iqair-apiserver/app.py

215 lines
7.4 KiB
Python
Executable File

#! /usr/bin/python3
from smb.SMBConnection import SMBConnection
from flask import Flask, jsonify, request
from threading import Thread
from time import sleep
import time
import requests
import json
global last_indoor_data
global indoor_server_ip
global indoor_server_password
global outdoor_api_url
# Load the config file "config.json"
config = json.loads(open("config.json", "r").read())
indoor_server_ip = config["indoor_server_ip"]
indoor_server_password = config["indoor_server_password"]
outdoor_api_url = config["outdoor_api_url"]
# Assume that the indoor unit is offline
# The get_indoor_data() function will update this variable
last_indoor_data = {
"offline": True
}
def get_indoor_data() -> list:
global indoor_server_ip
global indoor_server_password
# SMB server details
server_name = indoor_server_ip
share_name = "airvisual"
username = "airvisual"
password = indoor_server_password
# File details, The file is a text file with name:
# <year><month>_AirVisual_values.txt
# Get the prefix of the file name
prefix = time.strftime("%Y%m", time.localtime())
file_path = prefix + "_AirVisual_values.txt"
# Connect to the SMB server
conn = SMBConnection(username, password, "", "")
conn.connect(server_name, 139)
# Read the file contents
file_obj = open(file_path, "wb")
conn.retrieveFile(share_name, file_path, file_obj)
conn.close()
# Open the local cached file
file_obj = open(file_path, "r")
# The first line of the file contains the header
# The header contains the column names separated by a semicolon (;)
# The rest of the file contains the data separated by a semicolon (;)
# Extract the column names and the data from the file
file_obj.seek(0)
header = file_obj.readline().strip().split(";")
data = file_obj.readlines()
# Split all the data into a list of lists
data = [row.strip().split(";") for row in data]
file_obj.close()
# Remap the header names
headers_map = {
"PM2_5(ug/m3)": "pm25",
"PM10(ug/m3)": "pm10",
"PM1(ug/m3)": "pm1",
"CO2(ppm)": "co2",
"AQI(US)": "aqi",
"Temperature(C)": "temperature",
"Humidity(%RH)": "humidity",
"Timestamp": "time"
}
# Remove rows with header names that are not in the header map
# First, get the indices of the header names that are in the header map
headers_indices = []
for index, name in enumerate(header):
if name in headers_map:
headers_indices.append(index)
# Construct the new header with the header names that are in the header map
header = [header[index] for index in headers_indices]
# Construct the new data with only the columns indicated by the header indices
data = [[row[index] for index in headers_indices] for row in data]
# Remap the header names
headers = [headers_map[name] for name in header]
# Convert unix timestamp to human readable time
for row in data:
row[headers.index("time")] = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(int(row[headers.index("time")])))
# Create a list of dictionaries representing the data
# Each dictionary represents a row of data
data_list = []
for row in data:
data_dict = {}
for header in headers:
data_dict[header] = row[headers.index(header)]
data_list.append(data_dict)
return data_list
def get_outdoor_data_current() -> dict:
# Fetch the data from the AirVisual API
# Note that API call is rate limited to 5 calls per minute
# If this function is called within 1 minute of the previous call, return the cached data
# Check if the cache file exists
# If it does not exist, create a new cache file
try:
data = json.loads(open("outdoor_data_cache.txt", "r").read())
except:
default_data = {
"pm25": 0,
"pm10": 0,
"pm1": 0,
"aqi": 0,
"temperature": 0,
"humidity": 0,
"pressure": 0,
"time": 0,
"last_updated": 0 # Unix timestamp
}
open("outdoor_data_cache.txt", "w").write(json.dumps(default_data))
data = default_data
# Is the last_updated time more than 6 minute ago?
# If it is, fetch the data from the API
# If it is not, return the cached data
# Note that the cache file is a JSON object
data["last_updated"] = int(data["last_updated"])
# Remove the last_updated key
if data["last_updated"] + 60*6 < int(time.time()):
global outdoor_api_url
url = outdoor_api_url
response = requests.get(url)
try:
print("Fetching data from API!" )
data = response.json()
# Create a dictionary of the data
data = {
"pm25": data["current"]["pm25"]["conc"],
"pm10": data["current"]["pm10"]["conc"],
"pm1": data["current"]["pm1"]["conc"],
"aqi": data["current"]["aqius"],
"temperature": data["current"]["tp"],
"humidity": data["current"]["hm"],
"pressure": data["current"]["pr"],
"time": data["current"]["ts"]
}
# Time is in 2024-01-03T16:08:32.000Z
# Convert to GMT+7 in the format YYYY-MM-DD HH:MM:SS
# First parse the time string to a datetime object
# Then format the datetime object to YYYY-MM-DD HH:MM:SS
# The time string is in UTC time, we need to convert it to GMT+7
data["time"] = time.strptime(data["time"], "%Y-%m-%dT%H:%M:%S.000Z")
data["time"] = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.mktime(data["time"]) + 7 * 3600))
# Update the cache file
data["last_updated"] = int(time.time())
open("outdoor_data_cache.txt", "w").write(json.dumps(data))
# Remove the last_updated key
return data
except:
# Oops, we got rate limited
# Return the cached data
print("Rate limited!")
# Remove the last_updated key
return data
else:
# Return the cached data
print("Using cached data!")
# Remove the last_updated key
return data
def merge_data(indoor_data_current: dict, outdoor_data: dict) -> dict:
# Indoor data dict's key are to be appended with "_indoor"
# Outdoor data dict's key are to be appended with "_outdoor"
# Merge the two dictionaries
merged_data = {}
for key, value in indoor_data_current.items():
merged_data[key + "_indoor"] = value
for key, value in outdoor_data.items():
merged_data[key + "_outdoor"] = value
return merged_data
app = Flask(__name__)
# Refresh the indoor data every 30 seconds
def refresh_data():
while True:
print("Fetching indoor data!")
indoor_data = get_indoor_data()
global last_indoor_data
# last_indoor_data the last dictionary in the list
last_indoor_data = indoor_data[-1]
sleep(30)
# Start the thread to refresh the data
Thread(target=refresh_data).start()
# Return the latest data
@app.route("/get_data", methods=["GET"])
def get_data_route():
global last_indoor_data
indoor_data = last_indoor_data
outdoor_data = get_outdoor_data_current()
merged_data = merge_data(indoor_data, outdoor_data)
return jsonify(merged_data)
app.run("0.0.0.0", 5000)