105 lines
3.9 KiB
Python
105 lines
3.9 KiB
Python
import cv2
|
|
import numpy as np
|
|
|
|
|
|
|
|
def thresholding(img):
|
|
imgHsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
|
|
lowerWhite = np.array([0,0,180])
|
|
upperWhite = np.array([179,255,255])
|
|
maskWhite = cv2.inRange(imgHsv,lowerWhite,upperWhite)
|
|
return maskWhite
|
|
|
|
def warpImg(img,points,w,h,inv = False):
|
|
pts1 = np.float32(points)
|
|
pts2 = np.float32([[0,0],[w,0],[0,h],[w,h]])
|
|
if inv:
|
|
matrix = cv2.getPerspectiveTransform(pts2, pts1)
|
|
else:
|
|
matrix = cv2.getPerspectiveTransform(pts1,pts2)
|
|
imgWarp = cv2.warpPerspective(img,matrix,(w,h))
|
|
return imgWarp
|
|
|
|
def nothing(a):
|
|
pass
|
|
|
|
def initializeTrackbars(intialTracbarVals,wT=480, hT=240):
|
|
cv2.namedWindow("Trackbars")
|
|
cv2.resizeWindow("Trackbars", 360, 240)
|
|
cv2.createTrackbar("Width Top", "Trackbars", intialTracbarVals[0],wT//2, nothing)
|
|
cv2.createTrackbar("Height Top", "Trackbars", intialTracbarVals[1], hT, nothing)
|
|
cv2.createTrackbar("Width Bottom", "Trackbars", intialTracbarVals[2],wT//2, nothing)
|
|
cv2.createTrackbar("Height Bottom", "Trackbars", intialTracbarVals[3], hT, nothing)
|
|
|
|
def valTrackbars(wT=480, hT=240):
|
|
widthTop = cv2.getTrackbarPos("Width Top", "Trackbars")
|
|
heightTop = cv2.getTrackbarPos("Height Top", "Trackbars")
|
|
widthBottom = cv2.getTrackbarPos("Width Bottom", "Trackbars")
|
|
heightBottom = cv2.getTrackbarPos("Height Bottom", "Trackbars")
|
|
points = np.float32([(widthTop, heightTop), (wT-widthTop, heightTop),
|
|
(widthBottom , heightBottom ), (wT-widthBottom, heightBottom)])
|
|
return points
|
|
|
|
def drawPoints(img,points):
|
|
for x in range(4):
|
|
cv2.circle(img,(int(points[x][0]),int(points[x][1])),15,(0,0,255),cv2.FILLED)
|
|
return img
|
|
|
|
|
|
def getHistogram(img,minPer=0.1,display= False,region=1):
|
|
|
|
if region == 1:
|
|
histValues = np.sum(img, axis= 0)
|
|
else:
|
|
histValues = np.sum(img[img.shape[0]//region:,:], axis = 0)
|
|
|
|
|
|
maxValue = np.max(histValues)
|
|
minValue = minPer*maxValue
|
|
|
|
indexArray = np.where(histValues >= minValue)
|
|
basePoint = int(np.average(indexArray))
|
|
#print(basePoint)
|
|
|
|
if display:
|
|
imgHist = np.zeros((img.shape[0],img.shape[1],3),np.uint8)
|
|
for x,intensity in enumerate(histValues):
|
|
cv2.line(imgHist,(x,img.shape[0]),(x,img.shape[0]-intensity//255//region),(255,0,255),1)
|
|
cv2.circle(imgHist,(basePoint,img.shape[0]),20,(0,255,255),cv2.FILLED)
|
|
|
|
return basePoint,imgHist
|
|
|
|
return basePoint
|
|
|
|
|
|
def stackImages(scale,imgArray):
|
|
rows = len(imgArray)
|
|
cols = len(imgArray[0])
|
|
rowsAvailable = isinstance(imgArray[0], list)
|
|
width = imgArray[0][0].shape[1]
|
|
height = imgArray[0][0].shape[0]
|
|
if rowsAvailable:
|
|
for x in range ( 0, rows):
|
|
for y in range(0, cols):
|
|
if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]:
|
|
imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
|
|
else:
|
|
imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale)
|
|
if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR)
|
|
imageBlank = np.zeros((height, width, 3), np.uint8)
|
|
hor = [imageBlank]*rows
|
|
hor_con = [imageBlank]*rows
|
|
for x in range(0, rows):
|
|
hor[x] = np.hstack(imgArray[x])
|
|
ver = np.vstack(hor)
|
|
else:
|
|
for x in range(0, rows):
|
|
if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
|
|
imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
|
|
else:
|
|
imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale)
|
|
if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
|
|
hor= np.hstack(imgArray)
|
|
ver = hor
|
|
return ver
|