2022-11-14 16:28:46 +00:00
|
|
|
#ROAD LANE DETECTION
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
camera = cv2.VideoCapture(1)
|
|
|
|
|
|
|
|
|
|
|
|
def grey(image):
|
|
|
|
#convert to grayscale
|
|
|
|
image = np.asarray(image)
|
|
|
|
return cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
|
|
|
|
|
|
|
#Apply Gaussian Blur --> Reduce noise and smoothen image
|
|
|
|
def gauss(image):
|
|
|
|
return cv2.GaussianBlur(image, (5, 5), 0)
|
|
|
|
|
|
|
|
#outline the strongest gradients in the image --> this is where lines in the image are
|
|
|
|
def canny(image):
|
|
|
|
edges = cv2.Canny(image,50,150)
|
|
|
|
return edges
|
|
|
|
|
|
|
|
def region(image):
|
|
|
|
height, width = image.shape
|
|
|
|
#isolate the gradients that correspond to the lane lines
|
|
|
|
triangle = np.array([
|
|
|
|
[(100, height), (475, 325), (width, height)]
|
|
|
|
])
|
|
|
|
#create a black image with the same dimensions as original image
|
|
|
|
mask = np.zeros_like(image)
|
|
|
|
#create a mask (triangle that isolates the region of interest in our image)
|
|
|
|
mask = cv2.fillPoly(mask, triangle, 255)
|
|
|
|
mask = cv2.bitwise_and(image, mask)
|
|
|
|
return mask
|
|
|
|
|
|
|
|
def display_lines(image, lines):
|
|
|
|
lines_image = np.zeros_like(image)
|
|
|
|
#make sure array isn't empty
|
|
|
|
if lines is not None:
|
|
|
|
for line in lines:
|
|
|
|
x1, y1, x2, y2 = line
|
|
|
|
#draw lines on a black image
|
|
|
|
cv2.line(lines_image, (x1, y1), (x2, y2), (255, 0, 0), 10)
|
|
|
|
return lines_image
|
|
|
|
|
|
|
|
def average(image, lines):
|
|
|
|
left = []
|
|
|
|
right = []
|
|
|
|
|
|
|
|
if lines is not None:
|
|
|
|
for line in lines:
|
|
|
|
print(line)
|
|
|
|
x1, y1, x2, y2 = line.reshape(4)
|
|
|
|
#fit line to points, return slope and y-int
|
|
|
|
parameters = np.polyfit((x1, x2), (y1, y2), 1)
|
|
|
|
print(parameters)
|
|
|
|
slope = parameters[0]
|
|
|
|
y_int = parameters[1]
|
|
|
|
#lines on the right have positive slope, and lines on the left have neg slope
|
|
|
|
if slope < 0:
|
|
|
|
print("ap left")
|
|
|
|
left.append((slope, y_int))
|
|
|
|
else:
|
|
|
|
print("ap right")
|
|
|
|
right.append((slope, y_int))
|
|
|
|
|
|
|
|
#takes average among all the columns (column0: slope, column1: y_int)
|
|
|
|
right_avg = np.average(right, axis=0)
|
|
|
|
left_avg = np.average(left, axis=0)
|
|
|
|
#create lines based on averages calculates
|
|
|
|
left_line = make_points(image, left_avg)
|
|
|
|
right_line = make_points(image, right_avg)
|
|
|
|
print(left_line)
|
|
|
|
print(right_line)
|
|
|
|
print(np.array([left_line, right_line]))
|
|
|
|
return np.array([left_line, right_line])
|
|
|
|
|
|
|
|
def make_points(image, average):
|
|
|
|
print(average)
|
|
|
|
try:
|
|
|
|
slope, y_int = average
|
|
|
|
except TypeError:
|
|
|
|
return (np.array([0,0,0,0]))
|
|
|
|
y1 = image.shape[0]
|
|
|
|
#how long we want our lines to be --> 3/5 the size of the image
|
|
|
|
y2 = int(y1 * (3/5))
|
|
|
|
#determine algebraically
|
|
|
|
x1 = int((y1 - y_int) // slope)
|
|
|
|
x2 = int((y2 - y_int) // slope)
|
|
|
|
return np.array([x1, y1, x2, y2])
|
|
|
|
|
|
|
|
while True:
|
|
|
|
'''##### DETECTING lane lines in image ######'''
|
|
|
|
|
|
|
|
rv, image1 = camera.read()
|
2022-11-15 10:49:40 +00:00
|
|
|
image1 = cv2.resize(image1,[1280,720])
|
2022-11-14 16:28:46 +00:00
|
|
|
plt.imshow(image1)
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
copy = np.copy(image1)
|
|
|
|
edges = cv2.Canny(copy,50,150)
|
2022-11-15 10:49:40 +00:00
|
|
|
isolated = edges #region(edges)
|
2022-11-14 16:28:46 +00:00
|
|
|
print(edges)
|
|
|
|
plt.imshow(edges)
|
|
|
|
plt.imshow(isolated)
|
|
|
|
plt.show()
|
|
|
|
print("edge show")
|
|
|
|
cv2.waitKey(0)
|
|
|
|
|
|
|
|
#DRAWING LINES: (order of params) --> region of interest, bin size (P, theta), min intersections needed, placeholder array,
|
|
|
|
lines = cv2.HoughLinesP(isolated, 2, np.pi/180, 100, np.array([]), minLineLength=40, maxLineGap=5)
|
|
|
|
averaged_lines = average(copy, lines)
|
|
|
|
black_lines = display_lines(copy, averaged_lines)
|
|
|
|
#taking wighted sum of original image and lane lines image
|
|
|
|
lanes = cv2.addWeighted(copy, 0.8, black_lines, 1, 1)
|
|
|
|
plt.imshow(lanes)
|
|
|
|
plt.show()
|
|
|
|
print("lane showed")
|
|
|
|
cv2.waitKey(0)
|