/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2023 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include #include #include /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define DOOR_SENSOR_BANK GPIOA #define DOOR_SENSOR_PIN GPIO_PIN_7 #define DOOR_LOCK_BANK GPIOA #define DOOR_LOCK_PIN GPIO_PIN_9 #define ALARM_BANK GPIOC #define ALARM_PIN GPIO_PIN_0 #define DOOR_STATE_OPEN 0 #define DOOR_STATE_CLOSED 1 #define DOOR_LOCK_LOCKED 1 #define DOOR_LOCK_UNLOCKED 0 #define DOOR_ERROR_ALARM_DELAY 10000 //ms /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc1; UART_HandleTypeDef huart2; /* Definitions for mainTask */ osThreadId_t mainTaskHandle; const osThreadAttr_t mainTask_attributes = { .name = "mainTask", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityNormal, }; /* Definitions for doorHandler */ osThreadId_t doorHandlerHandle; const osThreadAttr_t doorHandler_attributes = { .name = "doorHandler", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityHigh, }; /* Definitions for StateSendTask */ osThreadId_t StateSendTaskHandle; const osThreadAttr_t StateSendTask_attributes = { .name = "StateSendTask", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityLow, }; /* Definitions for ADCReqTask */ osThreadId_t ADCReqTaskHandle; const osThreadAttr_t ADCReqTask_attributes = { .name = "ADCReqTask", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityLow, }; /* USER CODE BEGIN PV */ uint8_t uart_buffer[10]; uint8_t uart_index = 0; uint32_t door_lock_command_time = 0; bool door_state = false; bool door_lock_state = false; bool door_lock_state_command = false; bool door_lock_waiting = false; bool alarm_active = false; bool scan_active = false; uint16_t adc_val = 0; int flag_uart_cmd = 99; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART2_UART_Init(void); static void MX_ADC1_Init(void); void StartMainTask(void *argument); void startDoorHandleTask(void *argument); void StartStateSendTask(void *argument); void StartADCReqTask(void *argument); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) { adc_val = HAL_ADC_GetValue(&hadc1); scan_active = adc_val < 1000; } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_USART2_UART_Init(); MX_ADC1_Init(); /* USER CODE BEGIN 2 */ memset(uart_buffer, 0, 10); /* USER CODE END 2 */ /* Init scheduler */ osKernelInitialize(); /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* creation of mainTask */ mainTaskHandle = osThreadNew(StartMainTask, NULL, &mainTask_attributes); /* creation of doorHandler */ doorHandlerHandle = osThreadNew(startDoorHandleTask, NULL, &doorHandler_attributes); /* creation of StateSendTask */ StateSendTaskHandle = osThreadNew(StartStateSendTask, NULL, &StateSendTask_attributes); /* creation of ADCReqTask */ ADCReqTaskHandle = osThreadNew(StartADCReqTask, NULL, &ADCReqTask_attributes); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ /* USER CODE BEGIN RTOS_EVENTS */ /* add events, ... */ /* USER CODE END RTOS_EVENTS */ /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { } /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 16; RCC_OscInitStruct.PLL.PLLN = 336; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; RCC_OscInitStruct.PLL.PLLQ = 4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DMAContinuousRequests = DISABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_1; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 9600; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(ALARM_GPIO_Port, ALARM_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, LD2_Pin|Door_Lock_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : B1_Pin */ GPIO_InitStruct.Pin = B1_Pin; GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : ALARM_Pin */ GPIO_InitStruct.Pin = ALARM_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(ALARM_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : LD2_Pin Door_Lock_Pin */ GPIO_InitStruct.Pin = LD2_Pin|Door_Lock_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : Door_Sensor_Pin */ GPIO_InitStruct.Pin = Door_Sensor_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(Door_Sensor_GPIO_Port, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /* USER CODE BEGIN Header_StartMainTask */ /** * @brief Function implementing the mainTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartMainTask */ void StartMainTask(void *argument) { /* USER CODE BEGIN 5 */ memset(uart_buffer, 0, 10); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { if (HAL_UART_Receive(&huart2, uart_buffer + uart_index, 1, 100) == HAL_OK) { uart_index++; if (uart_buffer[uart_index - 1] == 0xFF) { if (uart_index > 1) { // Command Internal LED if (uart_buffer[0] == 0x00) { HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, uart_buffer[1]); } // Get Current Door State else if (uart_buffer[0] == 0x01) { uint8_t payload[3] = { 0x01, door_state, 0xFF }; HAL_UART_Transmit(&huart2, payload, 3, 1500); } // Set Door Lock State else if (uart_buffer[0] == 0x02) { door_lock_state_command = uart_buffer[1]; // Get Current Scan Active State } else if (uart_buffer[0] == 0x03) { uint8_t payload[3] = { 0x02, scan_active, 0xFF }; HAL_UART_Transmit(&huart2, payload, 3, 1500); } } uart_index = 0; memset(uart_buffer, 0, 10); } else if (uart_index > sizeof(uart_buffer) - 1) { memset(uart_buffer, 0, 10); uart_index = 0; } } vTaskDelay(1); } /* USER CODE END 5 */ } /* USER CODE BEGIN Header_startDoorHandleTask */ /** * @brief Function implementing the doorHandler thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_startDoorHandleTask */ void startDoorHandleTask(void *argument) { /* USER CODE BEGIN startDoorHandleTask */ /* Infinite loop */ HAL_GPIO_WritePin(DOOR_LOCK_BANK, DOOR_LOCK_PIN, 1); for (;;) { door_state = !HAL_GPIO_ReadPin(DOOR_SENSOR_BANK, DOOR_SENSOR_PIN); if (door_lock_state != door_lock_state_command) { if (door_lock_state_command == DOOR_LOCK_LOCKED) { if (door_state == DOOR_STATE_CLOSED) { osDelay(500); HAL_GPIO_WritePin(DOOR_LOCK_BANK, DOOR_LOCK_PIN, 1); door_lock_state = DOOR_LOCK_LOCKED; door_lock_waiting = false; } else { if (!door_lock_waiting) { door_lock_command_time = HAL_GetTick(); door_lock_waiting = true; } else { if (door_state == DOOR_STATE_OPEN) { if (HAL_GetTick() - door_lock_command_time>DOOR_ERROR_ALARM_DELAY) { alarm_active = true; HAL_GPIO_WritePin(ALARM_BANK, ALARM_PIN, 1); } } else { HAL_GPIO_WritePin(DOOR_LOCK_BANK, DOOR_LOCK_PIN, 1); door_lock_waiting = false; door_lock_state = DOOR_LOCK_LOCKED; } } } } else if (door_lock_state_command == DOOR_LOCK_UNLOCKED) { HAL_GPIO_WritePin(DOOR_LOCK_BANK, DOOR_LOCK_PIN, 0); door_lock_state = DOOR_LOCK_UNLOCKED; door_lock_waiting = false; } } if (!door_lock_state_command && door_lock_waiting) { door_lock_waiting = false; } if (alarm_active && !door_lock_state_command) { HAL_GPIO_WritePin(ALARM_BANK, ALARM_PIN, 0); alarm_active = false; } if (!door_state && door_lock_state) { HAL_GPIO_WritePin(ALARM_BANK, ALARM_PIN, 1); alarm_active = true; } vTaskDelay(50); } /* USER CODE END startDoorHandleTask */ } /* USER CODE BEGIN Header_StartStateSendTask */ /** * @brief Function implementing the StateSendTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartStateSendTask */ void StartStateSendTask(void *argument) { /* USER CODE BEGIN StartStateSendTask */ /* Infinite loop */ for (;;) { uint8_t payload1[3] = { 0x01, door_state, 0xFF }; HAL_UART_Transmit(&huart2, payload1, 3, 1000); uint8_t payload2[3] = { 0x02, scan_active, 0xFF }; HAL_UART_Transmit(&huart2, payload2, 3, 1000); osDelay(200); } /* USER CODE END StartStateSendTask */ } /* USER CODE BEGIN Header_StartADCReqTask */ /** * @brief Function implementing the ADCReqTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartADCReqTask */ void StartADCReqTask(void *argument) { /* USER CODE BEGIN StartADCReqTask */ /* Infinite loop */ for(;;) { HAL_ADC_Start_IT(&hadc1); osDelay(500); } /* USER CODE END StartADCReqTask */ } /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM1 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ /* USER CODE END Callback 0 */ if (htim->Instance == TIM1) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */