remove old tests

This commit is contained in:
Siwat Sirichai 2025-11-09 19:54:41 +07:00
parent 748fb71980
commit fd470b3765
4 changed files with 0 additions and 963 deletions

View file

@ -1,310 +0,0 @@
"""
Batch Inference Test - Process Multiple Cameras in Single Batch
This script demonstrates batch inference to eliminate sequential processing bottleneck.
Instead of processing 4 cameras one-by-one, we process all 4 in a single batched inference.
Requirements:
- TensorRT model with dynamic batching support
- Rebuild model: python scripts/convert_pt_to_tensorrt.py --model yolov8n.pt
--output models/yolov8n_batch4.trt --dynamic-batch --max-batch 4 --fp16
Performance Comparison:
- Sequential: Process each camera separately (current bottleneck)
- Batched: Stack all frames single inference split results
"""
import time
import os
import torch
from dotenv import load_dotenv
from services import (
StreamDecoderFactory,
TensorRTModelRepository,
YOLOv8Utils,
COCO_CLASSES,
)
load_dotenv()
def preprocess_batch(frames: list[torch.Tensor], input_size: int = 640) -> torch.Tensor:
"""
Preprocess multiple frames for batched inference.
Args:
frames: List of GPU tensors, each (3, H, W) uint8
input_size: Model input size (default: 640)
Returns:
Batched tensor (B, 3, 640, 640) float32
"""
# Preprocess each frame individually
preprocessed = [YOLOv8Utils.preprocess(frame, input_size) for frame in frames]
# Stack into batch: (B, 3, 640, 640)
return torch.cat(preprocessed, dim=0)
def postprocess_batch(outputs: dict, conf_threshold: float = 0.25,
nms_threshold: float = 0.45) -> list[torch.Tensor]:
"""
Postprocess batched YOLOv8 output to per-image detections.
YOLOv8 batched output: (B, 84, 8400)
Args:
outputs: Dictionary of model outputs from TensorRT inference
conf_threshold: Confidence threshold
nms_threshold: IoU threshold for NMS
Returns:
List of detection tensors, each (N, 6): [x1, y1, x2, y2, conf, class_id]
"""
from torchvision.ops import nms
# Get output tensor
output_name = list(outputs.keys())[0]
output = outputs[output_name] # (B, 84, 8400)
batch_size = output.shape[0]
results = []
for b in range(batch_size):
# Extract single image from batch
single_output = output[b:b+1] # (1, 84, 8400)
# Reuse existing postprocessing logic
detections = YOLOv8Utils.postprocess(
{output_name: single_output},
conf_threshold=conf_threshold,
nms_threshold=nms_threshold
)
results.append(detections)
return results
def benchmark_sequential_vs_batch(duration: int = 30):
"""
Benchmark sequential vs batched inference.
Args:
duration: Test duration in seconds
"""
print("=" * 80)
print("BATCH INFERENCE BENCHMARK")
print("=" * 80)
GPU_ID = 0
MODEL_PATH_BATCH = "models/yolov8n_batch4.trt" # Dynamic batch model
MODEL_PATH_SINGLE = "models/yolov8n.trt" # Original single-batch model
# Check if batch model exists
if not os.path.exists(MODEL_PATH_BATCH):
print(f"\n⚠ Batch model not found: {MODEL_PATH_BATCH}")
print("\nTo create it, run:")
print(" python scripts/convert_pt_to_tensorrt.py \\")
print(" --model yolov8n.pt \\")
print(" --output models/yolov8n_batch4.trt \\")
print(" --dynamic-batch --max-batch 4 --fp16")
print("\nFalling back to simulated batch processing...")
use_true_batching = False
MODEL_PATH = MODEL_PATH_SINGLE
else:
use_true_batching = True
MODEL_PATH = MODEL_PATH_BATCH
print(f"\n✓ Using batch model: {MODEL_PATH_BATCH}")
# Load camera URLs
camera_urls = []
for i in range(1, 5):
url = os.getenv(f'CAMERA_URL_{i}')
if url:
camera_urls.append(url)
if len(camera_urls) < 2:
print(f"⚠ Need at least 2 cameras, found {len(camera_urls)}")
return
print(f"\nTesting with {len(camera_urls)} cameras")
# Initialize components
print("\nInitializing...")
model_repo = TensorRTModelRepository(gpu_id=GPU_ID, default_num_contexts=4)
model_repo.load_model("detector", MODEL_PATH, num_contexts=4)
stream_factory = StreamDecoderFactory(gpu_id=GPU_ID)
decoders = []
for i, url in enumerate(camera_urls):
decoder = stream_factory.create_decoder(url, buffer_size=30)
decoder.start()
decoders.append(decoder)
print(f" Camera {i+1}: {url}")
print("\nWaiting for streams to connect...")
time.sleep(10)
# ==================== SEQUENTIAL BENCHMARK ====================
print("\n" + "=" * 80)
print("1. SEQUENTIAL INFERENCE (Current Method)")
print("=" * 80)
frame_count_seq = 0
start_time = time.time()
print(f"\nRunning for {duration} seconds...")
try:
while time.time() - start_time < duration:
for decoder in decoders:
frame_gpu = decoder.get_latest_frame(rgb=True)
if frame_gpu is None:
continue
# Preprocess
preprocessed = YOLOv8Utils.preprocess(frame_gpu)
# Inference (single frame)
outputs = model_repo.infer(
model_id="detector",
inputs={"images": preprocessed},
synchronize=True
)
# Postprocess
detections = YOLOv8Utils.postprocess(outputs)
frame_count_seq += 1
except KeyboardInterrupt:
pass
seq_time = time.time() - start_time
seq_fps = frame_count_seq / seq_time
print(f"\nSequential Results:")
print(f" Total frames: {frame_count_seq}")
print(f" Total time: {seq_time:.2f}s")
print(f" Combined FPS: {seq_fps:.2f}")
print(f" Per-camera FPS: {seq_fps / len(camera_urls):.2f}")
# ==================== BATCHED BENCHMARK ====================
print("\n" + "=" * 80)
print("2. BATCHED INFERENCE (Optimized Method)")
print("=" * 80)
if not use_true_batching:
print("\n⚠ Skipping true batch inference (model not available)")
print(" Results would be identical without dynamic batch model")
else:
frame_count_batch = 0
start_time = time.time()
print(f"\nRunning for {duration} seconds...")
try:
while time.time() - start_time < duration:
# Collect frames from all cameras
frames = []
for decoder in decoders:
frame_gpu = decoder.get_latest_frame(rgb=True)
if frame_gpu is not None:
frames.append(frame_gpu)
if len(frames) == 0:
continue
# Batch preprocess
batch_input = preprocess_batch(frames)
# Single batched inference
outputs = model_repo.infer(
model_id="detector",
inputs={"images": batch_input},
synchronize=True
)
# Batch postprocess
batch_detections = postprocess_batch(outputs)
frame_count_batch += len(frames)
except KeyboardInterrupt:
pass
batch_time = time.time() - start_time
batch_fps = frame_count_batch / batch_time
print(f"\nBatched Results:")
print(f" Total frames: {frame_count_batch}")
print(f" Total time: {batch_time:.2f}s")
print(f" Combined FPS: {batch_fps:.2f}")
print(f" Per-camera FPS: {batch_fps / len(camera_urls):.2f}")
# ==================== COMPARISON ====================
print("\n" + "=" * 80)
print("COMPARISON")
print("=" * 80)
improvement = ((batch_fps - seq_fps) / seq_fps) * 100
print(f"\nSequential: {seq_fps:.2f} FPS combined ({seq_fps / len(camera_urls):.2f} per camera)")
print(f"Batched: {batch_fps:.2f} FPS combined ({batch_fps / len(camera_urls):.2f} per camera)")
print(f"\nImprovement: {improvement:+.1f}%")
if improvement > 10:
print("✓ Significant improvement with batch inference!")
elif improvement > 0:
print("✓ Moderate improvement with batch inference")
else:
print("⚠ No improvement - check batch model configuration")
# Cleanup
print("\n" + "=" * 80)
print("Cleanup")
print("=" * 80)
for i, decoder in enumerate(decoders):
decoder.stop()
print(f" Stopped camera {i+1}")
print("\n✓ Benchmark complete!")
def test_batch_preprocessing():
"""Test that batch preprocessing works correctly"""
print("\n" + "=" * 80)
print("BATCH PREPROCESSING TEST")
print("=" * 80)
# Create dummy frames
device = torch.device('cuda:0')
frames = [
torch.randint(0, 256, (3, 720, 1280), dtype=torch.uint8, device=device)
for _ in range(4)
]
print(f"\nInput: {len(frames)} frames, each {frames[0].shape}")
# Test batch preprocessing
batch = preprocess_batch(frames)
print(f"Output: {batch.shape} (expected: [4, 3, 640, 640])")
print(f"dtype: {batch.dtype} (expected: torch.float32)")
print(f"range: [{batch.min():.3f}, {batch.max():.3f}] (expected: [0.0, 1.0])")
assert batch.shape == (4, 3, 640, 640), "Batch shape mismatch"
assert batch.dtype == torch.float32, "Dtype mismatch"
assert 0.0 <= batch.min() and batch.max() <= 1.0, "Value range incorrect"
print("\n✓ Batch preprocessing test passed!")
if __name__ == "__main__":
# Test batch preprocessing
test_batch_preprocessing()
# Run benchmark
benchmark_sequential_vs_batch(duration=30)

View file

@ -1,117 +0,0 @@
#!/usr/bin/env python3
"""
Quick test for event-driven stream processing - runs for 20 seconds.
"""
import asyncio
import os
import logging
from dotenv import load_dotenv
from services import StreamConnectionManager, YOLOv8Utils, COCO_CLASSES
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
async def main():
"""Quick test with callback pattern"""
logger.info("=== Quick Event-Driven Test (20 seconds) ===")
# Load environment variables
load_dotenv()
camera_url = os.getenv('CAMERA_URL_1')
if not camera_url:
logger.error("CAMERA_URL_1 not found in .env file")
return
# Create manager
manager = StreamConnectionManager(
gpu_id=0,
batch_size=16,
force_timeout=0.05, # 50ms
poll_interval=0.01, # 100 FPS
)
# Initialize with YOLOv8 model
model_path = "models/yolov8n.trt"
logger.info(f"Initializing with model: {model_path}")
await manager.initialize(
model_path=model_path,
model_id="yolo",
preprocess_fn=YOLOv8Utils.preprocess,
postprocess_fn=YOLOv8Utils.postprocess,
)
result_count = 0
# Define callback for tracking results
def on_tracking_result(result):
nonlocal result_count
result_count += 1
if result_count % 5 == 0: # Log every 5th result
logger.info(f"[{result.stream_id}] Frame {result.metadata.get('frame_number', 0)}")
logger.info(f" Tracked objects: {len(result.tracked_objects)}")
for obj in result.tracked_objects[:3]: # Show first 3
class_name = COCO_CLASSES.get(obj.class_id, f"Class {obj.class_id}")
logger.info(
f" Track ID {obj.track_id}: {class_name}, "
f"conf={obj.confidence:.2f}"
)
def on_error(error):
logger.error(f"Stream error: {error}")
# Connect to stream
logger.info(f"Connecting to stream...")
connection = await manager.connect_stream(
rtsp_url=camera_url,
stream_id="test_camera",
on_tracking_result=on_tracking_result,
on_error=on_error,
)
# Monitor for 20 seconds with stats updates
for i in range(4): # 4 x 5 seconds = 20 seconds
await asyncio.sleep(5)
stats = manager.get_stats()
model_stats = stats['model_controller']
logger.info(f"\n=== Stats Update {i+1}/4 ===")
logger.info(f"Results received: {result_count}")
logger.info(f"Buffer A: {model_stats['buffer_a_size']} ({model_stats['buffer_a_state']})")
logger.info(f"Buffer B: {model_stats['buffer_b_size']} ({model_stats['buffer_b_state']})")
logger.info(f"Active buffer: {model_stats['active_buffer']}")
logger.info(f"Total frames processed: {model_stats['total_frames_processed']}")
logger.info(f"Total batches: {model_stats['total_batches_processed']}")
logger.info(f"Avg batch size: {model_stats['avg_batch_size']:.2f}")
# Final statistics
stats = manager.get_stats()
logger.info("\n=== Final Statistics ===")
logger.info(f"Total results received: {result_count}")
logger.info(f"Manager: {stats['manager']}")
logger.info(f"Model Controller: {stats['model_controller']}")
logger.info(f"Connection: {stats['connections']['test_camera']}")
# Cleanup
logger.info("\nShutting down...")
await manager.shutdown()
logger.info("Test complete!")
if __name__ == "__main__":
try:
asyncio.run(main())
except KeyboardInterrupt:
logger.info("\nInterrupted by user")
except Exception as e:
logger.error(f"Error: {e}", exc_info=True)

View file

@ -1,218 +0,0 @@
"""
Detailed Profiling Script to Identify Performance Bottlenecks
This script profiles each component separately:
1. Video decoding (NVDEC)
2. Preprocessing
3. TensorRT inference
4. Postprocessing (including NMS)
5. Tracking (IOU matching)
"""
import time
import os
import torch
from dotenv import load_dotenv
from services import (
StreamDecoderFactory,
TensorRTModelRepository,
TrackingFactory,
YOLOv8Utils,
COCO_CLASSES,
)
load_dotenv()
def profile_component(name, iterations=100):
"""Decorator for profiling a component."""
def decorator(func):
def wrapper(*args, **kwargs):
times = []
for _ in range(iterations):
start = time.time()
result = func(*args, **kwargs)
elapsed = time.time() - start
times.append(elapsed * 1000) # Convert to ms
avg_time = sum(times) / len(times)
min_time = min(times)
max_time = max(times)
print(f"\n{name}:")
print(f" Iterations: {iterations}")
print(f" Average: {avg_time:.2f} ms")
print(f" Min: {min_time:.2f} ms")
print(f" Max: {max_time:.2f} ms")
print(f" Throughput: {1000/avg_time:.2f} FPS")
return result
return wrapper
return decorator
def main():
print("=" * 80)
print("PERFORMANCE PROFILING - Component Breakdown")
print("=" * 80)
GPU_ID = 0
MODEL_PATH = "models/yolov8n.trt"
RTSP_URL = os.getenv('CAMERA_URL_1')
# Initialize components
print("\nInitializing components...")
model_repo = TensorRTModelRepository(gpu_id=GPU_ID, default_num_contexts=4)
model_repo.load_model("detector", MODEL_PATH, num_contexts=4)
tracking_factory = TrackingFactory(gpu_id=GPU_ID)
controller = tracking_factory.create_controller(
model_repository=model_repo,
model_id="detector",
tracker_type="iou",
max_age=30,
min_confidence=0.5,
iou_threshold=0.3,
class_names=COCO_CLASSES
)
stream_factory = StreamDecoderFactory(gpu_id=GPU_ID)
decoder = stream_factory.create_decoder(RTSP_URL, buffer_size=30)
decoder.start()
print("Waiting for stream connection...")
connected = False
for i in range(30):
time.sleep(1)
if decoder.is_connected():
connected = True
print(f"✓ Stream connected after {i+1} seconds")
break
if i % 5 == 0:
print(f" Waiting... {i+1}/30 seconds")
if not connected:
print("⚠ Stream not connected after 30 seconds")
return
print("✓ Stream connected\n")
print("=" * 80)
print("PROFILING RESULTS")
print("=" * 80)
# Wait for frames to buffer
time.sleep(2)
# Get a sample frame for testing
frame_gpu = decoder.get_latest_frame(rgb=True)
if frame_gpu is None:
print("⚠ No frames available")
return
print(f"\nFrame shape: {frame_gpu.shape}")
print(f"Frame device: {frame_gpu.device}")
print(f"Frame dtype: {frame_gpu.dtype}")
# Profile 1: Video Decoding
@profile_component("1. Video Decoding (NVDEC)", iterations=100)
def profile_decoding():
return decoder.get_latest_frame(rgb=True)
profile_decoding()
# Profile 2: Preprocessing
@profile_component("2. Preprocessing (Resize + Normalize)", iterations=100)
def profile_preprocessing():
return YOLOv8Utils.preprocess(frame_gpu)
preprocessed = profile_preprocessing()
# Profile 3: TensorRT Inference
@profile_component("3. TensorRT Inference", iterations=100)
def profile_inference():
return model_repo.infer(
model_id="detector",
inputs={"images": preprocessed},
synchronize=True
)
outputs = profile_inference()
# Profile 4: Postprocessing (including NMS)
@profile_component("4. Postprocessing (NMS + Format Conversion)", iterations=100)
def profile_postprocessing():
return YOLOv8Utils.postprocess(outputs)
detections = profile_postprocessing()
print(f"\nDetections shape: {detections.shape}")
print(f"Number of detections: {len(detections)}")
# Profile 5: Full Pipeline (Tracking)
@profile_component("5. Full Tracking Pipeline", iterations=50)
def profile_full_pipeline():
frame = decoder.get_latest_frame(rgb=True)
if frame is None:
return []
return controller.track(
frame,
preprocess_fn=YOLOv8Utils.preprocess,
postprocess_fn=YOLOv8Utils.postprocess
)
profile_full_pipeline()
# Profile 6: Parallel inference (simulate multi-camera)
print("\n" + "=" * 80)
print("MULTI-CAMERA SIMULATION")
print("=" * 80)
num_cameras = 4
print(f"\nSimulating {num_cameras} cameras processing sequentially...")
@profile_component(f"Sequential Processing ({num_cameras} cameras)", iterations=20)
def profile_sequential():
for _ in range(num_cameras):
frame = decoder.get_latest_frame(rgb=True)
if frame is not None:
controller.track(
frame,
preprocess_fn=YOLOv8Utils.preprocess,
postprocess_fn=YOLOv8Utils.postprocess
)
profile_sequential()
# Cleanup
decoder.stop()
# Summary
print("\n" + "=" * 80)
print("BOTTLENECK ANALYSIS")
print("=" * 80)
print("""
Based on the profiling results above, identify the bottleneck:
1. If "TensorRT Inference" is the slowest:
GPU compute is the bottleneck
Solutions: Lower resolution, smaller model, batch processing
2. If "Postprocessing (NMS)" is slow:
CPU/GPU synchronization or NMS is slow
Solutions: Optimize NMS, reduce detections threshold
3. If "Video Decoding" is slow:
NVDEC is the bottleneck
Solutions: Lower resolution streams, fewer cameras per decoder
4. If "Sequential Processing" time (single pipeline time × num_cameras):
No parallelization, processing is sequential
Solutions: Async processing, CUDA streams, batching
Expected bottleneck: TensorRT Inference (most compute-intensive)
""")
if __name__ == "__main__":
main()

View file

@ -1,318 +0,0 @@
"""
Test script for TrackingController and TrackingFactory.
This script demonstrates how to use the tracking system with:
- TensorRT model repository (dependency injection)
- TrackingFactory for controller creation
- GPU-accelerated object tracking on RTSP streams
- Persistent track IDs and history management
"""
import time
import os
from dotenv import load_dotenv
from services import (
StreamDecoderFactory,
TensorRTModelRepository,
TrackingFactory,
TrackedObject
)
# Load environment variables
load_dotenv()
def main():
"""
Main test function demonstrating tracking workflow.
"""
# Configuration
GPU_ID = 0
MODEL_PATH = "models/yolov8n.trt" # Update with your model path
RTSP_URL = os.getenv('CAMERA_URL_1', 'rtsp://localhost:8554/test')
BUFFER_SIZE = 30
# COCO class names (example for YOLOv8)
COCO_CLASSES = {
0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane',
5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light',
# Add more as needed...
}
print("=" * 80)
print("GPU-Accelerated Object Tracking Test")
print("=" * 80)
# Step 1: Create model repository
print("\n[1/5] Initializing TensorRT Model Repository...")
model_repo = TensorRTModelRepository(gpu_id=GPU_ID, default_num_contexts=4)
# Load detection model (if file exists)
model_id = "yolov8_detector"
if os.path.exists(MODEL_PATH):
try:
metadata = model_repo.load_model(
model_id=model_id,
file_path=MODEL_PATH,
num_contexts=4
)
print(f"✓ Model loaded successfully")
print(f" Input shape: {metadata.input_shapes}")
print(f" Output shape: {metadata.output_shapes}")
except Exception as e:
print(f"✗ Failed to load model: {e}")
print(f" Please ensure {MODEL_PATH} exists")
print(f" Continuing with demo (will use mock detections)...")
model_id = None
else:
print(f"✗ Model file not found: {MODEL_PATH}")
print(f" Continuing with demo (will use mock detections)...")
model_id = None
# Step 2: Create tracking factory
print("\n[2/5] Creating TrackingFactory...")
tracking_factory = TrackingFactory(gpu_id=GPU_ID)
print(f"✓ Factory created: {tracking_factory}")
# Step 3: Create tracking controller (only if model loaded)
tracking_controller = None
if model_id is not None:
print("\n[3/5] Creating TrackingController...")
try:
tracking_controller = tracking_factory.create_controller(
model_repository=model_repo,
model_id=model_id,
tracker_type="iou",
max_age=30,
min_confidence=0.5,
iou_threshold=0.3,
class_names=COCO_CLASSES
)
print(f"✓ Controller created: {tracking_controller}")
except Exception as e:
print(f"✗ Failed to create controller: {e}")
tracking_controller = None
else:
print("\n[3/5] Skipping TrackingController creation (no model loaded)")
# Step 4: Create stream decoder
print("\n[4/5] Creating RTSP Stream Decoder...")
stream_factory = StreamDecoderFactory(gpu_id=GPU_ID)
decoder = stream_factory.create_decoder(
rtsp_url=RTSP_URL,
buffer_size=BUFFER_SIZE
)
decoder.start()
print(f"✓ Decoder started for: {RTSP_URL}")
print(f" Waiting for connection...")
# Wait for stream connection
time.sleep(5)
if decoder.is_connected():
print(f"✓ Stream connected!")
else:
print(f"✗ Stream not connected (status: {decoder.get_status().value})")
print(f" Note: This is expected if RTSP URL is not available")
print(f" The tracking system will still work with valid streams")
# Step 5: Run tracking loop (demo)
print("\n[5/5] Running Tracking Loop...")
print(f" Processing frames for 30 seconds...")
print(f" Press Ctrl+C to stop early\n")
try:
frame_count = 0
start_time = time.time()
while time.time() - start_time < 30:
# Get latest frame from decoder (GPU tensor)
frame = decoder.get_latest_frame(rgb=True)
if frame is None:
time.sleep(0.1)
continue
frame_count += 1
# Run tracking (if controller available)
if tracking_controller is not None:
try:
# Track objects in frame
tracked_objects = tracking_controller.track(frame)
# Display tracking results every 10 frames
if frame_count % 10 == 0:
print(f"\n--- Frame {frame_count} ---")
print(f"Active tracks: {len(tracked_objects)}")
for obj in tracked_objects:
print(f" Track #{obj.track_id}: {obj.class_name} "
f"(conf={obj.confidence:.2f}, "
f"bbox={[f'{x:.1f}' for x in obj.bbox]}, "
f"age={obj.age(tracking_controller._frame_count)} frames)")
# Print statistics
stats = tracking_controller.get_statistics()
print(f"\nStatistics:")
print(f" Total frames processed: {stats['frame_count']}")
print(f" Total tracks created: {stats['total_tracks_created']}")
print(f" Total detections: {stats['total_detections']}")
print(f" Avg detections/frame: {stats['avg_detections_per_frame']:.2f}")
print(f" Class counts: {stats['class_counts']}")
except Exception as e:
print(f"✗ Tracking error on frame {frame_count}: {e}")
# Small delay to avoid overwhelming output
time.sleep(0.1)
except KeyboardInterrupt:
print("\n\n✓ Interrupted by user")
# Cleanup
print("\n" + "=" * 80)
print("Cleanup")
print("=" * 80)
if tracking_controller is not None:
print("\nTracking final statistics:")
stats = tracking_controller.get_statistics()
for key, value in stats.items():
print(f" {key}: {value}")
print("\nExporting tracks to JSON...")
try:
tracks_json = tracking_controller.export_tracks(format="json")
with open("tracked_objects.json", "w") as f:
f.write(tracks_json)
print(f"✓ Tracks exported to tracked_objects.json")
except Exception as e:
print(f"✗ Export failed: {e}")
print("\nStopping decoder...")
decoder.stop()
print("✓ Decoder stopped")
print("\n" + "=" * 80)
print("Test completed successfully!")
print("=" * 80)
def test_multi_camera_tracking():
"""
Example: Track objects across multiple camera streams.
This demonstrates:
- Shared model repository across multiple streams
- Multiple tracking controllers (one per camera)
- Efficient GPU resource usage
"""
GPU_ID = 0
MODEL_PATH = "models/yolov8n.trt"
# Load multiple camera URLs
camera_urls = []
i = 1
while True:
url = os.getenv(f'CAMERA_URL_{i}')
if url:
camera_urls.append(url)
i += 1
else:
break
if not camera_urls:
print("No camera URLs found in .env file")
return
print(f"Testing multi-camera tracking with {len(camera_urls)} cameras")
# Create shared model repository
model_repo = TensorRTModelRepository(gpu_id=GPU_ID, default_num_contexts=8)
if os.path.exists(MODEL_PATH):
model_repo.load_model("detector", MODEL_PATH, num_contexts=8)
else:
print(f"Model not found: {MODEL_PATH}")
return
# Create tracking factory
tracking_factory = TrackingFactory(gpu_id=GPU_ID)
# Create stream decoders and tracking controllers
stream_factory = StreamDecoderFactory(gpu_id=GPU_ID)
decoders = []
controllers = []
for i, url in enumerate(camera_urls):
# Create decoder
decoder = stream_factory.create_decoder(url, buffer_size=30)
decoder.start()
decoders.append(decoder)
# Create tracking controller
controller = tracking_factory.create_controller(
model_repository=model_repo,
model_id="detector",
tracker_type="iou",
max_age=30,
min_confidence=0.5
)
controllers.append(controller)
print(f"Camera {i+1}: {url}")
print(f"\nWaiting for streams to connect...")
time.sleep(10)
# Track objects for 30 seconds
print(f"\nTracking objects across {len(camera_urls)} cameras...")
start_time = time.time()
try:
while time.time() - start_time < 30:
for i, (decoder, controller) in enumerate(zip(decoders, controllers)):
frame = decoder.get_latest_frame(rgb=True)
if frame is not None:
tracked_objects = controller.track(frame)
# Print stats every 10 seconds
if int(time.time() - start_time) % 10 == 0:
stats = controller.get_statistics()
print(f"Camera {i+1}: {stats['active_tracks']} tracks, "
f"{stats['frame_count']} frames")
time.sleep(0.1)
except KeyboardInterrupt:
print("\nInterrupted by user")
# Cleanup
print("\nCleaning up...")
for decoder in decoders:
decoder.stop()
# Print final stats
print("\nFinal Statistics:")
for i, controller in enumerate(controllers):
stats = controller.get_statistics()
print(f"\nCamera {i+1}:")
print(f" Frames: {stats['frame_count']}")
print(f" Tracks created: {stats['total_tracks_created']}")
print(f" Active tracks: {stats['active_tracks']}")
# Print model repository stats
print("\nModel Repository Stats:")
repo_stats = model_repo.get_stats()
for key, value in repo_stats.items():
print(f" {key}: {value}")
if __name__ == "__main__":
# Run single camera test
main()
# Uncomment to test multi-camera tracking
# test_multi_camera_tracking()