python-rtsp-worker/test_tracking_realtime.py
2025-11-09 19:54:35 +07:00

537 lines
17 KiB
Python

"""
Real-time object tracking visualization with OpenCV.
This script demonstrates:
- GPU-accelerated decoding and tracking
- CPU-side visualization with bounding boxes and track IDs
- Real-time display using OpenCV
- FPS monitoring and performance metrics
"""
import time
import os
import cv2
import numpy as np
from dotenv import load_dotenv
from services import (
StreamDecoderFactory,
TensorRTModelRepository,
TrackingFactory,
YOLOv8Utils,
COCO_CLASSES,
)
# Load environment variables
load_dotenv()
def draw_tracking_overlay(frame: np.ndarray, tracked_objects, frame_info: dict) -> np.ndarray:
"""
Draw bounding boxes, labels, and tracking info on frame.
Args:
frame: Frame in (H, W, 3) RGB format
tracked_objects: List of TrackedObject instances
frame_info: Dict with frame count, FPS, etc.
Returns:
Frame with overlays drawn
"""
# Convert RGB to BGR for OpenCV
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# Get frame dimensions
frame_height, frame_width = frame.shape[:2]
# Filter tracked objects to only show person and car
filtered_objects = [obj for obj in tracked_objects if obj.class_name in ['person', 'car']]
# Define colors for different track IDs (cycling through colors)
colors = [
(0, 255, 0), # Green
(255, 0, 0), # Blue
(0, 0, 255), # Red
(255, 255, 0), # Cyan
(255, 0, 255), # Magenta
(0, 255, 255), # Yellow
(128, 255, 0), # Light green
(255, 128, 0), # Orange
]
# Draw each tracked object
for obj in filtered_objects:
# Get color based on track ID
color = colors[obj.track_id % len(colors)]
# Extract bounding box coordinates
# Boxes come from YOLOv8 in 640x640 space, need to scale to frame size
x1, y1, x2, y2 = obj.bbox
# Scale from 640x640 model space to actual frame size
# YOLOv8 output is in 640x640, but frame is 1280x720
scale_x = frame_width / 640.0
scale_y = frame_height / 640.0
x1 = int(x1 * scale_x)
y1 = int(y1 * scale_y)
x2 = int(x2 * scale_x)
y2 = int(y2 * scale_y)
# Draw bounding box
cv2.rectangle(frame_bgr, (x1, y1), (x2, y2), color, 2)
# Prepare label text
label = f"ID:{obj.track_id} {obj.class_name} {obj.confidence:.2f}"
# Get text size for background rectangle
(text_width, text_height), baseline = cv2.getTextSize(
label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1
)
# Draw label background
cv2.rectangle(
frame_bgr,
(x1, y1 - text_height - baseline - 5),
(x1 + text_width, y1),
color,
-1 # Filled
)
# Draw label text
cv2.putText(
frame_bgr,
label,
(x1, y1 - baseline - 2),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 0, 0), # Black text
1,
cv2.LINE_AA
)
# Draw track history if available (trajectory)
if hasattr(obj, 'history') and len(obj.history) > 1:
points = []
for hist_bbox in obj.history[-10:]: # Last 10 positions
# Get center point of historical bbox (in 640x640 space)
hx1, hy1, hx2, hy2 = hist_bbox
# Scale from 640x640 to frame size
cx = int(((hx1 + hx2) / 2) * scale_x)
cy = int(((hy1 + hy2) / 2) * scale_y)
points.append((cx, cy))
# Draw trajectory line
for i in range(1, len(points)):
cv2.line(frame_bgr, points[i-1], points[i], color, 2)
# Draw info panel at top
info_bg_height = 80
overlay = frame_bgr.copy()
cv2.rectangle(overlay, (0, 0), (frame_bgr.shape[1], info_bg_height), (0, 0, 0), -1)
cv2.addWeighted(overlay, 0.5, frame_bgr, 0.5, 0, frame_bgr)
# Draw statistics text
y_offset = 25
cv2.putText(
frame_bgr,
f"Frame: {frame_info.get('frame_count', 0)} | FPS: {frame_info.get('fps', 0):.1f}",
(10, y_offset),
cv2.FONT_HERSHEY_SIMPLEX,
0.6,
(255, 255, 255),
2,
cv2.LINE_AA
)
y_offset += 25
# Count persons and cars
person_count = sum(1 for obj in filtered_objects if obj.class_name == 'person')
car_count = sum(1 for obj in filtered_objects if obj.class_name == 'car')
cv2.putText(
frame_bgr,
f"Persons: {person_count} | Cars: {car_count} | Total Visible: {len(filtered_objects)}",
(10, y_offset),
cv2.FONT_HERSHEY_SIMPLEX,
0.6,
(255, 255, 255),
2,
cv2.LINE_AA
)
return frame_bgr
def main():
"""
Main function for real-time tracking visualization.
"""
import torch
# Configuration
GPU_ID = 0
MODEL_PATH = "models/yolov8n.pt" # Changed to PT file
RTSP_URL = os.getenv('CAMERA_URL_1', 'rtsp://localhost:8554/test')
BUFFER_SIZE = 30
WINDOW_NAME = "Real-time Object Tracking"
print("=" * 80)
print("Real-time GPU-Accelerated Object Tracking")
print("=" * 80)
# Step 1: Create model repository with PT conversion enabled
print("\n[1/4] Initializing TensorRT Model Repository...")
model_repo = TensorRTModelRepository(gpu_id=GPU_ID, default_num_contexts=4, enable_pt_conversion=True)
# Load detection model (will auto-convert PT to TRT)
model_id = "yolov8_detector"
if os.path.exists(MODEL_PATH):
try:
print(f"Loading model from {MODEL_PATH}...")
print("Note: First load will convert PT to TensorRT (may take 3-5 minutes)")
print("Subsequent loads will use cached TensorRT engine")
metadata = model_repo.load_model(
model_id=model_id,
file_path=MODEL_PATH,
num_contexts=4,
pt_input_shapes={"images": (1, 3, 640, 640)}, # Required for PT conversion
pt_precision=torch.float16 # Use FP16 for better performance
)
print(f"✓ Model loaded successfully")
print(f" Input shape: {metadata.input_shapes}")
print(f" Output shape: {metadata.output_shapes}")
except Exception as e:
print(f"✗ Failed to load model: {e}")
print(f" Please ensure {MODEL_PATH} exists")
import traceback
traceback.print_exc()
return
else:
print(f"✗ Model file not found: {MODEL_PATH}")
print(f" Please provide a valid PyTorch (.pt) or TensorRT (.trt) model file")
return
# Step 2: Create tracking controller
print("\n[2/4] Creating TrackingController...")
tracking_factory = TrackingFactory(gpu_id=GPU_ID)
try:
tracking_controller = tracking_factory.create_controller(
model_repository=model_repo,
model_id=model_id,
tracker_type="iou",
max_age=30,
min_confidence=0.5,
iou_threshold=0.3,
class_names=COCO_CLASSES
)
print(f"✓ Controller created: {tracking_controller}")
except Exception as e:
print(f"✗ Failed to create controller: {e}")
return
# Step 3: Create stream decoder
print("\n[3/4] Creating RTSP Stream Decoder...")
stream_factory = StreamDecoderFactory(gpu_id=GPU_ID)
decoder = stream_factory.create_decoder(
rtsp_url=RTSP_URL,
buffer_size=BUFFER_SIZE
)
decoder.start()
print(f"✓ Decoder started for: {RTSP_URL}")
print(f" Waiting for connection...")
# Wait for stream connection
print(" Waiting up to 15 seconds for connection...")
connected = False
for i in range(15):
time.sleep(1)
if decoder.is_connected():
connected = True
break
print(f" Waiting... {i+1}/15 seconds (status: {decoder.get_status().value})")
if connected:
print(f"✓ Stream connected!")
else:
print(f"✗ Stream not connected after 15 seconds (status: {decoder.get_status().value})")
print(f" Proceeding anyway - will start displaying when frames arrive...")
# Don't exit - continue and wait for frames
# Step 4: Create OpenCV window
print("\n[4/4] Starting Real-time Visualization...")
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
cv2.resizeWindow(WINDOW_NAME, 1280, 720)
print(f"\n{'=' * 80}")
print("Real-time tracking started!")
print("Press 'q' to quit | Press 's' to save screenshot")
print(f"{'=' * 80}\n")
# FPS tracking
fps_start_time = time.time()
fps_frame_count = 0
current_fps = 0.0
frame_count = 0
screenshot_count = 0
try:
while True:
# Get frame from decoder (CPU memory for OpenCV)
frame_cpu = decoder.get_frame_cpu(index=-1, rgb=True)
if frame_cpu is None:
time.sleep(0.01)
continue
# Get GPU frame for tracking
frame_gpu = decoder.get_latest_frame(rgb=True)
if frame_gpu is None:
time.sleep(0.01)
continue
frame_count += 1
fps_frame_count += 1
# Run tracking on GPU frame with YOLOv8 pre/postprocessing
tracked_objects = tracking_controller.track(
frame_gpu,
preprocess_fn=YOLOv8Utils.preprocess,
postprocess_fn=YOLOv8Utils.postprocess
)
# Calculate FPS every second
elapsed = time.time() - fps_start_time
if elapsed >= 1.0:
current_fps = fps_frame_count / elapsed
fps_frame_count = 0
fps_start_time = time.time()
# Get tracking statistics
stats = tracking_controller.get_statistics()
# Prepare frame info for overlay
frame_info = {
'frame_count': frame_count,
'fps': current_fps,
'total_tracks': stats['total_tracks_created'],
'class_counts': stats['class_counts']
}
# Draw tracking overlay on CPU frame
display_frame = draw_tracking_overlay(frame_cpu, tracked_objects, frame_info)
# Display frame
cv2.imshow(WINDOW_NAME, display_frame)
# Handle keyboard input
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
print("\n✓ Quit requested by user")
break
elif key == ord('s'):
# Save screenshot
screenshot_count += 1
filename = f"screenshot_{screenshot_count:04d}.jpg"
cv2.imwrite(filename, display_frame)
print(f"✓ Screenshot saved: {filename}")
except KeyboardInterrupt:
print("\n✓ Interrupted by user")
except Exception as e:
print(f"\n✗ Error during tracking: {e}")
import traceback
traceback.print_exc()
# Cleanup
print("\n" + "=" * 80)
print("Cleanup")
print("=" * 80)
# Print final statistics
print("\nFinal Tracking Statistics:")
stats = tracking_controller.get_statistics()
for key, value in stats.items():
print(f" {key}: {value}")
# Close OpenCV window
cv2.destroyAllWindows()
# Stop decoder
print("\nStopping decoder...")
decoder.stop()
print("✓ Decoder stopped")
print("\n" + "=" * 80)
print("Real-time tracking completed!")
print("=" * 80)
def main_multi_window():
"""
Example: Display multiple camera streams in separate windows.
This demonstrates tracking on multiple RTSP streams simultaneously
with separate OpenCV windows for each stream.
"""
GPU_ID = 0
MODEL_PATH = "models/yolov8n.pt"
# Load camera URLs from environment
camera_urls = []
i = 1
while True:
url = os.getenv(f'CAMERA_URL_{i}')
if url:
camera_urls.append(url)
i += 1
else:
break
if not camera_urls:
print("No camera URLs found in .env file")
return
print(f"Starting multi-window tracking with {len(camera_urls)} cameras")
# Create shared model repository with PT conversion enabled
import torch
model_repo = TensorRTModelRepository(gpu_id=GPU_ID, default_num_contexts=8, enable_pt_conversion=True)
if os.path.exists(MODEL_PATH):
print(f"Loading model from {MODEL_PATH}...")
print("Note: First load will convert PT to TensorRT (may take 3-5 minutes)")
print("Subsequent loads will use cached TensorRT engine")
model_repo.load_model(
model_id="detector",
file_path=MODEL_PATH,
num_contexts=8,
pt_input_shapes={"images": (1, 3, 640, 640)}, # Required for PT conversion
pt_precision=torch.float16 # Use FP16 for better performance
)
print("✓ Model loaded successfully")
else:
print(f"Model not found: {MODEL_PATH}")
return
# Create tracking factory
tracking_factory = TrackingFactory(gpu_id=GPU_ID)
# Create decoders and controllers
stream_factory = StreamDecoderFactory(gpu_id=GPU_ID)
decoders = []
controllers = []
window_names = []
for i, url in enumerate(camera_urls):
# Create decoder
decoder = stream_factory.create_decoder(url, buffer_size=30)
decoder.start()
decoders.append(decoder)
# Create tracking controller
controller = tracking_factory.create_controller(
model_repository=model_repo,
model_id="detector",
tracker_type="iou",
max_age=30,
min_confidence=0.5,
iou_threshold=0.3,
class_names=COCO_CLASSES
)
controllers.append(controller)
# Create window
window_name = f"Camera {i+1}"
window_names.append(window_name)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
cv2.resizeWindow(window_name, 640, 480)
print(f"Camera {i+1}: {url}")
print("\nWaiting for streams to connect...")
time.sleep(10)
print("\nPress 'q' to quit")
# FPS tracking for each stream
fps_data = [{'start': time.time(), 'count': 0, 'fps': 0.0} for _ in camera_urls]
frame_counts = [0] * len(camera_urls)
try:
while True:
for i, (decoder, controller, window_name) in enumerate(zip(decoders, controllers, window_names)):
# Get frames
frame_cpu = decoder.get_frame_cpu(index=-1, rgb=True)
frame_gpu = decoder.get_latest_frame(rgb=True)
if frame_cpu is None or frame_gpu is None:
continue
frame_counts[i] += 1
fps_data[i]['count'] += 1
# Calculate FPS
elapsed = time.time() - fps_data[i]['start']
if elapsed >= 1.0:
fps_data[i]['fps'] = fps_data[i]['count'] / elapsed
fps_data[i]['count'] = 0
fps_data[i]['start'] = time.time()
# Track objects with YOLOv8 pre/postprocessing
tracked_objects = controller.track(
frame_gpu,
preprocess_fn=YOLOv8Utils.preprocess,
postprocess_fn=YOLOv8Utils.postprocess
)
# Get statistics
stats = controller.get_statistics()
# Prepare frame info
frame_info = {
'frame_count': frame_counts[i],
'fps': fps_data[i]['fps'],
'total_tracks': stats['total_tracks_created'],
'class_counts': stats['class_counts']
}
# Draw overlay and display
display_frame = draw_tracking_overlay(frame_cpu, tracked_objects, frame_info)
cv2.imshow(window_name, display_frame)
# Check for quit
if cv2.waitKey(1) & 0xFF == ord('q'):
break
except KeyboardInterrupt:
print("\nInterrupted by user")
# Cleanup
print("\nCleaning up...")
cv2.destroyAllWindows()
for decoder in decoders:
decoder.stop()
print("\nFinal Statistics:")
for i, controller in enumerate(controllers):
stats = controller.get_statistics()
print(f"\nCamera {i+1}:")
print(f" Frames: {stats['frame_count']}")
print(f" Tracks created: {stats['total_tracks_created']}")
print(f" Active tracks: {stats['active_tracks']}")
if __name__ == "__main__":
# Run single camera visualization
# main()
# Uncomment to run multi-window visualization
main_multi_window()