python-rtsp-worker/test_tracking.py
2025-11-09 01:49:52 +07:00

318 lines
10 KiB
Python

"""
Test script for TrackingController and TrackingFactory.
This script demonstrates how to use the tracking system with:
- TensorRT model repository (dependency injection)
- TrackingFactory for controller creation
- GPU-accelerated object tracking on RTSP streams
- Persistent track IDs and history management
"""
import time
import os
from dotenv import load_dotenv
from services import (
StreamDecoderFactory,
TensorRTModelRepository,
TrackingFactory,
TrackedObject
)
# Load environment variables
load_dotenv()
def main():
"""
Main test function demonstrating tracking workflow.
"""
# Configuration
GPU_ID = 0
MODEL_PATH = "models/yolov8n.trt" # Update with your model path
RTSP_URL = os.getenv('CAMERA_URL_1', 'rtsp://localhost:8554/test')
BUFFER_SIZE = 30
# COCO class names (example for YOLOv8)
COCO_CLASSES = {
0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane',
5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light',
# Add more as needed...
}
print("=" * 80)
print("GPU-Accelerated Object Tracking Test")
print("=" * 80)
# Step 1: Create model repository
print("\n[1/5] Initializing TensorRT Model Repository...")
model_repo = TensorRTModelRepository(gpu_id=GPU_ID, default_num_contexts=4)
# Load detection model (if file exists)
model_id = "yolov8_detector"
if os.path.exists(MODEL_PATH):
try:
metadata = model_repo.load_model(
model_id=model_id,
file_path=MODEL_PATH,
num_contexts=4
)
print(f"✓ Model loaded successfully")
print(f" Input shape: {metadata.input_shapes}")
print(f" Output shape: {metadata.output_shapes}")
except Exception as e:
print(f"✗ Failed to load model: {e}")
print(f" Please ensure {MODEL_PATH} exists")
print(f" Continuing with demo (will use mock detections)...")
model_id = None
else:
print(f"✗ Model file not found: {MODEL_PATH}")
print(f" Continuing with demo (will use mock detections)...")
model_id = None
# Step 2: Create tracking factory
print("\n[2/5] Creating TrackingFactory...")
tracking_factory = TrackingFactory(gpu_id=GPU_ID)
print(f"✓ Factory created: {tracking_factory}")
# Step 3: Create tracking controller (only if model loaded)
tracking_controller = None
if model_id is not None:
print("\n[3/5] Creating TrackingController...")
try:
tracking_controller = tracking_factory.create_controller(
model_repository=model_repo,
model_id=model_id,
tracker_type="iou",
max_age=30,
min_confidence=0.5,
iou_threshold=0.3,
class_names=COCO_CLASSES
)
print(f"✓ Controller created: {tracking_controller}")
except Exception as e:
print(f"✗ Failed to create controller: {e}")
tracking_controller = None
else:
print("\n[3/5] Skipping TrackingController creation (no model loaded)")
# Step 4: Create stream decoder
print("\n[4/5] Creating RTSP Stream Decoder...")
stream_factory = StreamDecoderFactory(gpu_id=GPU_ID)
decoder = stream_factory.create_decoder(
rtsp_url=RTSP_URL,
buffer_size=BUFFER_SIZE
)
decoder.start()
print(f"✓ Decoder started for: {RTSP_URL}")
print(f" Waiting for connection...")
# Wait for stream connection
time.sleep(5)
if decoder.is_connected():
print(f"✓ Stream connected!")
else:
print(f"✗ Stream not connected (status: {decoder.get_status().value})")
print(f" Note: This is expected if RTSP URL is not available")
print(f" The tracking system will still work with valid streams")
# Step 5: Run tracking loop (demo)
print("\n[5/5] Running Tracking Loop...")
print(f" Processing frames for 30 seconds...")
print(f" Press Ctrl+C to stop early\n")
try:
frame_count = 0
start_time = time.time()
while time.time() - start_time < 30:
# Get latest frame from decoder (GPU tensor)
frame = decoder.get_latest_frame(rgb=True)
if frame is None:
time.sleep(0.1)
continue
frame_count += 1
# Run tracking (if controller available)
if tracking_controller is not None:
try:
# Track objects in frame
tracked_objects = tracking_controller.track(frame)
# Display tracking results every 10 frames
if frame_count % 10 == 0:
print(f"\n--- Frame {frame_count} ---")
print(f"Active tracks: {len(tracked_objects)}")
for obj in tracked_objects:
print(f" Track #{obj.track_id}: {obj.class_name} "
f"(conf={obj.confidence:.2f}, "
f"bbox={[f'{x:.1f}' for x in obj.bbox]}, "
f"age={obj.age(tracking_controller._frame_count)} frames)")
# Print statistics
stats = tracking_controller.get_statistics()
print(f"\nStatistics:")
print(f" Total frames processed: {stats['frame_count']}")
print(f" Total tracks created: {stats['total_tracks_created']}")
print(f" Total detections: {stats['total_detections']}")
print(f" Avg detections/frame: {stats['avg_detections_per_frame']:.2f}")
print(f" Class counts: {stats['class_counts']}")
except Exception as e:
print(f"✗ Tracking error on frame {frame_count}: {e}")
# Small delay to avoid overwhelming output
time.sleep(0.1)
except KeyboardInterrupt:
print("\n\n✓ Interrupted by user")
# Cleanup
print("\n" + "=" * 80)
print("Cleanup")
print("=" * 80)
if tracking_controller is not None:
print("\nTracking final statistics:")
stats = tracking_controller.get_statistics()
for key, value in stats.items():
print(f" {key}: {value}")
print("\nExporting tracks to JSON...")
try:
tracks_json = tracking_controller.export_tracks(format="json")
with open("tracked_objects.json", "w") as f:
f.write(tracks_json)
print(f"✓ Tracks exported to tracked_objects.json")
except Exception as e:
print(f"✗ Export failed: {e}")
print("\nStopping decoder...")
decoder.stop()
print("✓ Decoder stopped")
print("\n" + "=" * 80)
print("Test completed successfully!")
print("=" * 80)
def test_multi_camera_tracking():
"""
Example: Track objects across multiple camera streams.
This demonstrates:
- Shared model repository across multiple streams
- Multiple tracking controllers (one per camera)
- Efficient GPU resource usage
"""
GPU_ID = 0
MODEL_PATH = "models/yolov8n.trt"
# Load multiple camera URLs
camera_urls = []
i = 1
while True:
url = os.getenv(f'CAMERA_URL_{i}')
if url:
camera_urls.append(url)
i += 1
else:
break
if not camera_urls:
print("No camera URLs found in .env file")
return
print(f"Testing multi-camera tracking with {len(camera_urls)} cameras")
# Create shared model repository
model_repo = TensorRTModelRepository(gpu_id=GPU_ID, default_num_contexts=8)
if os.path.exists(MODEL_PATH):
model_repo.load_model("detector", MODEL_PATH, num_contexts=8)
else:
print(f"Model not found: {MODEL_PATH}")
return
# Create tracking factory
tracking_factory = TrackingFactory(gpu_id=GPU_ID)
# Create stream decoders and tracking controllers
stream_factory = StreamDecoderFactory(gpu_id=GPU_ID)
decoders = []
controllers = []
for i, url in enumerate(camera_urls):
# Create decoder
decoder = stream_factory.create_decoder(url, buffer_size=30)
decoder.start()
decoders.append(decoder)
# Create tracking controller
controller = tracking_factory.create_controller(
model_repository=model_repo,
model_id="detector",
tracker_type="iou",
max_age=30,
min_confidence=0.5
)
controllers.append(controller)
print(f"Camera {i+1}: {url}")
print(f"\nWaiting for streams to connect...")
time.sleep(10)
# Track objects for 30 seconds
print(f"\nTracking objects across {len(camera_urls)} cameras...")
start_time = time.time()
try:
while time.time() - start_time < 30:
for i, (decoder, controller) in enumerate(zip(decoders, controllers)):
frame = decoder.get_latest_frame(rgb=True)
if frame is not None:
tracked_objects = controller.track(frame)
# Print stats every 10 seconds
if int(time.time() - start_time) % 10 == 0:
stats = controller.get_statistics()
print(f"Camera {i+1}: {stats['active_tracks']} tracks, "
f"{stats['frame_count']} frames")
time.sleep(0.1)
except KeyboardInterrupt:
print("\nInterrupted by user")
# Cleanup
print("\nCleaning up...")
for decoder in decoders:
decoder.stop()
# Print final stats
print("\nFinal Statistics:")
for i, controller in enumerate(controllers):
stats = controller.get_statistics()
print(f"\nCamera {i+1}:")
print(f" Frames: {stats['frame_count']}")
print(f" Tracks created: {stats['total_tracks_created']}")
print(f" Active tracks: {stats['active_tracks']}")
# Print model repository stats
print("\nModel Repository Stats:")
repo_stats = model_repo.get_stats()
for key, value in repo_stats.items():
print(f" {key}: {value}")
if __name__ == "__main__":
# Run single camera test
main()
# Uncomment to test multi-camera tracking
# test_multi_camera_tracking()