217 lines
8.5 KiB
Python
217 lines
8.5 KiB
Python
"""
|
|
Ultralytics Model Controller - YOLO inference with batched processing.
|
|
"""
|
|
|
|
import logging
|
|
from typing import Any, Callable, Dict, List, Optional
|
|
|
|
import torch
|
|
|
|
from .base_model_controller import BaseModelController, BatchFrame
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class UltralyticsModelController(BaseModelController):
|
|
"""
|
|
Model controller for Ultralytics YOLO inference.
|
|
|
|
Uses UltralyticsEngine which wraps the Ultralytics YOLO model with
|
|
native TensorRT backend for GPU-accelerated inference.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
inference_engine,
|
|
model_id: str,
|
|
batch_size: int = 16,
|
|
force_timeout: float = 0.05,
|
|
preprocess_fn: Optional[Callable] = None,
|
|
postprocess_fn: Optional[Callable] = None,
|
|
):
|
|
# Auto-detect actual batch size from the YOLO engine
|
|
engine_batch_size = self._detect_engine_batch_size(inference_engine)
|
|
|
|
# If engine has fixed batch size, use it. Otherwise use user's batch_size
|
|
actual_batch_size = engine_batch_size if engine_batch_size > 0 else batch_size
|
|
|
|
super().__init__(
|
|
model_id=model_id,
|
|
batch_size=actual_batch_size,
|
|
force_timeout=force_timeout,
|
|
preprocess_fn=preprocess_fn,
|
|
postprocess_fn=postprocess_fn,
|
|
)
|
|
self.inference_engine = inference_engine
|
|
self.engine_batch_size = engine_batch_size # Store for padding logic
|
|
|
|
if engine_batch_size > 0:
|
|
logger.info(
|
|
f"Ultralytics engine has fixed batch_size={engine_batch_size}, "
|
|
f"will pad batches to match"
|
|
)
|
|
else:
|
|
logger.info(
|
|
f"Ultralytics engine supports dynamic batching, "
|
|
f"using max batch_size={actual_batch_size}"
|
|
)
|
|
|
|
def _detect_engine_batch_size(self, inference_engine) -> int:
|
|
"""
|
|
Detect the batch size from Ultralytics engine.
|
|
|
|
Returns:
|
|
Fixed batch size (e.g., 2, 4, 8) or -1 for dynamic batching
|
|
"""
|
|
try:
|
|
# Get engine metadata
|
|
metadata = inference_engine.get_metadata()
|
|
|
|
# Check input shape for batch dimension
|
|
if "images" in metadata.input_shapes:
|
|
input_shape = metadata.input_shapes["images"]
|
|
batch_dim = input_shape[0]
|
|
|
|
if batch_dim > 0:
|
|
# Fixed batch size
|
|
return batch_dim
|
|
else:
|
|
# Dynamic batch size (-1)
|
|
return -1
|
|
|
|
# Fallback: try to get from model directly
|
|
if (
|
|
hasattr(inference_engine, "_model")
|
|
and inference_engine._model is not None
|
|
):
|
|
model = inference_engine._model
|
|
|
|
# Try to get batch info from Ultralytics model
|
|
if hasattr(model, "predictor") and model.predictor is not None:
|
|
predictor = model.predictor
|
|
if hasattr(predictor, "model") and hasattr(
|
|
predictor.model, "batch"
|
|
):
|
|
return predictor.model.batch
|
|
|
|
# Try to get from model.model (for .engine files)
|
|
if hasattr(model, "model"):
|
|
# For TensorRT engines, check input shape
|
|
if hasattr(model.model, "get_input_details"):
|
|
details = model.model.get_input_details()
|
|
if details and len(details) > 0:
|
|
shape = details[0].get("shape")
|
|
if shape and len(shape) > 0:
|
|
return shape[0] if shape[0] > 0 else -1
|
|
|
|
except Exception as e:
|
|
logger.warning(f"Could not detect engine batch size: {e}")
|
|
|
|
# Default: assume dynamic batching
|
|
return -1
|
|
|
|
def _run_batch_inference(self, batch: List[BatchFrame]) -> List[Dict[str, Any]]:
|
|
"""
|
|
Run Ultralytics YOLO inference on a batch of frames.
|
|
|
|
Ultralytics handles batching natively and returns Results objects.
|
|
"""
|
|
# Preprocess frames
|
|
preprocessed = []
|
|
for batch_frame in batch:
|
|
if self.preprocess_fn:
|
|
processed = self.preprocess_fn(batch_frame.frame)
|
|
# Ensure shape is (C, H, W) not (1, C, H, W)
|
|
if processed.dim() == 4 and processed.shape[0] == 1:
|
|
processed = processed.squeeze(0)
|
|
else:
|
|
processed = batch_frame.frame
|
|
preprocessed.append(processed)
|
|
|
|
# Stack into batch tensor: (B, C, H, W)
|
|
batch_tensor = torch.stack(preprocessed, dim=0)
|
|
actual_batch_size = len(batch)
|
|
|
|
# Handle fixed batch size engines (pad if needed)
|
|
if self.engine_batch_size > 0:
|
|
# Engine has fixed batch size
|
|
if batch_tensor.shape[0] > self.engine_batch_size:
|
|
# Truncate to engine's max batch size
|
|
logger.warning(
|
|
f"Batch size {batch_tensor.shape[0]} exceeds engine max {self.engine_batch_size}, truncating"
|
|
)
|
|
batch_tensor = batch_tensor[: self.engine_batch_size]
|
|
batch = batch[: self.engine_batch_size]
|
|
actual_batch_size = self.engine_batch_size
|
|
elif batch_tensor.shape[0] < self.engine_batch_size:
|
|
# Pad to match engine's fixed batch size
|
|
padding_size = self.engine_batch_size - batch_tensor.shape[0]
|
|
# Replicate last frame to pad (cheaper than zeros)
|
|
padding = batch_tensor[-1:].repeat(padding_size, 1, 1, 1)
|
|
batch_tensor = torch.cat([batch_tensor, padding], dim=0)
|
|
logger.debug(
|
|
f"Padded batch from {actual_batch_size} to {self.engine_batch_size} frames"
|
|
)
|
|
else:
|
|
# Dynamic batching - just limit to max
|
|
if batch_tensor.shape[0] > self.batch_size:
|
|
logger.warning(
|
|
f"Batch size {batch_tensor.shape[0]} exceeds configured max {self.batch_size}"
|
|
)
|
|
batch_tensor = batch_tensor[: self.batch_size]
|
|
batch = batch[: self.batch_size]
|
|
actual_batch_size = self.batch_size
|
|
|
|
# Run Ultralytics inference
|
|
# Input should be (B, 3, H, W) in range [0, 1], RGB format
|
|
outputs = self.inference_engine.infer(
|
|
inputs={"images": batch_tensor},
|
|
conf=0.25, # Confidence threshold
|
|
iou=0.45, # NMS IoU threshold
|
|
)
|
|
|
|
# Ultralytics returns Results objects in outputs["results"]
|
|
yolo_results = outputs["results"]
|
|
|
|
# Convert Results objects to our standard format
|
|
# Only process actual batch size (ignore padded results if any)
|
|
results = []
|
|
for i in range(actual_batch_size):
|
|
batch_frame = batch[i]
|
|
yolo_result = yolo_results[i]
|
|
# Extract detections from YOLO Results object
|
|
# yolo_result.boxes.data has format: [x1, y1, x2, y2, conf, cls]
|
|
if hasattr(yolo_result, "boxes") and yolo_result.boxes is not None:
|
|
detections = yolo_result.boxes.data # Already a tensor on GPU
|
|
else:
|
|
# No detections
|
|
detections = torch.zeros((0, 6), device=batch_tensor.device)
|
|
|
|
# Apply custom postprocessing if provided
|
|
if self.postprocess_fn:
|
|
try:
|
|
# For Ultralytics, postprocess_fn might do additional filtering
|
|
# Pass the raw boxes tensor in the same format as TensorRT output
|
|
detections = self.postprocess_fn(
|
|
{
|
|
"output0": detections.unsqueeze(
|
|
0
|
|
) # Add batch dim for compatibility
|
|
}
|
|
)
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Error in postprocess for stream {batch_frame.stream_id}: {e}"
|
|
)
|
|
detections = torch.zeros((0, 6), device=batch_tensor.device)
|
|
|
|
result = {
|
|
"stream_id": batch_frame.stream_id,
|
|
"timestamp": batch_frame.timestamp,
|
|
"detections": detections,
|
|
"metadata": batch_frame.metadata,
|
|
"yolo_result": yolo_result, # Keep original Results object for debugging
|
|
}
|
|
results.append(result)
|
|
|
|
return results
|