftPwm = 255;
|
||
|
}
|
||
|
fan_measuring = true;
|
||
|
}
|
||
|
if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
|
||
|
countFanSpeed();
|
||
|
checkFanSpeed();
|
||
|
//printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
|
||
|
fanSpeedSoftPwm = fanSpeedBckp;
|
||
|
//printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
|
||
|
extruder_autofan_last_check = _millis();
|
||
|
fan_measuring = false;
|
||
|
}
|
||
|
#endif //FANCHECK
|
||
|
checkExtruderAutoFans();
|
||
|
#else //FAN_SOFT_PWM
|
||
|
if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
|
||
|
{
|
||
|
#if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
|
||
|
countFanSpeed();
|
||
|
checkFanSpeed();
|
||
|
#endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
|
||
|
checkExtruderAutoFans();
|
||
|
extruder_autofan_last_check = _millis();
|
||
|
}
|
||
|
#endif //FAN_SOFT_PWM
|
||
|
|
||
|
#endif
|
||
|
#endif //DEBUG_DISABLE_FANCHECK
|
||
|
|
||
|
#ifndef PIDTEMPBED
|
||
|
if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
|
||
|
return;
|
||
|
previous_millis_bed_heater = _millis();
|
||
|
#endif
|
||
|
|
||
|
#if TEMP_SENSOR_BED != 0
|
||
|
|
||
|
#ifdef PIDTEMPBED
|
||
|
pid_input = current_temperature_bed;
|
||
|
|
||
|
#ifndef PID_OPENLOOP
|
||
|
pid_error_bed = target_temperature_bed - pid_input;
|
||
|
pTerm_bed = cs.bedKp * pid_error_bed;
|
||
|
temp_iState_bed += pid_error_bed;
|
||
|
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
|
||
|
iTerm_bed = cs.bedKi * temp_iState_bed;
|
||
|
|
||
|
//PID_K1 defined in Configuration.h in the PID settings
|
||
|
#define K2 (1.0-PID_K1)
|
||
|
dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
|
||
|
temp_dState_bed = pid_input;
|
||
|
|
||
|
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
|
||
|
if (pid_output > MAX_BED_POWER) {
|
||
|
if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
||
|
pid_output=MAX_BED_POWER;
|
||
|
} else if (pid_output < 0){
|
||
|
if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
||
|
pid_output=0;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
|
||
|
#endif //PID_OPENLOOP
|
||
|
|
||
|
if(current_temperature_bed < BED_MAXTEMP)
|
||
|
{
|
||
|
soft_pwm_bed = (int)pid_output >> 1;
|
||
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
||
|
}
|
||
|
else {
|
||
|
soft_pwm_bed = 0;
|
||
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
||
|
}
|
||
|
|
||
|
#elif !defined(BED_LIMIT_SWITCHING)
|
||
|
// Check if temperature is within the correct range
|
||
|
if(current_temperature_bed < BED_MAXTEMP)
|
||
|
{
|
||
|
if(current_temperature_bed >= target_temperature_bed)
|
||
|
{
|
||
|
soft_pwm_bed = 0;
|
||
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
soft_pwm_bed = MAX_BED_POWER>>1;
|
||
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
soft_pwm_bed = 0;
|
||
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
||
|
WRITE(HEATER_BED_PIN,LOW);
|
||
|
}
|
||
|
#else //#ifdef BED_LIMIT_SWITCHING
|
||
|
// Check if temperature is within the correct band
|
||
|
if(current_temperature_bed < BED_MAXTEMP)
|
||
|
{
|
||
|
if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
|
||
|
{
|
||
|
soft_pwm_bed = 0;
|
||
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
||
|
}
|
||
|
else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
|
||
|
{
|
||
|
soft_pwm_bed = MAX_BED_POWER>>1;
|
||
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
soft_pwm_bed = 0;
|
||
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
||
|
WRITE(HEATER_BED_PIN,LOW);
|
||
|
}
|
||
|
#endif
|
||
|
if(target_temperature_bed==0)
|
||
|
{
|
||
|
soft_pwm_bed = 0;
|
||
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
host_keepalive();
|
||
|
}
|
||
|
|
||
|
#define PGM_RD_W(x) (short)pgm_read_word(&x)
|
||
|
// Derived from RepRap FiveD extruder::getTemperature()
|
||
|
// For hot end temperature measurement.
|
||
|
static float analog2temp(int raw, uint8_t e) {
|
||
|
if(e >= EXTRUDERS)
|
||
|
{
|
||
|
SERIAL_ERROR_START;
|
||
|
SERIAL_ERROR((int)e);
|
||
|
SERIAL_ERRORLNPGM(" - Invalid extruder number !");
|
||
|
kill(PSTR(""), 6);
|
||
|
return 0.0;
|
||
|
}
|
||
|
#ifdef HEATER_0_USES_MAX6675
|
||
|
if (e == 0)
|
||
|
{
|
||
|
return 0.25 * raw;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if(heater_ttbl_map[e] != NULL)
|
||
|
{
|
||
|
float celsius = 0;
|
||
|
uint8_t i;
|
||
|
short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
|
||
|
|
||
|
for (i=1; i<heater_ttbllen_map[e]; i++)
|
||
|
{
|
||
|
if (PGM_RD_W((*tt)[i][0]) > raw)
|
||
|
{
|
||
|
celsius = PGM_RD_W((*tt)[i-1][1]) +
|
||
|
(raw - PGM_RD_W((*tt)[i-1][0])) *
|
||
|
(float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
|
||
|
(float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Overflow: Set to last value in the table
|
||
|
if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
|
||
|
|
||
|
return celsius;
|
||
|
}
|
||
|
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
|
||
|
}
|
||
|
|
||
|
// Derived from RepRap FiveD extruder::getTemperature()
|
||
|
// For bed temperature measurement.
|
||
|
static float analog2tempBed(int raw) {
|
||
|
#ifdef BED_USES_THERMISTOR
|
||
|
float celsius = 0;
|
||
|
byte i;
|
||
|
|
||
|
for (i=1; i<BEDTEMPTABLE_LEN; i++)
|
||
|
{
|
||
|
if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
|
||
|
{
|
||
|
celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
|
||
|
(raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
|
||
|
(float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
|
||
|
(float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Overflow: Set to last value in the table
|
||
|
if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
|
||
|
|
||
|
|
||
|
// temperature offset adjustment
|
||
|
#ifdef BED_OFFSET
|
||
|
float _offset = BED_OFFSET;
|
||
|
float _offset_center = BED_OFFSET_CENTER;
|
||
|
float _offset_start = BED_OFFSET_START;
|
||
|
float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
|
||
|
float _second_koef = (_offset / 2) / (100 - _offset_center);
|
||
|
|
||
|
|
||
|
if (celsius >= _offset_start && celsius <= _offset_center)
|
||
|
{
|
||
|
celsius = celsius + (_first_koef * (celsius - _offset_start));
|
||
|
}
|
||
|
else if (celsius > _offset_center && celsius <= 100)
|
||
|
{
|
||
|
celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
|
||
|
}
|
||
|
else if (celsius > 100)
|
||
|
{
|
||
|
celsius = celsius + _offset;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
return celsius;
|
||
|
#elif defined BED_USES_AD595
|
||
|
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
|
||
|
#else
|
||
|
return 0;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#ifdef AMBIENT_THERMISTOR
|
||
|
static float analog2tempAmbient(int raw)
|
||
|
{
|
||
|
float celsius = 0;
|
||
|
byte i;
|
||
|
|
||
|
for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
|
||
|
{
|
||
|
if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
|
||
|
{
|
||
|
celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
|
||
|
(raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
|
||
|
(float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
|
||
|
(float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
// Overflow: Set to last value in the table
|
||
|
if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
|
||
|
return celsius;
|
||
|
}
|
||
|
#endif //AMBIENT_THERMISTOR
|
||
|
|
||
|
/* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
|
||
|
and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
|
||
|
static void updateTemperaturesFromRawValues()
|
||
|
{
|
||
|
for(uint8_t e=0;e<EXTRUDERS;e++)
|
||
|
{
|
||
|
current_temperature[e] = analog2temp(current_temperature_raw[e], e);
|
||
|
}
|
||
|
|
||
|
#ifdef PINDA_THERMISTOR
|
||
|
current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
|
||
|
current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
|
||
|
#endif
|
||
|
|
||
|
#ifdef AMBIENT_THERMISTOR
|
||
|
current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
|
||
|
#endif
|
||
|
|
||
|
#ifdef DEBUG_HEATER_BED_SIM
|
||
|
current_temperature_bed = target_temperature_bed;
|
||
|
#else //DEBUG_HEATER_BED_SIM
|
||
|
current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
|
||
|
#endif //DEBUG_HEATER_BED_SIM
|
||
|
|
||
|
CRITICAL_SECTION_START;
|
||
|
temp_meas_ready = false;
|
||
|
CRITICAL_SECTION_END;
|
||
|
}
|
||
|
|
||
|
void tp_init()
|
||
|
{
|
||
|
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
|
||
|
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
|
||
|
MCUCR=(1<<JTD);
|
||
|
MCUCR=(1<<JTD);
|
||
|
#endif
|
||
|
|
||
|
// Finish init of mult extruder arrays
|
||
|
for(int e = 0; e < EXTRUDERS; e++) {
|
||
|
// populate with the first value
|
||
|
maxttemp[e] = maxttemp[0];
|
||
|
#ifdef PIDTEMP
|
||
|
iState_sum_min[e] = 0.0;
|
||
|
iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
|
||
|
#endif //PIDTEMP
|
||
|
#ifdef PIDTEMPBED
|
||
|
temp_iState_min_bed = 0.0;
|
||
|
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
|
||
|
#endif //PIDTEMPBED
|
||
|
}
|
||
|
|
||
|
#if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
|
||
|
SET_OUTPUT(HEATER_0_PIN);
|
||
|
#endif
|
||
|
#if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
|
||
|
SET_OUTPUT(HEATER_1_PIN);
|
||
|
#endif
|
||
|
#if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
|
||
|
SET_OUTPUT(HEATER_2_PIN);
|
||
|
#endif
|
||
|
#if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
|
||
|
SET_OUTPUT(HEATER_BED_PIN);
|
||
|
#endif
|
||
|
#if defined(FAN_PIN) && (FAN_PIN > -1)
|
||
|
SET_OUTPUT(FAN_PIN);
|
||
|
#ifdef FAST_PWM_FAN
|
||
|
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
||
|
#endif
|
||
|
#ifdef FAN_SOFT_PWM
|
||
|
soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#ifdef HEATER_0_USES_MAX6675
|
||
|
#ifndef SDSUPPORT
|
||
|
SET_OUTPUT(SCK_PIN);
|
||
|
WRITE(SCK_PIN,0);
|
||
|
|
||
|
SET_OUTPUT(MOSI_PIN);
|
||
|
WRITE(MOSI_PIN,1);
|
||
|
|
||
|
SET_INPUT(MISO_PIN);
|
||
|
WRITE(MISO_PIN,1);
|
||
|
#endif
|
||
|
/* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
|
||
|
|
||
|
//Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
|
||
|
pinMode(SS_PIN, OUTPUT);
|
||
|
digitalWrite(SS_PIN,0);
|
||
|
pinMode(MAX6675_SS, OUTPUT);
|
||
|
digitalWrite(MAX6675_SS,1);
|
||
|
#endif
|
||
|
|
||
|
adc_init();
|
||
|
|
||
|
timer0_init();
|
||
|
OCR2B = 128;
|
||
|
TIMSK2 |= (1<<OCIE2B);
|
||
|
|
||
|
// Wait for temperature measurement to settle
|
||
|
_delay(250);
|
||
|
|
||
|
#ifdef HEATER_0_MINTEMP
|
||
|
minttemp[0] = HEATER_0_MINTEMP;
|
||
|
while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
|
||
|
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
|
||
|
minttemp_raw[0] += OVERSAMPLENR;
|
||
|
#else
|
||
|
minttemp_raw[0] -= OVERSAMPLENR;
|
||
|
#endif
|
||
|
}
|
||
|
#endif //MINTEMP
|
||
|
#ifdef HEATER_0_MAXTEMP
|
||
|
maxttemp[0] = HEATER_0_MAXTEMP;
|
||
|
while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
|
||
|
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
|
||
|
maxttemp_raw[0] -= OVERSAMPLENR;
|
||
|
#else
|
||
|
maxttemp_raw[0] += OVERSAMPLENR;
|
||
|
#endif
|
||
|
}
|
||
|
#endif //MAXTEMP
|
||
|
|
||
|
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
|
||
|
minttemp[1] = HEATER_1_MINTEMP;
|
||
|
while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
|
||
|
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
|
||
|
minttemp_raw[1] += OVERSAMPLENR;
|
||
|
#else
|
||
|
minttemp_raw[1] -= OVERSAMPLENR;
|
||
|
#endif
|
||
|
}
|
||
|
#endif // MINTEMP 1
|
||
|
#if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
|
||
|
maxttemp[1] = HEATER_1_MAXTEMP;
|
||
|
while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
|
||
|
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
|
||
|
maxttemp_raw[1] -= OVERSAMPLENR;
|
||
|
#else
|
||
|
maxttemp_raw[1] += OVERSAMPLENR;
|
||
|
#endif
|
||
|
}
|
||
|
#endif //MAXTEMP 1
|
||
|
|
||
|
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
|
||
|
minttemp[2] = HEATER_2_MINTEMP;
|
||
|
while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
|
||
|
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
|
||
|
minttemp_raw[2] += OVERSAMPLENR;
|
||
|
#else
|
||
|
minttemp_raw[2] -= OVERSAMPLENR;
|
||
|
#endif
|
||
|
}
|
||
|
#endif //MINTEMP 2
|
||
|
#if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
|
||
|
maxttemp[2] = HEATER_2_MAXTEMP;
|
||
|
while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
|
||
|
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
|
||
|
maxttemp_raw[2] -= OVERSAMPLENR;
|
||
|
#else
|
||
|
maxttemp_raw[2] += OVERSAMPLENR;
|
||
|
#endif
|
||
|
}
|
||
|
#endif //MAXTEMP 2
|
||
|
|
||
|
#ifdef BED_MINTEMP
|
||
|
/* No bed MINTEMP error implemented?!? */
|
||
|
while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
|
||
|
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
||
|
bed_minttemp_raw += OVERSAMPLENR;
|
||
|
#else
|
||
|
bed_minttemp_raw -= OVERSAMPLENR;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#endif //BED_MINTEMP
|
||
|
#ifdef BED_MAXTEMP
|
||
|
while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
|
||
|
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
||
|
bed_maxttemp_raw -= OVERSAMPLENR;
|
||
|
#else
|
||
|
bed_maxttemp_raw += OVERSAMPLENR;
|
||
|
#endif
|
||
|
}
|
||
|
#endif //BED_MAXTEMP
|
||
|
}
|
||
|
|
||
|
#if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
|
||
|
void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
|
||
|
{
|
||
|
float __delta;
|
||
|
float __hysteresis = 0;
|
||
|
int __timeout = 0;
|
||
|
bool temp_runaway_check_active = false;
|
||
|
static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
|
||
|
static int __preheat_counter[2] = { 0,0};
|
||
|
static int __preheat_errors[2] = { 0,0};
|
||
|
|
||
|
|
||
|
if (_millis() - temp_runaway_timer[_heater_id] > 2000)
|
||
|
{
|
||
|
|
||
|
#ifdef TEMP_RUNAWAY_BED_TIMEOUT
|
||
|
if (_isbed)
|
||
|
{
|
||
|
__hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
|
||
|
__timeout = TEMP_RUNAWAY_BED_TIMEOUT;
|
||
|
}
|
||
|
#endif
|
||
|
#ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
|
||
|
if (!_isbed)
|
||
|
{
|
||
|
__hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
|
||
|
__timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
temp_runaway_timer[_heater_id] = _millis();
|
||
|
if (_output == 0)
|
||
|
{
|
||
|
temp_runaway_check_active = false;
|
||
|
temp_runaway_error_counter[_heater_id] = 0;
|
||
|
}
|
||
|
|
||
|
if (temp_runaway_target[_heater_id] != _target_temperature)
|
||
|
{
|
||
|
if (_target_temperature > 0)
|
||
|
{
|
||
|
temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
|
||
|
temp_runaway_target[_heater_id] = _target_temperature;
|
||
|
__preheat_start[_heater_id] = _current_temperature;
|
||
|
__preheat_counter[_heater_id] = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
|
||
|
temp_runaway_target[_heater_id] = _target_temperature;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
|
||
|
{
|
||
|
__preheat_counter[_heater_id]++;
|
||
|
if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
|
||
|
{
|
||
|
/*SERIAL_ECHOPGM("Heater:");
|
||
|
MYSERIAL.print(_heater_id);
|
||
|
SERIAL_ECHOPGM(" T:");
|
||
|
MYSERIAL.print(_current_temperature);
|
||
|
SERIAL_ECHOPGM(" Tstart:");
|
||
|
MYSERIAL.print(__preheat_start[_heater_id]);
|
||
|
SERIAL_ECHOPGM(" delta:");
|
||
|
MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
|
||
|
|
||
|
//-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
|
||
|
//-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
|
||
|
__delta=2.0;
|
||
|
if(_isbed)
|
||
|
{
|
||
|
__delta=3.0;
|
||
|
if(_current_temperature>90.0) __delta=2.0;
|
||
|
if(_current_temperature>105.0) __delta=0.6;
|
||
|
}
|
||
|
if (_current_temperature - __preheat_start[_heater_id] < __delta) {
|
||
|
__preheat_errors[_heater_id]++;
|
||
|
/*SERIAL_ECHOPGM(" Preheat errors:");
|
||
|
MYSERIAL.println(__preheat_errors[_heater_id]);*/
|
||
|
}
|
||
|
else {
|
||
|
//SERIAL_ECHOLNPGM("");
|
||
|
__preheat_errors[_heater_id] = 0;
|
||
|
}
|
||
|
|
||
|
if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
|
||
|
{
|
||
|
if (farm_mode) { prusa_statistics(0); }
|
||
|
temp_runaway_stop(true, _isbed);
|
||
|
if (farm_mode) { prusa_statistics(91); }
|
||
|
}
|
||
|
__preheat_start[_heater_id] = _current_temperature;
|
||
|
__preheat_counter[_heater_id] = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
|
||
|
if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
|
||
|
{
|
||
|
/*SERIAL_ECHOPGM("Heater:");
|
||
|
MYSERIAL.print(_heater_id);
|
||
|
MYSERIAL.println(" ->tempRunaway");*/
|
||
|
temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
|
||
|
temp_runaway_check_active = false;
|
||
|
temp_runaway_error_counter[_heater_id] = 0;
|
||
|
}
|
||
|
|
||
|
if (_output > 0)
|
||
|
{
|
||
|
temp_runaway_check_active = true;
|
||
|
}
|
||
|
|
||
|
|
||
|
if (temp_runaway_check_active)
|
||
|
{
|
||
|
// we are in range
|
||
|
if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
|
||
|
{
|
||
|
temp_runaway_check_active = false;
|
||
|
temp_runaway_error_counter[_heater_id] = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
|
||
|
{
|
||
|
temp_runaway_error_counter[_heater_id]++;
|
||
|
if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
|
||
|
{
|
||
|
if (farm_mode) { prusa_statistics(0); }
|
||
|
temp_runaway_stop(false, _isbed);
|
||
|
if (farm_mode) { prusa_statistics(90); }
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void temp_runaway_stop(bool isPreheat, bool isBed)
|
||
|
{
|
||
|
cancel_heatup = true;
|
||
|
quickStop();
|
||
|
if (card.sdprinting)
|
||
|
{
|
||
|
card.sdprinting = false;
|
||
|
card.closefile();
|
||
|
}
|
||
|
// Clean the input command queue
|
||
|
// This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
|
||
|
cmdqueue_reset();
|
||
|
|
||
|
disable_heater();
|
||
|
disable_x();
|
||
|
disable_y();
|
||
|
disable_e0();
|
||
|
disable_e1();
|
||
|
disable_e2();
|
||
|
manage_heater();
|
||
|
lcd_update(0);
|
||
|
Sound_MakeCustom(200,0,true);
|
||
|
|
||
|
if (isPreheat)
|
||
|
{
|
||
|
Stop();
|
||
|
isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
|
||
|
SERIAL_ERROR_START;
|
||
|
isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
|
||
|
SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
|
||
|
SET_OUTPUT(FAN_PIN);
|
||
|
WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
|
||
|
#ifdef FAN_SOFT_PWM
|
||
|
fanSpeedSoftPwm = 255;
|
||
|
#else //FAN_SOFT_PWM
|
||
|
analogWrite(FAN_PIN, 255);
|
||
|
#endif //FAN_SOFT_PWM
|
||
|
|
||
|
fanSpeed = 255;
|
||
|
delayMicroseconds(2000);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
|
||
|
SERIAL_ERROR_START;
|
||
|
isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
void disable_heater()
|
||
|
{
|
||
|
setAllTargetHotends(0);
|
||
|
setTargetBed(0);
|
||
|
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
|
||
|
target_temperature[0]=0;
|
||
|
soft_pwm[0]=0;
|
||
|
#if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
|
||
|
WRITE(HEATER_0_PIN,LOW);
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
|
||
|
target_temperature[1]=0;
|
||
|
soft_pwm[1]=0;
|
||
|
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
|
||
|
WRITE(HEATER_1_PIN,LOW);
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
|
||
|
target_temperature[2]=0;
|
||
|
soft_pwm[2]=0;
|
||
|
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
|
||
|
WRITE(HEATER_2_PIN,LOW);
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||
|
target_temperature_bed=0;
|
||
|
soft_pwm_bed=0;
|
||
|
timer02_set_pwm0(soft_pwm_bed << 1);
|
||
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||
|
//WRITE(HEATER_BED_PIN,LOW);
|
||
|
#endif
|
||
|
#endif
|
||
|
}
|
||
|
//! codes of alert messages for the LCD - it is shorter to compare an uin8_t
|
||
|
//! than raw const char * of the messages themselves.
|
||
|
//! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
|
||
|
//! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
|
||
|
enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
|
||
|
|
||
|
//! remember the last alert message sent to the LCD
|
||
|
//! to prevent flicker and improve speed
|
||
|
uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
|
||
|
|
||
|
void max_temp_error(uint8_t e) {
|
||
|
disable_heater();
|
||
|
if(IsStopped() == false) {
|
||
|
SERIAL_ERROR_START;
|
||
|
SERIAL_ERRORLN((int)e);
|
||
|
SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
|
||
|
LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
|
||
|
}
|
||
|
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
||
|
Stop();
|
||
|
|
||
|
|
||
|
|
||
|
#endif
|
||
|
SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
|
||
|
SET_OUTPUT(FAN_PIN);
|
||
|
SET_OUTPUT(BEEPER);
|
||
|
WRITE(FAN_PIN, 1);
|
||
|
WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
|
||
|
WRITE(BEEPER, 1);
|
||
|
// fanSpeed will consumed by the check_axes_activity() routine.
|
||
|
fanSpeed=255;
|
||
|
if (farm_mode) { prusa_statistics(93); }
|
||
|
}
|
||
|
|
||
|
void min_temp_error(uint8_t e) {
|
||
|
#ifdef DEBUG_DISABLE_MINTEMP
|
||
|
return;
|
||
|
#endif
|
||
|
//if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
|
||
|
disable_heater();
|
||
|
static const char err[] PROGMEM = "Err: MINTEMP";
|
||
|
if(IsStopped() == false) {
|
||
|
SERIAL_ERROR_START;
|
||
|
SERIAL_ERRORLN((int)e);
|
||
|
SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
|
||
|
lcd_setalertstatuspgm(err);
|
||
|
last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
|
||
|
} else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
|
||
|
// we are already stopped due to some error, only update the status message without flickering
|
||
|
lcd_updatestatuspgm(err);
|
||
|
last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
|
||
|
}
|
||
|
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
||
|
// if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
|
||
|
// last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
|
||
|
// lcd_print_stop();
|
||
|
// }
|
||
|
Stop();
|
||
|
#endif
|
||
|
if (farm_mode) { prusa_statistics(92); }
|
||
|
|
||
|
}
|
||
|
|
||
|
void bed_max_temp_error(void) {
|
||
|
#if HEATER_BED_PIN > -1
|
||
|
//WRITE(HEATER_BED_PIN, 0);
|
||
|
#endif
|
||
|
if(IsStopped() == false) {
|
||
|
SERIAL_ERROR_START;
|
||
|
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
|
||
|
LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
|
||
|
}
|
||
|
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
||
|
Stop();
|
||
|
#endif
|
||
|
|
||
|
}
|
||
|
|
||
|
void bed_min_temp_error(void) {
|
||
|
#ifdef DEBUG_DISABLE_MINTEMP
|
||
|
return;
|
||
|
#endif
|
||
|
//if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
|
||
|
#if HEATER_BED_PIN > -1
|
||
|
//WRITE(HEATER_BED_PIN, 0);
|
||
|
#endif
|
||
|
static const char err[] PROGMEM = "Err: MINTEMP BED";
|
||
|
if(IsStopped() == false) {
|
||
|
SERIAL_ERROR_START;
|
||
|
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
|
||
|
lcd_setalertstatuspgm(err);
|
||
|
last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
|
||
|
} else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
|
||
|
// we are already stopped due to some error, only update the status message without flickering
|
||
|
lcd_updatestatuspgm(err);
|
||
|
last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
|
||
|
}
|
||
|
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
||
|
Stop();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#ifdef HEATER_0_USES_MAX6675
|
||
|
#define MAX6675_HEAT_INTERVAL 250
|
||
|
long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
|
||
|
int max6675_temp = 2000;
|
||
|
|
||
|
int read_max6675()
|
||
|
{
|
||
|
if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
|
||
|
return max6675_temp;
|
||
|
|
||
|
max6675_previous_millis = _millis();
|
||
|
max6675_temp = 0;
|
||
|
|
||
|
#ifdef PRR
|
||
|
PRR &= ~(1<<PRSPI);
|
||
|
#elif defined PRR0
|
||
|
PRR0 &= ~(1<<PRSPI);
|
||
|
#endif
|
||
|
|
||
|
SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
|
||
|
|
||
|
// enable TT_MAX6675
|
||
|
WRITE(MAX6675_SS, 0);
|
||
|
|
||
|
// ensure 100ns delay - a bit extra is fine
|
||
|
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
|
||
|
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
|
||
|
|
||
|
// read MSB
|
||
|
SPDR = 0;
|
||
|
for (;(SPSR & (1<<SPIF)) == 0;);
|
||
|
max6675_temp = SPDR;
|
||
|
max6675_temp <<= 8;
|
||
|
|
||
|
// read LSB
|
||
|
SPDR = 0;
|
||
|
for (;(SPSR & (1<<SPIF)) == 0;);
|
||
|
max6675_temp |= SPDR;
|
||
|
|
||
|
// disable TT_MAX6675
|
||
|
WRITE(MAX6675_SS, 1);
|
||
|
|
||
|
if (max6675_temp & 4)
|
||
|
{
|
||
|
// thermocouple open
|
||
|
max6675_temp = 2000;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
max6675_temp = max6675_temp >> 3;
|
||
|
}
|
||
|
|
||
|
return max6675_temp;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
extern "C" {
|
||
|
|
||
|
|
||
|
void adc_ready(void) //callback from adc when sampling finished
|
||
|
{
|
||
|
current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
|
||
|
#ifdef PINDA_THERMISTOR
|
||
|
current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
|
||
|
#endif //PINDA_THERMISTOR
|
||
|
current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
|
||
|
#ifdef VOLT_PWR_PIN
|
||
|
current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
|
||
|
#endif
|
||
|
#ifdef AMBIENT_THERMISTOR
|
||
|
current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
|
||
|
#endif //AMBIENT_THERMISTOR
|
||
|
#ifdef VOLT_BED_PIN
|
||
|
current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
|
||
|
#endif
|
||
|
temp_meas_ready = true;
|
||
|
}
|
||
|
|
||
|
} // extern "C"
|
||
|
|
||
|
// Timer2 (originaly timer0) is shared with millies
|
||
|
#ifdef SYSTEM_TIMER_2
|
||
|
ISR(TIMER2_COMPB_vect)
|
||
|
#else //SYSTEM_TIMER_2
|
||
|
ISR(TIMER0_COMPB_vect)
|
||
|
#endif //SYSTEM_TIMER_2
|
||
|
{
|
||
|
static bool _lock = false;
|
||
|
if (_lock) return;
|
||
|
_lock = true;
|
||
|
asm("sei");
|
||
|
|
||
|
if (!temp_meas_ready) adc_cycle();
|
||
|
lcd_buttons_update();
|
||
|
|
||
|
static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
|
||
|
static uint8_t soft_pwm_0;
|
||
|
#ifdef SLOW_PWM_HEATERS
|
||
|
static unsigned char slow_pwm_count = 0;
|
||
|
static unsigned char state_heater_0 = 0;
|
||
|
static unsigned char state_timer_heater_0 = 0;
|
||
|
#endif
|
||
|
#if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
|
||
|
static unsigned char soft_pwm_1;
|
||
|
#ifdef SLOW_PWM_HEATERS
|
||
|
static unsigned char state_heater_1 = 0;
|
||
|
static unsigned char state_timer_heater_1 = 0;
|
||
|
#endif
|
||
|
#endif
|
||
|
#if EXTRUDERS > 2
|
||
|
static unsigned char soft_pwm_2;
|
||
|
#ifdef SLOW_PWM_HEATERS
|
||
|
static unsigned char state_heater_2 = 0;
|
||
|
static unsigned char state_timer_heater_2 = 0;
|
||
|
#endif
|
||
|
#endif
|
||
|
#if HEATER_BED_PIN > -1
|
||
|
// @@DR static unsigned char soft_pwm_b;
|
||
|
#ifdef SLOW_PWM_HEATERS
|
||
|
static unsigned char state_heater_b = 0;
|
||
|
static unsigned char state_timer_heater_b = 0;
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
|
||
|
static unsigned long raw_filwidth_value = 0; //added for filament width sensor
|
||
|
#endif
|
||
|
|
||
|
#ifndef SLOW_PWM_HEATERS
|
||
|
/*
|
||
|
* standard PWM modulation
|
||
|
*/
|
||
|
if (pwm_count == 0)
|
||
|
{
|
||
|
soft_pwm_0 = soft_pwm[0];
|
||
|
if(soft_pwm_0 > 0)
|
||
|
{
|
||
|
WRITE(HEATER_0_PIN,1);
|
||
|
#ifdef HEATERS_PARALLEL
|
||
|
WRITE(HEATER_1_PIN,1);
|
||
|
#endif
|
||
|
} else WRITE(HEATER_0_PIN,0);
|
||
|
#if EXTRUDERS > 1
|
||
|
soft_pwm_1 = soft_pwm[1];
|
||
|
if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
|
||
|
#endif
|
||
|
#if EXTRUDERS > 2
|
||
|
soft_pwm_2 = soft_pwm[2];
|
||
|
if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
|
||
|
#endif
|
||
|
}
|
||
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||
|
|
||
|
#if 0 // @@DR vypnuto pro hw pwm bedu
|
||
|
// tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
|
||
|
// teoreticky by se tato cast uz vubec nemusela poustet
|
||
|
if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
|
||
|
{
|
||
|
soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
|
||
|
# ifndef SYSTEM_TIMER_2
|
||
|
// tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
|
||
|
// jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
|
||
|
// 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
|
||
|
// Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
|
||
|
// to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
|
||
|
//if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
|
||
|
# endif //SYSTEM_TIMER_2
|
||
|
}
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#ifdef FAN_SOFT_PWM
|
||
|
if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
|
||
|
{
|
||
|
soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
|
||
|
if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
|
||
|
}
|
||
|
#endif
|
||
|
if(soft_pwm_0 < pwm_count)
|
||
|
{
|
||
|
WRITE(HEATER_0_PIN,0);
|
||
|
#ifdef HEATERS_PARALLEL
|
||
|
WRITE(HEATER_1_PIN,0);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#if EXTRUDERS > 1
|
||
|
if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
|
||
|
#endif
|
||
|
#if EXTRUDERS > 2
|
||
|
if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
|
||
|
#endif
|
||
|
|
||
|
#if 0 // @@DR
|
||
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||
|
if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
|
||
|
//WRITE(HEATER_BED_PIN,0);
|
||
|
}
|
||
|
//WRITE(HEATER_BED_PIN, pwm_count & 1 );
|
||
|
#endif
|
||
|
#endif
|
||
|
#ifdef FAN_SOFT_PWM
|
||
|
if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
|
||
|
#endif
|
||
|
|
||
|
pwm_count += (1 << SOFT_PWM_SCALE);
|
||
|
pwm_count &= 0x7f;
|
||
|
|
||
|
#else //ifndef SLOW_PWM_HEATERS
|
||
|
/*
|
||
|
* SLOW PWM HEATERS
|
||
|
*
|
||
|
* for heaters drived by relay
|
||
|
*/
|
||
|
#ifndef MIN_STATE_TIME
|
||
|
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
|
||
|
#endif
|
||
|
if (slow_pwm_count == 0) {
|
||
|
// EXTRUDER 0
|
||
|
soft_pwm_0 = soft_pwm[0];
|
||
|
if (soft_pwm_0 > 0) {
|
||
|
// turn ON heather only if the minimum time is up
|
||
|
if (state_timer_heater_0 == 0) {
|
||
|
// if change state set timer
|
||
|
if (state_heater_0 == 0) {
|
||
|
state_timer_heater_0 = MIN_STATE_TIME;
|
||
|
}
|
||
|
state_heater_0 = 1;
|
||
|
WRITE(HEATER_0_PIN, 1);
|
||
|
#ifdef HEATERS_PARALLEL
|
||
|
WRITE(HEATER_1_PIN, 1);
|
||
|
#endif
|
||
|
}
|
||
|
} else {
|
||
|
// turn OFF heather only if the minimum time is up
|
||
|
if (state_timer_heater_0 == 0) {
|
||
|
// if change state set timer
|
||
|
if (state_heater_0 == 1) {
|
||
|
state_timer_heater_0 = MIN_STATE_TIME;
|
||
|
}
|
||
|
state_heater_0 = 0;
|
||
|
WRITE(HEATER_0_PIN, 0);
|
||
|
#ifdef HEATERS_PARALLEL
|
||
|
WRITE(HEATER_1_PIN, 0);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if EXTRUDERS > 1
|
||
|
// EXTRUDER 1
|
||
|
soft_pwm_1 = soft_pwm[1];
|
||
|
if (soft_pwm_1 > 0) {
|
||
|
// turn ON heather only if the minimum time is up
|
||
|
if (state_timer_heater_1 == 0) {
|
||
|
// if change state set timer
|
||
|
if (state_heater_1 == 0) {
|
||
|
state_timer_heater_1 = MIN_STATE_TIME;
|
||
|
}
|
||
|
state_heater_1 = 1;
|
||
|
WRITE(HEATER_1_PIN, 1);
|
||
|
}
|
||
|
} else {
|
||
|
// turn OFF heather only if the minimum time is up
|
||
|
if (state_timer_heater_1 == 0) {
|
||
|
// if change state set timer
|
||
|
if (state_heater_1 == 1) {
|
||
|
state_timer_heater_1 = MIN_STATE_TIME;
|
||
|
}
|
||
|
state_heater_1 = 0;
|
||
|
WRITE(HEATER_1_PIN, 0);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if EXTRUDERS > 2
|
||
|
// EXTRUDER 2
|
||
|
soft_pwm_2 = soft_pwm[2];
|
||
|
if (soft_pwm_2 > 0) {
|
||
|
// turn ON heather only if the minimum time is up
|
||
|
if (state_timer_heater_2 == 0) {
|
||
|
// if change state set timer
|
||
|
if (state_heater_2 == 0) {
|
||
|
state_timer_heater_2 = MIN_STATE_TIME;
|
||
|
}
|
||
|
state_heater_2 = 1;
|
||
|
WRITE(HEATER_2_PIN, 1);
|
||
|
}
|
||
|
} else {
|
||
|
// turn OFF heather only if the minimum time is up
|
||
|
if (state_timer_heater_2 == 0) {
|
||
|
// if change state set timer
|
||
|
if (state_heater_2 == 1) {
|
||
|
state_timer_heater_2 = MIN_STATE_TIME;
|
||
|
}
|
||
|
state_heater_2 = 0;
|
||
|
WRITE(HEATER_2_PIN, 0);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||
|
// BED
|
||
|
soft_pwm_b = soft_pwm_bed;
|
||
|
if (soft_pwm_b > 0) {
|
||
|
// turn ON heather only if the minimum time is up
|
||
|
if (state_timer_heater_b == 0) {
|
||
|
// if change state set timer
|
||
|
if (state_heater_b == 0) {
|
||
|
state_timer_heater_b = MIN_STATE_TIME;
|
||
|
}
|
||
|
state_heater_b = 1;
|
||
|
//WRITE(HEATER_BED_PIN, 1);
|
||
|
}
|
||
|
} else {
|
||
|
// turn OFF heather only if the minimum time is up
|
||
|
if (state_timer_heater_b == 0) {
|
||
|
// if change state set timer
|
||
|
if (state_heater_b == 1) {
|
||
|
state_timer_heater_b = MIN_STATE_TIME;
|
||
|
}
|
||
|
state_heater_b = 0;
|
||
|
WRITE(HEATER_BED_PIN, 0);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
} // if (slow_pwm_count == 0)
|
||
|
|
||
|
// EXTRUDER 0
|
||
|
if (soft_pwm_0 < slow_pwm_count) {
|
||
|
// turn OFF heather only if the minimum time is up
|
||
|
if (state_timer_heater_0 == 0) {
|
||
|
// if change state set timer
|
||
|
if (state_heater_0 == 1) {
|
||
|
state_timer_heater_0 = MIN_STATE_TIME;
|
||
|
}
|
||
|
state_heater_0 = 0;
|
||
|
WRITE(HEATER_0_PIN, 0);
|
||
|
#ifdef HEATERS_PARALLEL
|
||
|
WRITE(HEATER_1_PIN, 0);
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if EXTRUDERS > 1
|
||
|
// EXTRUDER 1
|
||
|
if (soft_pwm_1 < slow_pwm_count) {
|
||
|
// turn OFF heather only if the minimum time is up
|
||
|
if (state_timer_heater_1 == 0) {
|
||
|
// if change state set timer
|
||
|
if (state_heater_1 == 1) {
|
||
|
state_timer_heater_1 = MIN_STATE_TIME;
|
||
|
}
|
||
|
state_heater_1 = 0;
|
||
|
WRITE(HEATER_1_PIN, 0);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if EXTRUDERS > 2
|
||
|
// EXTRUDER 2
|
||
|
if (soft_pwm_2 < slow_pwm_count) {
|
||
|
// turn OFF heather only if the minimum time is up
|
||
|
if (state_timer_heater_2 == 0) {
|
||
|
// if change state set timer
|
||
|
if (state_heater_2 == 1) {
|
||
|
state_timer_heater_2 = MIN_STATE_TIME;
|
||
|
}
|
||
|
state_heater_2 = 0;
|
||
|
WRITE(HEATER_2_PIN, 0);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||
|
// BED
|
||
|
if (soft_pwm_b < slow_pwm_count) {
|
||
|
// turn OFF heather only if the minimum time is up
|
||
|
if (state_timer_heater_b == 0) {
|
||
|
// if change state set timer
|
||
|
if (state_heater_b == 1) {
|
||
|
state_timer_heater_b = MIN_STATE_TIME;
|
||
|
}
|
||
|
state_heater_b = 0;
|
||
|
WRITE(HEATER_BED_PIN, 0);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifdef FAN_SOFT_PWM
|
||
|
if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
|
||
|
soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
|
||
|
if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
|
||
|
}
|
||
|
if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
|
||
|
#endif
|
||
|
|
||
|
pwm_count += (1 << SOFT_PWM_SCALE);
|
||
|
pwm_count &= 0x7f;
|
||
|
|
||
|
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms
|
||
|
if ((pwm_count % 64) == 0) {
|
||
|
slow_pwm_count++;
|
||
|
slow_pwm_count &= 0x7f;
|
||
|
|
||
|
// Extruder 0
|
||
|
if (state_timer_heater_0 > 0) {
|
||
|
state_timer_heater_0--;
|
||
|
}
|
||
|
|
||
|
#if EXTRUDERS > 1
|
||
|
// Extruder 1
|
||
|
if (state_timer_heater_1 > 0)
|
||
|
state_timer_heater_1--;
|
||
|
#endif
|
||
|
|
||
|
#if EXTRUDERS > 2
|
||
|
// Extruder 2
|
||
|
if (state_timer_heater_2 > 0)
|
||
|
state_timer_heater_2--;
|
||
|
#endif
|
||
|
|
||
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||
|
// Bed
|
||
|
if (state_timer_heater_b > 0)
|
||
|
state_timer_heater_b--;
|
||
|
#endif
|
||
|
} //if ((pwm_count % 64) == 0) {
|
||
|
|
||
|
#endif //ifndef SLOW_PWM_HEATERS
|
||
|
|
||
|
|
||
|
#ifdef BABYSTEPPING
|
||
|
for(uint8_t axis=0;axis<3;axis++)
|
||
|
{
|
||
|
int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
|
||
|
|
||
|
if(curTodo>0)
|
||
|
{
|
||
|
asm("cli");
|
||
|
babystep(axis,/*fwd*/true);
|
||
|
babystepsTodo[axis]--; //less to do next time
|
||
|
asm("sei");
|
||
|
}
|
||
|
else
|
||
|
if(curTodo<0)
|
||
|
{
|
||
|
asm("cli");
|
||
|
babystep(axis,/*fwd*/false);
|
||
|
babystepsTodo[axis]++; //less to do next time
|
||
|
asm("sei");
|
||
|
}
|
||
|
}
|
||
|
#endif //BABYSTEPPING
|
||
|
|
||
|
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
|
||
|
check_fans();
|
||
|
#endif //(defined(TACH_0))
|
||
|
|
||
|
_lock = false;
|
||
|
}
|
||
|
|
||
|
void check_max_temp()
|
||
|
{
|
||
|
//heater
|
||
|
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
|
||
|
if (current_temperature_raw[0] <= maxttemp_raw[0]) {
|
||
|
#else
|
||
|
if (current_temperature_raw[0] >= maxttemp_raw[0]) {
|
||
|
#endif
|
||
|
max_temp_error(0);
|
||
|
}
|
||
|
//bed
|
||
|
#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
|
||
|
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
|
||
|
if (current_temperature_bed_raw <= bed_maxttemp_raw) {
|
||
|
#else
|
||
|
if (current_temperature_bed_raw >= bed_maxttemp_raw) {
|
||
|
#endif
|
||
|
target_temperature_bed = 0;
|
||
|
bed_max_temp_error();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
}
|
||
|
//! number of repeating the same state with consecutive step() calls
|
||
|
//! used to slow down text switching
|
||
|
struct alert_automaton_mintemp {
|
||
|
private:
|
||
|
enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
|
||
|
enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
|
||
|
States state = States::Init;
|
||
|
uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
|
||
|
|
||
|
void substep(States next_state){
|
||
|
if( repeat == 0 ){
|
||
|
state = next_state; // advance to the next state
|
||
|
repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
|
||
|
} else {
|
||
|
--repeat;
|
||
|
}
|
||
|
}
|
||
|
public:
|
||
|
//! brief state automaton step routine
|
||
|
//! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
|
||
|
//! @param mintemp minimal temperature including hysteresis to check current_temp against
|
||
|
void step(float current_temp, float mintemp){
|
||
|
static const char m2[] PROGMEM = "MINTEMP fixed";
|
||
|
static const char m1[] PROGMEM = "Please restart";
|
||
|
switch(state){
|
||
|
case States::Init: // initial state - check hysteresis
|
||
|
if( current_temp > mintemp ){
|
||
|
state = States::TempAboveMintemp;
|
||
|
}
|
||
|
// otherwise keep the Err MINTEMP alert message on the display,
|
||
|
// i.e. do not transfer to state 1
|
||
|
break;
|
||
|
case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
|
||
|
lcd_setalertstatuspgm(m2);
|
||
|
substep(States::ShowMintemp);
|
||
|
last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
|
||
|
break;
|
||
|
case States::ShowPleaseRestart: // displaying "Please restart"
|
||
|
lcd_updatestatuspgm(m1);
|
||
|
substep(States::ShowMintemp);
|
||
|
last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
|
||
|
break;
|
||
|
case States::ShowMintemp: // displaying "MINTEMP fixed"
|
||
|
lcd_updatestatuspgm(m2);
|
||
|
substep(States::ShowPleaseRestart);
|
||
|
last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static alert_automaton_mintemp alert_automaton_hotend, alert_automaton_bed;
|
||
|
|
||
|
void check_min_temp_heater0()
|
||
|
{
|
||
|
//heater
|
||
|
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
|
||
|
if (current_temperature_raw[0] >= minttemp_raw[0]) {
|
||
|
#else
|
||
|
if (current_temperature_raw[0] <= minttemp_raw[0]) {
|
||
|
#endif
|
||
|
menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
|
||
|
min_temp_error(0);
|
||
|
} else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
|
||
|
// no recovery, just force the user to restart the printer
|
||
|
// which is a safer variant than just continuing printing
|
||
|
// The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
|
||
|
// we shall signalize, that MINTEMP has been fixed
|
||
|
// Code notice: normally the alert_automaton instance would have been placed here
|
||
|
// as static alert_automaton_mintemp alert_automaton_hotend, but
|
||
|
// due to stupid compiler that takes 16 more bytes.
|
||
|
alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void check_min_temp_bed()
|
||
|
{
|
||
|
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
|
||
|
if (current_temperature_bed_raw >= bed_minttemp_raw) {
|
||
|
#else
|
||
|
if (current_temperature_bed_raw <= bed_minttemp_raw) {
|
||
|
#endif
|
||
|
menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
|
||
|
bed_min_temp_error();
|
||
|
} else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
|
||
|
// no recovery, just force the user to restart the printer
|
||
|
// which is a safer variant than just continuing printing
|
||
|
alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void check_min_temp()
|
||
|
{
|
||
|
static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
|
||
|
static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
|
||
|
#ifdef AMBIENT_THERMISTOR
|
||
|
if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
|
||
|
{ // ambient temperature is low
|
||
|
#endif //AMBIENT_THERMISTOR
|
||
|
// *** 'common' part of code for MK2.5 & MK3
|
||
|
// * nozzle checking
|
||
|
if(target_temperature[active_extruder]>minttemp[active_extruder])
|
||
|
{ // ~ nozzle heating is on
|
||
|
bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
|
||
|
if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
|
||
|
{
|
||
|
bCheckingOnHeater=true; // not necessary
|
||
|
check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
|
||
|
}
|
||
|
}
|
||
|
else { // ~ nozzle heating is off
|
||
|
oTimer4minTempHeater.start();
|
||
|
bCheckingOnHeater=false;
|
||
|
}
|
||
|
// * bed checking
|
||
|
if(target_temperature_bed>BED_MINTEMP)
|
||
|
{ // ~ bed heating is on
|
||
|
bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
|
||
|
if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
|
||
|
{
|
||
|
bCheckingOnBed=true; // not necessary
|
||
|
check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
|
||
|
}
|
||
|
}
|
||
|
else { // ~ bed heating is off
|
||
|
oTimer4minTempBed.start();
|
||
|
bCheckingOnBed=false;
|
||
|
}
|
||
|
// *** end of 'common' part
|
||
|
#ifdef AMBIENT_THERMISTOR
|
||
|
}
|
||
|
else { // ambient temperature is standard
|
||
|
check_min_temp_heater0();
|
||
|
check_min_temp_bed();
|
||
|
}
|
||
|
#endif //AMBIENT_THERMISTOR
|
||
|
}
|
||
|
|
||
|
#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
|
||
|
void check_fans() {
|
||
|
#ifdef FAN_SOFT_PWM
|
||
|
if (READ(TACH_0) != fan_state[0]) {
|
||
|
if(fan_measuring) fan_edge_counter[0] ++;
|
||
|
fan_state[0] = !fan_state[0];
|
||
|
}
|
||
|
#else //FAN_SOFT_PWM
|
||
|
if (READ(TACH_0) != fan_state[0]) {
|
||
|
fan_edge_counter[0] ++;
|
||
|
fan_state[0] = !fan_state[0];
|
||
|
}
|
||
|
#endif
|
||
|
//if (READ(TACH_1) != fan_state[1]) {
|
||
|
// fan_edge_counter[1] ++;
|
||
|
// fan_state[1] = !fan_state[1];
|
||
|
//}
|
||
|
}
|
||
|
#endif //TACH_0
|
||
|
|
||
|
#ifdef PIDTEMP
|
||
|
// Apply the scale factors to the PID values
|
||
|
|
||
|
|
||
|
float scalePID_i(float i)
|
||
|
{
|
||
|
return i*PID_dT;
|
||
|
}
|
||
|
|
||
|
float unscalePID_i(float i)
|
||
|
{
|
||
|
return i/PID_dT;
|
||
|
}
|
||
|
|
||
|
float scalePID_d(float d)
|
||
|
{
|
||
|
return d/PID_dT;
|
||
|
}
|
||
|
|
||
|
float unscalePID_d(float d)
|
||
|
{
|
||
|
return d*PID_dT;
|
||
|
}
|
||
|
|
||
|
#endif //PIDTEMP
|
||
|
|
||
|
|