import cv2 import time import numpy as np from tflite_runtime.interpreter import Interpreter from threading import Thread class VideoStream: """Camera object that controls video streaming from the Picamera""" def __init__(self,resolution=(640,480),framerate=30): # Initialize the PiCamera and the camera image stream self.stream = cv2.VideoCapture(0) ret = self.stream.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG')) ret = self.stream.set(3,resolution[0]) ret = self.stream.set(4,resolution[1]) # Read first frame from the stream (self.grabbed, self.frame) = self.stream.read() # Variable to control when the camera is stopped self.stopped = False def start(self): # Start the thread that reads frames from the video stream Thread(target=self.update,args=()).start() return self def update(self): # Keep looping indefinitely until the thread is stopped while True: # If the camera is stopped, stop the thread if self.stopped: # Close camera resources self.stream.release() return # Otherwise, grab the next frame from the stream (self.grabbed, self.frame) = self.stream.read() def read(self): # Return the most recent frame return self.frame def stop(self): # Indicate that the camera and thread should be stopped self.stopped = True min_conf_threshold = 0.5 # Minimum confidence threshold for displaying detected objects default 0.5 # Path to .tflite file, which contains the model that is used for object detection tflite_model_path = "./TFLite_model/mobilenet_ssd_v2_coco_quant_postprocess.tflite" # Path to label map file Labels_path = "./TFLite_model/coco_labels.txt" # from MobileNet SSD v2 (COCO) https://coral.ai/models/?fbclid=IwAR347RorBNMeLiFZ6A_5z7UfNJ-bCZbXIsfQ81XDdkKFs7TrPt3hYmv61DI indexs = [] labels = [] # Load the label map with open(Labels_path, 'r') as f: labels_data = [line.strip() for line in f.readlines()] for count in range(0,len(labels_data)): indexs.append(labels_data[count].split(" ")[0]) labels.append(labels_data[count].split(" ")[1]) # Load the Tensorflow Lite model. interpreter = Interpreter(model_path=tflite_model_path) interpreter.allocate_tensors() # Get model details input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() height = input_details[0]['shape'][1] width = input_details[0]['shape'][2] floating_model = (input_details[0]['dtype'] == np.float32) input_mean = 127.5 input_std = 127.5 # Initialize frame rate calculation frame_rate_calc = 1 freq = cv2.getTickFrequency() imW = 640 imH = 480 # Initialize video stream videostream = VideoStream(resolution=(imW,imH),framerate=30).start() time.sleep(1) #for frame1 in camera.capture_continuous(rawCapture, format="bgr",use_video_port=True): while True: # Start timer (for calculating frame rate) t1 = cv2.getTickCount() # Grab frame from video stream frame1 = videostream.read() # Acquire frame and resize to expected shape [1xHxWx3] frame = frame1.copy() frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame_resized = cv2.resize(frame_rgb, (width, height)) input_data = np.expand_dims(frame_resized, axis=0) # Normalize pixel values if using a floating model (i.e. if model is non-quantized) if floating_model: input_data = (np.float32(input_data) - input_mean) / input_std # Perform the actual detection by running the model with the image as input interpreter.set_tensor(input_details[0]['index'],input_data) interpreter.invoke() # Retrieve detection results boxes = interpreter.get_tensor(output_details[0]['index'])[0] # Bounding box coordinates of detected objects classes = interpreter.get_tensor(output_details[1]['index'])[0] # Class index of detected objects scores = interpreter.get_tensor(output_details[2]['index'])[0] # Confidence of detected objects # Loop over all detections and draw detection box if confidence is above minimum threshold for i in range(len(scores)): if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)): # Get bounding box coordinates and draw box # Interpreter can return coordinates that are outside of image dimensions, need to force them to be within image using max() and min() ymin = int(max(1,(boxes[i][0] * imH))) xmin = int(max(1,(boxes[i][1] * imW))) ymax = int(min(imH,(boxes[i][2] * imH))) xmax = int(min(imW,(boxes[i][3] * imW))) cv2.rectangle(frame, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2) # Draw label object_name = labels[int(classes[i])] # Look up object name from "labels" array using class index label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 'person: 72%' labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window cv2.rectangle(frame, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in cv2.putText(frame, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text # Draw framerate in corner of frame cv2.putText(frame,'FPS: {0:.2f}'.format(frame_rate_calc),(30,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,0),2,cv2.LINE_AA) # All the results have been drawn on the frame, so it's time to display it. cv2.imshow('Object detector', frame) # Calculate framerate t2 = cv2.getTickCount() time1 = (t2-t1)/freq frame_rate_calc= 1/time1 # Press 'q' to quit if cv2.waitKey(1) == ord('q'): break # Clean up cv2.destroyAllWindows() videostream.stop()