# TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras #load data set from tf.keras.datasets.mnist (Train number and Test number) mnist = tf.keras.datasets.mnist # 28x28 image of hand-written digits 0-9 (x_train, y_train),(x_test, y_test) = mnist.load_data() # Build Model model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), # takes our 28x28 and makes it 1x784 keras.layers.Dense(128, activation='relu'), # a simple fully-connected layer, 128 units, relu activation keras.layers.Dense(128, activation='relu'), # a simple fully-connected layer, 128 units, relu activation keras.layers.Dense(10, activation='softmax') # our output layer. 10 units for 10 classes. Softmax for probability distribution ]) # Compile model model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # Train the model model.fit(x_train, y_train, epochs=5) # Evaluate accuracy test_loss, test_acc = model.evaluate(x_test, y_test) print("Test loss:", test_loss) print("Test accuracy:", test_acc) # ***Save model*** savepath = "num_reader.h5" model.save(savepath)