python-rtsp-worker/test_batch_inference.py
2025-11-09 11:47:18 +07:00

310 lines
9.5 KiB
Python

"""
Batch Inference Test - Process Multiple Cameras in Single Batch
This script demonstrates batch inference to eliminate sequential processing bottleneck.
Instead of processing 4 cameras one-by-one, we process all 4 in a single batched inference.
Requirements:
- TensorRT model with dynamic batching support
- Rebuild model: python scripts/convert_pt_to_tensorrt.py --model yolov8n.pt
--output models/yolov8n_batch4.trt --dynamic-batch --max-batch 4 --fp16
Performance Comparison:
- Sequential: Process each camera separately (current bottleneck)
- Batched: Stack all frames → single inference → split results
"""
import time
import os
import torch
from dotenv import load_dotenv
from services import (
StreamDecoderFactory,
TensorRTModelRepository,
YOLOv8Utils,
COCO_CLASSES,
)
load_dotenv()
def preprocess_batch(frames: list[torch.Tensor], input_size: int = 640) -> torch.Tensor:
"""
Preprocess multiple frames for batched inference.
Args:
frames: List of GPU tensors, each (3, H, W) uint8
input_size: Model input size (default: 640)
Returns:
Batched tensor (B, 3, 640, 640) float32
"""
# Preprocess each frame individually
preprocessed = [YOLOv8Utils.preprocess(frame, input_size) for frame in frames]
# Stack into batch: (B, 3, 640, 640)
return torch.cat(preprocessed, dim=0)
def postprocess_batch(outputs: dict, conf_threshold: float = 0.25,
nms_threshold: float = 0.45) -> list[torch.Tensor]:
"""
Postprocess batched YOLOv8 output to per-image detections.
YOLOv8 batched output: (B, 84, 8400)
Args:
outputs: Dictionary of model outputs from TensorRT inference
conf_threshold: Confidence threshold
nms_threshold: IoU threshold for NMS
Returns:
List of detection tensors, each (N, 6): [x1, y1, x2, y2, conf, class_id]
"""
from torchvision.ops import nms
# Get output tensor
output_name = list(outputs.keys())[0]
output = outputs[output_name] # (B, 84, 8400)
batch_size = output.shape[0]
results = []
for b in range(batch_size):
# Extract single image from batch
single_output = output[b:b+1] # (1, 84, 8400)
# Reuse existing postprocessing logic
detections = YOLOv8Utils.postprocess(
{output_name: single_output},
conf_threshold=conf_threshold,
nms_threshold=nms_threshold
)
results.append(detections)
return results
def benchmark_sequential_vs_batch(duration: int = 30):
"""
Benchmark sequential vs batched inference.
Args:
duration: Test duration in seconds
"""
print("=" * 80)
print("BATCH INFERENCE BENCHMARK")
print("=" * 80)
GPU_ID = 0
MODEL_PATH_BATCH = "models/yolov8n_batch4.trt" # Dynamic batch model
MODEL_PATH_SINGLE = "models/yolov8n.trt" # Original single-batch model
# Check if batch model exists
if not os.path.exists(MODEL_PATH_BATCH):
print(f"\n⚠ Batch model not found: {MODEL_PATH_BATCH}")
print("\nTo create it, run:")
print(" python scripts/convert_pt_to_tensorrt.py \\")
print(" --model yolov8n.pt \\")
print(" --output models/yolov8n_batch4.trt \\")
print(" --dynamic-batch --max-batch 4 --fp16")
print("\nFalling back to simulated batch processing...")
use_true_batching = False
MODEL_PATH = MODEL_PATH_SINGLE
else:
use_true_batching = True
MODEL_PATH = MODEL_PATH_BATCH
print(f"\n✓ Using batch model: {MODEL_PATH_BATCH}")
# Load camera URLs
camera_urls = []
for i in range(1, 5):
url = os.getenv(f'CAMERA_URL_{i}')
if url:
camera_urls.append(url)
if len(camera_urls) < 2:
print(f"⚠ Need at least 2 cameras, found {len(camera_urls)}")
return
print(f"\nTesting with {len(camera_urls)} cameras")
# Initialize components
print("\nInitializing...")
model_repo = TensorRTModelRepository(gpu_id=GPU_ID, default_num_contexts=4)
model_repo.load_model("detector", MODEL_PATH, num_contexts=4)
stream_factory = StreamDecoderFactory(gpu_id=GPU_ID)
decoders = []
for i, url in enumerate(camera_urls):
decoder = stream_factory.create_decoder(url, buffer_size=30)
decoder.start()
decoders.append(decoder)
print(f" Camera {i+1}: {url}")
print("\nWaiting for streams to connect...")
time.sleep(10)
# ==================== SEQUENTIAL BENCHMARK ====================
print("\n" + "=" * 80)
print("1. SEQUENTIAL INFERENCE (Current Method)")
print("=" * 80)
frame_count_seq = 0
start_time = time.time()
print(f"\nRunning for {duration} seconds...")
try:
while time.time() - start_time < duration:
for decoder in decoders:
frame_gpu = decoder.get_latest_frame(rgb=True)
if frame_gpu is None:
continue
# Preprocess
preprocessed = YOLOv8Utils.preprocess(frame_gpu)
# Inference (single frame)
outputs = model_repo.infer(
model_id="detector",
inputs={"images": preprocessed},
synchronize=True
)
# Postprocess
detections = YOLOv8Utils.postprocess(outputs)
frame_count_seq += 1
except KeyboardInterrupt:
pass
seq_time = time.time() - start_time
seq_fps = frame_count_seq / seq_time
print(f"\nSequential Results:")
print(f" Total frames: {frame_count_seq}")
print(f" Total time: {seq_time:.2f}s")
print(f" Combined FPS: {seq_fps:.2f}")
print(f" Per-camera FPS: {seq_fps / len(camera_urls):.2f}")
# ==================== BATCHED BENCHMARK ====================
print("\n" + "=" * 80)
print("2. BATCHED INFERENCE (Optimized Method)")
print("=" * 80)
if not use_true_batching:
print("\n⚠ Skipping true batch inference (model not available)")
print(" Results would be identical without dynamic batch model")
else:
frame_count_batch = 0
start_time = time.time()
print(f"\nRunning for {duration} seconds...")
try:
while time.time() - start_time < duration:
# Collect frames from all cameras
frames = []
for decoder in decoders:
frame_gpu = decoder.get_latest_frame(rgb=True)
if frame_gpu is not None:
frames.append(frame_gpu)
if len(frames) == 0:
continue
# Batch preprocess
batch_input = preprocess_batch(frames)
# Single batched inference
outputs = model_repo.infer(
model_id="detector",
inputs={"images": batch_input},
synchronize=True
)
# Batch postprocess
batch_detections = postprocess_batch(outputs)
frame_count_batch += len(frames)
except KeyboardInterrupt:
pass
batch_time = time.time() - start_time
batch_fps = frame_count_batch / batch_time
print(f"\nBatched Results:")
print(f" Total frames: {frame_count_batch}")
print(f" Total time: {batch_time:.2f}s")
print(f" Combined FPS: {batch_fps:.2f}")
print(f" Per-camera FPS: {batch_fps / len(camera_urls):.2f}")
# ==================== COMPARISON ====================
print("\n" + "=" * 80)
print("COMPARISON")
print("=" * 80)
improvement = ((batch_fps - seq_fps) / seq_fps) * 100
print(f"\nSequential: {seq_fps:.2f} FPS combined ({seq_fps / len(camera_urls):.2f} per camera)")
print(f"Batched: {batch_fps:.2f} FPS combined ({batch_fps / len(camera_urls):.2f} per camera)")
print(f"\nImprovement: {improvement:+.1f}%")
if improvement > 10:
print("✓ Significant improvement with batch inference!")
elif improvement > 0:
print("✓ Moderate improvement with batch inference")
else:
print("⚠ No improvement - check batch model configuration")
# Cleanup
print("\n" + "=" * 80)
print("Cleanup")
print("=" * 80)
for i, decoder in enumerate(decoders):
decoder.stop()
print(f" Stopped camera {i+1}")
print("\n✓ Benchmark complete!")
def test_batch_preprocessing():
"""Test that batch preprocessing works correctly"""
print("\n" + "=" * 80)
print("BATCH PREPROCESSING TEST")
print("=" * 80)
# Create dummy frames
device = torch.device('cuda:0')
frames = [
torch.randint(0, 256, (3, 720, 1280), dtype=torch.uint8, device=device)
for _ in range(4)
]
print(f"\nInput: {len(frames)} frames, each {frames[0].shape}")
# Test batch preprocessing
batch = preprocess_batch(frames)
print(f"Output: {batch.shape} (expected: [4, 3, 640, 640])")
print(f"dtype: {batch.dtype} (expected: torch.float32)")
print(f"range: [{batch.min():.3f}, {batch.max():.3f}] (expected: [0.0, 1.0])")
assert batch.shape == (4, 3, 640, 640), "Batch shape mismatch"
assert batch.dtype == torch.float32, "Dtype mismatch"
assert 0.0 <= batch.min() and batch.max() <= 1.0, "Value range incorrect"
print("\n✓ Batch preprocessing test passed!")
if __name__ == "__main__":
# Test batch preprocessing
test_batch_preprocessing()
# Run benchmark
benchmark_sequential_vs_batch(duration=30)