python-rtsp-worker/services/stream_connection_manager.py
2025-11-11 02:07:17 +07:00

693 lines
24 KiB
Python

"""
StreamConnectionManager - Event-driven orchestration for stream processing with batched inference.
This module provides high-level connection management for multiple RTSP streams,
coordinating decoders, batched inference, and tracking with callbacks and threading.
"""
import logging
import queue
import threading
import time
from dataclasses import dataclass
from enum import Enum
from typing import Any, Callable, Dict, List, Optional, Tuple
import torch
from .base_model_controller import BaseModelController
from .model_repository import TensorRTModelRepository
from .stream_decoder import StreamDecoderFactory
from .tensorrt_model_controller import TensorRTModelController
from .ultralytics_model_controller import UltralyticsModelController
logger = logging.getLogger(__name__)
class ConnectionStatus(Enum):
"""Status of a stream connection"""
CONNECTING = "connecting"
CONNECTED = "connected"
DISCONNECTED = "disconnected"
ERROR = "error"
@dataclass
class TrackingResult:
"""Result emitted to user callbacks"""
stream_id: str
timestamp: float
tracked_objects: List # List of TrackedObject from TrackingController
detections: List # Raw detections
frame_shape: Tuple[int, int, int]
frame_tensor: Optional[torch.Tensor] # GPU tensor of the frame (C, H, W)
metadata: Dict
class StreamConnection:
"""
Represents a single stream connection with event emission.
This class wraps a StreamDecoder, polls frames in a thread, submits them
to the ModelController for batched inference, runs tracking, and emits results
via queues or callbacks.
Args:
stream_id: Unique identifier for this stream
decoder: StreamDecoder instance
model_controller: ModelController for batched inference
tracking_controller: TrackingController for object tracking
poll_interval: Frame polling interval in seconds (default: 0.01)
"""
def __init__(
self,
stream_id: str,
decoder,
model_controller: BaseModelController,
tracking_controller,
poll_interval: float = 0.01,
):
self.stream_id = stream_id
self.decoder = decoder
self.model_controller = model_controller
self.tracking_controller = tracking_controller
self.poll_interval = poll_interval
self.status = ConnectionStatus.CONNECTING
self.frame_count = 0
self.last_frame_time = 0.0
# Event emission
self.result_queue: queue.Queue[TrackingResult] = queue.Queue()
self.error_queue: queue.Queue[Exception] = queue.Queue()
# Event-driven state
self.running = False
def start(self):
"""Start the connection (decoder with frame callback)"""
self.running = True
# Register callback for frame events from decoder
self.decoder.register_frame_callback(self._on_frame_decoded)
# Start decoder (runs in background thread)
self.decoder.start()
# Wait for initial connection (try for up to 10 seconds)
max_wait = 10.0
wait_interval = 0.5
elapsed = 0.0
while elapsed < max_wait:
time.sleep(wait_interval)
elapsed += wait_interval
if self.decoder.is_connected():
self.status = ConnectionStatus.CONNECTED
logger.info(f"Stream {self.stream_id} connected after {elapsed:.1f}s")
break
else:
# Timeout - but don't fail hard, let it try to connect in background
logger.warning(
f"Stream {self.stream_id} not connected after {max_wait}s, will continue trying..."
)
self.status = ConnectionStatus.CONNECTING
def stop(self):
"""Stop the connection and cleanup"""
logger.info(f"Stopping stream {self.stream_id}...")
self.running = False
# Unregister frame callback
self.decoder.unregister_frame_callback(self._on_frame_decoded)
# Stop decoder
self.decoder.stop()
# Unregister from model controller
self.model_controller.unregister_callback(self.stream_id)
self.status = ConnectionStatus.DISCONNECTED
logger.info(f"Stream {self.stream_id} stopped")
def _on_frame_decoded(self, frame_ref):
"""
Event handler called by decoder when a new frame is decoded.
This is the event-driven replacement for polling.
Args:
frame_ref: FrameReference object containing the RGB frame tensor
"""
if not self.running:
# If not running, free the frame immediately
frame_ref.free()
return
try:
self.last_frame_time = time.time()
self.frame_count += 1
# CRITICAL: Clone the GPU tensor to decouple from decoder's frame buffer
# The decoder reuses frame buffer memory, so we must copy the tensor
# before submitting to async batched inference to prevent race conditions
# where the decoder overwrites memory while inference is still reading it.
cloned_tensor = frame_ref.rgb_tensor.clone()
# Submit to model controller for batched inference
# Pass the FrameReference in metadata so we can free it later
logger.debug(
f"[{self.stream_id}] Submitting frame {self.frame_count} to model controller"
)
self.model_controller.submit_frame(
stream_id=self.stream_id,
frame=cloned_tensor, # Use cloned tensor, not original
metadata={
"frame_number": self.frame_count,
"shape": tuple(cloned_tensor.shape),
"frame_ref": frame_ref, # Store reference for later cleanup
},
)
logger.debug(
f"[{self.stream_id}] Frame {self.frame_count} submitted, queue size: {len(self.model_controller.frame_queue)}"
)
# Update connection status based on decoder status
if (
self.decoder.is_connected()
and self.status != ConnectionStatus.CONNECTED
):
logger.info(f"Stream {self.stream_id} reconnected")
self.status = ConnectionStatus.CONNECTED
elif (
not self.decoder.is_connected()
and self.status == ConnectionStatus.CONNECTED
):
logger.warning(f"Stream {self.stream_id} disconnected")
self.status = ConnectionStatus.DISCONNECTED
except Exception as e:
logger.error(
f"Error processing frame for {self.stream_id}: {e}", exc_info=True
)
self.error_queue.put(e)
self.status = ConnectionStatus.ERROR
# Free the frame on error
frame_ref.free()
def _handle_inference_result(self, result: Dict[str, Any]):
"""
Callback invoked by ModelController when inference is done.
Runs tracking and emits final result.
Args:
result: Inference result dictionary
"""
frame_ref = None
try:
# Extract detections
detections = result["detections"]
# Get FrameReference from metadata (if present)
frame_ref = result["metadata"].get("frame_ref")
# Run tracking (synchronous) with frame shape for bbox scaling
frame_shape = result["metadata"].get("shape")
tracked_objects = self._run_tracking_sync(detections, frame_shape)
# Get ORIGINAL frame tensor from metadata (not the preprocessed one in result["frame"])
# The frame in result["frame"] is preprocessed (resized, normalized)
# We need the original frame for visualization
frame_ref = result["metadata"].get("frame_ref")
# CRITICAL: Clone the frame tensor BEFORE freeing frame_ref
# The frame_ref will be freed at the end, so we need a copy
if frame_ref:
frame_tensor = frame_ref.rgb_tensor.clone()
logger.debug(
f"Cloned frame tensor for {self.stream_id}: {frame_tensor.shape}"
)
else:
frame_tensor = None
logger.warning(f"No frame_ref in metadata for {self.stream_id}")
# Create tracking result
tracking_result = TrackingResult(
stream_id=self.stream_id,
timestamp=result["timestamp"],
tracked_objects=tracked_objects,
detections=detections,
frame_shape=result["metadata"].get("shape"),
frame_tensor=frame_tensor, # Cloned original frame
metadata=result["metadata"],
)
# Emit to result queue
self.result_queue.put(tracking_result)
except Exception as e:
logger.error(
f"Error handling inference result for {self.stream_id}: {e}",
exc_info=True,
)
self.error_queue.put(e)
finally:
# Free the frame reference - this is the last point in the pipeline
if frame_ref is not None:
frame_ref.free()
def _run_tracking_sync(self, detections, frame_shape=None, min_confidence=0.7):
"""
Run tracking synchronously (called from executor).
Args:
detections: Detection tensor (N, 6) [x1, y1, x2, y2, conf, class_id]
frame_shape: Original frame shape (C, H, W) for scaling bboxes
min_confidence: Minimum confidence threshold for detections
Returns:
List of TrackedObject instances
"""
# Convert tensor detections to Detection objects, filtering by confidence
from .tracking_controller import Detection
detection_list = []
for det in detections:
confidence = float(det[4])
# Filter by confidence threshold (prevents track accumulation)
if confidence < min_confidence:
continue
detection_list.append(
Detection(
bbox=det[:4].cpu().tolist(),
confidence=confidence,
class_id=int(det[5]) if det.shape[0] > 5 else 0,
class_name=f"class_{int(det[5])}"
if det.shape[0] > 5
else "unknown",
)
)
# Update tracker with detections (will scale bboxes to frame space)
return self.tracking_controller.update(detection_list, frame_shape=frame_shape)
def tracking_results(self):
"""
Generator for tracking results (blocking iterator).
Usage:
for result in connection.tracking_results():
print(result.tracked_objects)
Yields:
TrackingResult objects as they become available
"""
while self.running or not self.result_queue.empty():
try:
result = self.result_queue.get(timeout=1.0)
yield result
except queue.Empty:
continue
def errors(self):
"""
Generator for errors (blocking iterator).
Yields:
Exception objects as they occur
"""
while self.running or not self.error_queue.empty():
try:
error = self.error_queue.get(timeout=1.0)
yield error
except queue.Empty:
continue
def get_stats(self) -> Dict[str, Any]:
"""Get connection statistics"""
return {
"stream_id": self.stream_id,
"status": self.status.value,
"frame_count": self.frame_count,
"last_frame_time": self.last_frame_time,
"decoder_connected": self.decoder.is_connected(),
"decoder_buffer_size": self.decoder.get_buffer_size(),
"result_queue_size": self.result_queue.qsize(),
"error_queue_size": self.error_queue.qsize(),
}
class StreamConnectionManager:
"""
High-level manager for stream connections with batched inference.
This manager coordinates multiple RTSP streams, batched model inference,
and object tracking through an async event-driven API.
Args:
gpu_id: GPU device ID (default: 0)
batch_size: Maximum batch size for inference (default: 16)
max_queue_size: Maximum frames in queue before dropping (default: 100)
poll_interval: Frame polling interval in seconds (default: 0.01)
Example:
manager = StreamConnectionManager(gpu_id=0, batch_size=16)
await manager.initialize(model_path="yolov8n.trt", ...)
connection = await manager.connect_stream(rtsp_url, on_tracking_result=callback)
await asyncio.sleep(60)
await manager.shutdown()
"""
def __init__(
self,
gpu_id: int = 0,
batch_size: int = 16,
max_queue_size: int = 100,
poll_interval: float = 0.01,
enable_pt_conversion: bool = True,
backend: str = "tensorrt", # "tensorrt" or "ultralytics"
):
self.gpu_id = gpu_id
self.batch_size = batch_size
self.max_queue_size = max_queue_size
self.poll_interval = poll_interval
self.backend = backend.lower()
# Factories
self.decoder_factory = StreamDecoderFactory(gpu_id=gpu_id)
# Initialize inference engine based on backend
self.inference_engine = None
self.model_repository = None # Legacy - will be removed
if self.backend == "ultralytics":
# Use Ultralytics native YOLO inference
from .inference_engine import UltralyticsEngine
self.inference_engine = UltralyticsEngine()
logger.info("Using Ultralytics inference engine")
else:
# Use native TensorRT inference
self.model_repository = TensorRTModelRepository(
gpu_id=gpu_id, enable_pt_conversion=enable_pt_conversion
)
logger.info("Using native TensorRT inference engine")
# Controllers
self.model_controller = (
None # Will be TensorRTModelController or UltralyticsModelController
)
# Connections
self.connections: Dict[str, StreamConnection] = {}
# State
self.initialized = False
def initialize(
self,
model_path: str,
model_id: str = "detector",
preprocess_fn: Optional[Callable] = None,
postprocess_fn: Optional[Callable] = None,
num_contexts: int = 4,
pt_input_shapes: Optional[Dict] = None,
pt_precision: Optional[Any] = None,
**pt_conversion_kwargs,
):
"""
Initialize the manager with a model.
Supports transparent loading of .pt (YOLO), .engine, and .trt files.
For Ultralytics YOLO models (.pt), metadata is auto-detected - no manual
input_shapes or precision needed! Non-YOLO models still require input_shapes.
Args:
model_path: Path to model file (.trt, .engine, .pt, .pth)
- .engine: Ultralytics native format (recommended)
- .pt: Auto-converts to .engine (YOLO models only)
- .trt: Raw TensorRT engine
model_id: Model identifier (default: "detector")
preprocess_fn: Preprocessing function (e.g., YOLOv8Utils.preprocess)
postprocess_fn: Postprocessing function (e.g., YOLOv8Utils.postprocess)
num_contexts: Number of TensorRT execution contexts (default: 4)
pt_input_shapes: [Optional] Only required for non-YOLO PyTorch models
YOLO models auto-detect from embedded metadata
pt_precision: [Optional] Precision for PT conversion (auto-detected for YOLO)
**pt_conversion_kwargs: Additional PT conversion arguments
Example:
# YOLO model - no manual parameters needed:
manager.initialize(
model_path="model.pt", # or .engine
preprocess_fn=YOLOv8Utils.preprocess,
postprocess_fn=YOLOv8Utils.postprocess
)
"""
logger.info(f"Initializing StreamConnectionManager on GPU {self.gpu_id}")
logger.info(f"Backend: {self.backend}")
# Initialize engine based on backend
if self.backend == "ultralytics":
# Use Ultralytics native inference
logger.info("Initializing Ultralytics YOLO engine...")
device = torch.device(f"cuda:{self.gpu_id}")
metadata = self.inference_engine.initialize(
model_path=model_path,
device=device,
batch=self.batch_size,
half=False, # Use FP32 for now
imgsz=640,
**pt_conversion_kwargs,
)
logger.info(f"Ultralytics engine initialized: {metadata}")
# Create Ultralytics model controller
self.model_controller = UltralyticsModelController(
inference_engine=self.inference_engine,
model_id=model_id,
batch_size=self.batch_size,
max_queue_size=self.max_queue_size,
preprocess_fn=preprocess_fn,
postprocess_fn=postprocess_fn,
)
self.model_controller.start()
else:
# Use native TensorRT with model repository
logger.info("Initializing TensorRT engine...")
self.model_repository.load_model(
model_id,
model_path,
num_contexts=num_contexts,
pt_input_shapes=pt_input_shapes,
pt_precision=pt_precision,
**pt_conversion_kwargs,
)
logger.info(f"Loaded model {model_id} from {model_path}")
# Create TensorRT model controller
self.model_controller = TensorRTModelController(
model_repository=self.model_repository,
model_id=model_id,
batch_size=self.batch_size,
max_queue_size=self.max_queue_size,
preprocess_fn=preprocess_fn,
postprocess_fn=postprocess_fn,
)
self.model_controller.start()
# Don't create a shared tracking controller here
# Each stream will get its own tracking controller to avoid track accumulation
self.tracking_controller = None
self.model_id_for_tracking = model_id # Store for later use
self.initialized = True
logger.info("StreamConnectionManager initialized successfully")
def connect_stream(
self,
rtsp_url: str,
stream_id: Optional[str] = None,
on_tracking_result: Optional[Callable] = None,
on_error: Optional[Callable] = None,
buffer_size: int = 30,
) -> StreamConnection:
"""
Connect to a stream and start processing.
Args:
rtsp_url: RTSP stream URL
stream_id: Optional stream identifier (auto-generated if not provided)
on_tracking_result: Optional callback for tracking results (synchronous)
on_error: Optional callback for errors (synchronous)
buffer_size: Decoder buffer size (default: 30)
Returns:
StreamConnection object for this stream
Raises:
RuntimeError: If manager is not initialized
ConnectionError: If stream connection fails
"""
if not self.initialized:
raise RuntimeError("Manager not initialized. Call initialize() first.")
# Generate stream ID if not provided
if stream_id is None:
stream_id = f"stream_{len(self.connections)}"
logger.info(f"Connecting to stream {stream_id}: {rtsp_url}")
# Create decoder
decoder = self.decoder_factory.create_decoder(rtsp_url, buffer_size=buffer_size)
# Create lightweight tracker (NO model_repository dependency!)
from .tracking_controller import ObjectTracker
tracking_controller = ObjectTracker(
gpu_id=self.gpu_id,
tracker_type="iou",
max_age=30,
iou_threshold=0.3,
class_names=None, # TODO: pass class names if available
)
logger.info(f"Created lightweight ObjectTracker for stream {stream_id}")
# Create connection
connection = StreamConnection(
stream_id=stream_id,
decoder=decoder,
model_controller=self.model_controller,
tracking_controller=tracking_controller,
poll_interval=self.poll_interval,
)
# Register callback with model controller
self.model_controller.register_callback(
stream_id, connection._handle_inference_result
)
# Start connection
connection.start()
# Store connection
self.connections[stream_id] = connection
# Set up user callbacks if provided (run in separate threads)
if on_tracking_result:
threading.Thread(
target=self._forward_results,
args=(connection, on_tracking_result),
daemon=True,
).start()
if on_error:
threading.Thread(
target=self._forward_errors, args=(connection, on_error), daemon=True
).start()
logger.info(f"Stream {stream_id} connected successfully")
return connection
def disconnect_stream(self, stream_id: str):
"""
Disconnect and cleanup a stream.
Args:
stream_id: Stream identifier to disconnect
"""
connection = self.connections.get(stream_id)
if connection:
connection.stop()
del self.connections[stream_id]
logger.info(f"Stream {stream_id} disconnected")
def disconnect_all(self):
"""Disconnect all streams"""
logger.info("Disconnecting all streams...")
stream_ids = list(self.connections.keys())
for stream_id in stream_ids:
self.disconnect_stream(stream_id)
def shutdown(self):
"""Shutdown the manager and cleanup all resources"""
logger.info("Shutting down StreamConnectionManager...")
# Disconnect all streams
self.disconnect_all()
# Stop model controller
if self.model_controller:
self.model_controller.stop()
# Note: Model repository cleanup is sync and may cause segfaults
# Leaving cleanup to garbage collection for now
self.initialized = False
logger.info("StreamConnectionManager shutdown complete")
def _forward_results(self, connection: StreamConnection, callback: Callable):
"""
Forward results from connection to user callback.
Args:
connection: StreamConnection to listen to
callback: User callback (synchronous)
"""
try:
for result in connection.tracking_results():
callback(result)
except Exception as e:
logger.error(
f"Error in result forwarding for {connection.stream_id}: {e}",
exc_info=True,
)
def _forward_errors(self, connection: StreamConnection, callback: Callable):
"""
Forward errors from connection to user callback.
Args:
connection: StreamConnection to listen to
callback: User callback (synchronous)
"""
try:
for error in connection.errors():
callback(error)
except Exception as e:
logger.error(
f"Error in error forwarding for {connection.stream_id}: {e}",
exc_info=True,
)
def get_stats(self) -> Dict[str, Any]:
"""
Get statistics for all connections.
Returns:
Dictionary with manager and connection statistics
"""
return {
"manager": {
"initialized": self.initialized,
"gpu_id": self.gpu_id,
"num_connections": len(self.connections),
"batch_size": self.batch_size,
"max_queue_size": self.max_queue_size,
"poll_interval": self.poll_interval,
},
"model_controller": self.model_controller.get_stats()
if self.model_controller
else {},
"connections": {
stream_id: conn.get_stats()
for stream_id, conn in self.connections.items()
},
}