stm32-fmt-code/access_control_stm32/Core/Src/main.c

610 lines
16 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define DOOR_SENSOR_BANK GPIOA
#define DOOR_SENSOR_PIN GPIO_PIN_7
#define DOOR_LOCK_BANK GPIOA
#define DOOR_LOCK_PIN GPIO_PIN_9
#define ALARM_BANK GPIOC
#define ALARM_PIN GPIO_PIN_0
#define DOOR_STATE_OPEN 0
#define DOOR_STATE_CLOSED 1
#define DOOR_LOCK_LOCKED 1
#define DOOR_LOCK_UNLOCKED 0
#define DOOR_ERROR_ALARM_DELAY 10000 //ms
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
UART_HandleTypeDef huart2;
/* Definitions for mainTask */
osThreadId_t mainTaskHandle;
const osThreadAttr_t mainTask_attributes = {
.name = "mainTask",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityNormal,
};
/* Definitions for doorHandler */
osThreadId_t doorHandlerHandle;
const osThreadAttr_t doorHandler_attributes = {
.name = "doorHandler",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityHigh,
};
/* Definitions for StateSendTask */
osThreadId_t StateSendTaskHandle;
const osThreadAttr_t StateSendTask_attributes = {
.name = "StateSendTask",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for ADCReqTask */
osThreadId_t ADCReqTaskHandle;
const osThreadAttr_t ADCReqTask_attributes = {
.name = "ADCReqTask",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/* USER CODE BEGIN PV */
uint8_t uart_buffer[10];
uint8_t uart_index = 0;
uint32_t door_lock_command_time = 0;
bool door_state = false;
bool door_lock_state = false;
bool door_lock_state_command = false;
bool door_lock_waiting = false;
bool alarm_active = false;
bool scan_active = false;
uint16_t adc_val = 0;
int flag_uart_cmd = 99;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_ADC1_Init(void);
void StartMainTask(void *argument);
void startDoorHandleTask(void *argument);
void StartStateSendTask(void *argument);
void StartADCReqTask(void *argument);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) {
adc_val = HAL_ADC_GetValue(&hadc1);
scan_active = adc_val < 1000;
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART2_UART_Init();
MX_ADC1_Init();
/* USER CODE BEGIN 2 */
memset(uart_buffer, 0, 10);
/* USER CODE END 2 */
/* Init scheduler */
osKernelInitialize();
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* creation of mainTask */
mainTaskHandle = osThreadNew(StartMainTask, NULL, &mainTask_attributes);
/* creation of doorHandler */
doorHandlerHandle = osThreadNew(startDoorHandleTask, NULL, &doorHandler_attributes);
/* creation of StateSendTask */
StateSendTaskHandle = osThreadNew(StartStateSendTask, NULL, &StateSendTask_attributes);
/* creation of ADCReqTask */
ADCReqTaskHandle = osThreadNew(StartADCReqTask, NULL, &ADCReqTask_attributes);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
/* USER CODE BEGIN RTOS_EVENTS */
/* add events, ... */
/* USER CODE END RTOS_EVENTS */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1) {
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 9600;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(ALARM_GPIO_Port, ALARM_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, LD2_Pin|Door_Lock_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : ALARM_Pin */
GPIO_InitStruct.Pin = ALARM_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(ALARM_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : LD2_Pin Door_Lock_Pin */
GPIO_InitStruct.Pin = LD2_Pin|Door_Lock_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : Door_Sensor_Pin */
GPIO_InitStruct.Pin = Door_Sensor_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(Door_Sensor_GPIO_Port, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/* USER CODE BEGIN Header_StartMainTask */
/**
* @brief Function implementing the mainTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartMainTask */
void StartMainTask(void *argument)
{
/* USER CODE BEGIN 5 */
memset(uart_buffer, 0, 10);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1) {
if (HAL_UART_Receive(&huart2, uart_buffer + uart_index, 1, 100)
== HAL_OK) {
uart_index++;
if (uart_buffer[uart_index - 1] == 0xFF) {
if (uart_index > 1) {
// Command Internal LED
if (uart_buffer[0] == 0x00) {
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, uart_buffer[1]);
}
// Get Current Door State
else if (uart_buffer[0] == 0x01) {
uint8_t payload[3] = { 0x01, door_state, 0xFF };
HAL_UART_Transmit(&huart2, payload, 3, 1500);
}
// Set Door Lock State
else if (uart_buffer[0] == 0x02) {
door_lock_state_command = uart_buffer[1];
// Get Current Scan Active State
} else if (uart_buffer[0] == 0x03) {
uint8_t payload[3] = { 0x02, scan_active, 0xFF };
HAL_UART_Transmit(&huart2, payload, 3, 1500);
}
}
uart_index = 0;
memset(uart_buffer, 0, 10);
} else if (uart_index > sizeof(uart_buffer) - 1) {
memset(uart_buffer, 0, 10);
uart_index = 0;
}
}
vTaskDelay(1);
}
/* USER CODE END 5 */
}
/* USER CODE BEGIN Header_startDoorHandleTask */
/**
* @brief Function implementing the doorHandler thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_startDoorHandleTask */
void startDoorHandleTask(void *argument)
{
/* USER CODE BEGIN startDoorHandleTask */
/* Infinite loop */
HAL_GPIO_WritePin(DOOR_LOCK_BANK, DOOR_LOCK_PIN, 1);
for (;;) {
door_state = !HAL_GPIO_ReadPin(DOOR_SENSOR_BANK, DOOR_SENSOR_PIN);
if (door_lock_state != door_lock_state_command) {
if (door_lock_state_command == DOOR_LOCK_LOCKED) {
if (door_state == DOOR_STATE_CLOSED) {
osDelay(500);
HAL_GPIO_WritePin(DOOR_LOCK_BANK, DOOR_LOCK_PIN, 1);
door_lock_state = DOOR_LOCK_LOCKED;
door_lock_waiting = false;
} else {
if (!door_lock_waiting) {
door_lock_command_time = HAL_GetTick();
door_lock_waiting = true;
} else {
if (door_state == DOOR_STATE_OPEN) {
if (HAL_GetTick()
- door_lock_command_time>DOOR_ERROR_ALARM_DELAY) {
alarm_active = true;
HAL_GPIO_WritePin(ALARM_BANK, ALARM_PIN, 1);
}
} else {
HAL_GPIO_WritePin(DOOR_LOCK_BANK, DOOR_LOCK_PIN, 1);
door_lock_waiting = false;
door_lock_state = DOOR_LOCK_LOCKED;
}
}
}
} else if (door_lock_state_command == DOOR_LOCK_UNLOCKED) {
HAL_GPIO_WritePin(DOOR_LOCK_BANK, DOOR_LOCK_PIN, 0);
door_lock_state = DOOR_LOCK_UNLOCKED;
door_lock_waiting = false;
}
}
if (!door_lock_state_command && door_lock_waiting) {
door_lock_waiting = false;
}
if (alarm_active && !door_lock_state_command) {
HAL_GPIO_WritePin(ALARM_BANK, ALARM_PIN, 0);
alarm_active = false;
}
if (!door_state && door_lock_state) {
HAL_GPIO_WritePin(ALARM_BANK, ALARM_PIN, 1);
alarm_active = true;
}
vTaskDelay(50);
}
/* USER CODE END startDoorHandleTask */
}
/* USER CODE BEGIN Header_StartStateSendTask */
/**
* @brief Function implementing the StateSendTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartStateSendTask */
void StartStateSendTask(void *argument)
{
/* USER CODE BEGIN StartStateSendTask */
/* Infinite loop */
for (;;) {
uint8_t payload1[3] = { 0x01, door_state, 0xFF };
HAL_UART_Transmit(&huart2, payload1, 3, 1000);
uint8_t payload2[3] = { 0x02, scan_active, 0xFF };
HAL_UART_Transmit(&huart2, payload2, 3, 1000);
osDelay(200);
}
/* USER CODE END StartStateSendTask */
}
/* USER CODE BEGIN Header_StartADCReqTask */
/**
* @brief Function implementing the ADCReqTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartADCReqTask */
void StartADCReqTask(void *argument)
{
/* USER CODE BEGIN StartADCReqTask */
/* Infinite loop */
for(;;)
{
HAL_ADC_Start_IT(&hadc1);
osDelay(500);
}
/* USER CODE END StartADCReqTask */
}
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM1 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM1) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1) {
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */