# TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import cv2 # load an image Testing_img_path = "./Testing_images/0.jpg" input_image = cv2.imread(Testing_img_path,cv2.IMREAD_GRAYSCALE) # Preprae data input_image = cv2.resize(input_image,(28, 28)) input_image = cv2.bitwise_not(input_image) # invert Black to White like data input when trained (Line is White) input_image = np.expand_dims(input_image, axis=0) # Change the shape of image array like input image when trained # ***load model*** loadpath = "num_reader.h5" model = tf.keras.models.load_model(loadpath) # Make predictions predictions = model.predict(input_image) print(np.argmax(predictions)) # Visualize, check the answer Original_input_image_testing = cv2.imread(Testing_img_path) cv2.imshow("This is what your computer has seen.",Original_input_image_testing) cv2.waitKey(0) cv2.destroyAllWindows()