import cv2 import numpy as np def thresholding(img): imgHsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) lowerWhite = np.array([19,0,150]) upperWhite = np.array([170,70,255]) maskWhite = cv2.inRange(imgHsv,lowerWhite,upperWhite) return maskWhite def warpImg(img,points,w,h,inv = False): pts1 = np.float32(points) pts2 = np.float32([[0,0],[w,0],[0,h],[w,h]]) if inv: matrix = cv2.getPerspectiveTransform(pts2, pts1) else: matrix = cv2.getPerspectiveTransform(pts1,pts2) imgWarp = cv2.warpPerspective(img,matrix,(w,h)) return imgWarp def nothing(a): pass def initializeTrackbars(intialTracbarVals,wT=480, hT=240): cv2.namedWindow("Trackbars") cv2.resizeWindow("Trackbars", 360, 240) cv2.createTrackbar("Width Top", "Trackbars", intialTracbarVals[0],wT//2, nothing) cv2.createTrackbar("Height Top", "Trackbars", intialTracbarVals[1], hT, nothing) cv2.createTrackbar("Width Bottom", "Trackbars", intialTracbarVals[2],wT//2, nothing) cv2.createTrackbar("Height Bottom", "Trackbars", intialTracbarVals[3], hT, nothing) def valTrackbars(wT=480, hT=240): widthTop = cv2.getTrackbarPos("Width Top", "Trackbars") heightTop = cv2.getTrackbarPos("Height Top", "Trackbars") widthBottom = cv2.getTrackbarPos("Width Bottom", "Trackbars") heightBottom = cv2.getTrackbarPos("Height Bottom", "Trackbars") points = np.float32([(widthTop, heightTop), (wT-widthTop, heightTop), (widthBottom , heightBottom ), (wT-widthBottom, heightBottom)]) return points def drawPoints(img,points): for x in range(4): cv2.circle(img,(int(points[x][0]),int(points[x][1])),15,(0,0,255),cv2.FILLED) return img def getHistogram(img,minPer=0.1,display= False,region=1): if region == 1: histValues = np.sum(img, axis= 0) else: histValues = np.sum(img[img.shape[0]//region:,:], axis = 0) maxValue = np.max(histValues) minValue = minPer*maxValue indexArray = np.where(histValues >= minValue) basePoint = int(np.average(indexArray)) #print(basePoint) if display: imgHist = np.zeros((img.shape[0],img.shape[1],3),np.uint8) for x,intensity in enumerate(histValues): cv2.line(imgHist,(x,img.shape[0]),(x,img.shape[0]-intensity//255//region),(255,0,255),1) cv2.circle(imgHist,(basePoint,img.shape[0]),20,(0,255,255),cv2.FILLED) return basePoint,imgHist return basePoint def stackImages(scale,imgArray): rows = len(imgArray) cols = len(imgArray[0]) rowsAvailable = isinstance(imgArray[0], list) width = imgArray[0][0].shape[1] height = imgArray[0][0].shape[0] if rowsAvailable: for x in range ( 0, rows): for y in range(0, cols): if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]: imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale) else: imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale) if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR) imageBlank = np.zeros((height, width, 3), np.uint8) hor = [imageBlank]*rows hor_con = [imageBlank]*rows for x in range(0, rows): hor[x] = np.hstack(imgArray[x]) ver = np.vstack(hor) else: for x in range(0, rows): if imgArray[x].shape[:2] == imgArray[0].shape[:2]: imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale) else: imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale) if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR) hor= np.hstack(imgArray) ver = hor return ver