30 lines
935 B
Python
30 lines
935 B
Python
|
# TensorFlow and tf.keras
|
||
|
import tensorflow as tf
|
||
|
from tensorflow import keras
|
||
|
|
||
|
# Helper libraries
|
||
|
import numpy as np
|
||
|
import cv2
|
||
|
|
||
|
# load an image
|
||
|
Testing_img_path = "./Testing_images/0.jpg"
|
||
|
input_image = cv2.imread(Testing_img_path,cv2.IMREAD_GRAYSCALE)
|
||
|
|
||
|
# Preprae data
|
||
|
input_image = cv2.resize(input_image,(28, 28))
|
||
|
input_image = cv2.bitwise_not(input_image) # invert Black to White like data input when trained (Line is White)
|
||
|
input_image = np.expand_dims(input_image, axis=0) # Change the shape of image array like input image when trained
|
||
|
|
||
|
# ***load model***
|
||
|
loadpath = "num_reader.h5"
|
||
|
model = tf.keras.models.load_model(loadpath)
|
||
|
|
||
|
# Make predictions
|
||
|
predictions = model.predict(input_image)
|
||
|
print(np.argmax(predictions))
|
||
|
|
||
|
# Visualize, check the answer
|
||
|
Original_input_image_testing = cv2.imread(Testing_img_path)
|
||
|
cv2.imshow("This is what your computer has seen.",Original_input_image_testing)
|
||
|
cv2.waitKey(0)
|
||
|
cv2.destroyAllWindows()
|